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A prominent goal of computational toxicology is to predict the potential adverse effects 
of chemical substances on living systems.  Past structure-activity relationship 
approaches to prediction have relied exclusively upon identification of substructures or 
“toxic alerts”.  Newer approaches are exploring ways to incorporate richer descriptions 
of chemicals, in terms of their effects on fundamental biological targets and cells, into 
the prediction paradigm.  The object is a prediction scheme based on a chemical profile 
consisting of both structural and biological properties.  

To reduce the high costs associated with animal toxicity testing and to incorporate 
greater efficiencies, the National Toxicology Program (NTP) at the National Institute of 
Environmental Health Sciences (NIEHS) recently initiated the High Throughput 
Screening (NTP-HTS) project (http://ntp-server.niehs.nih.gov/; Inglese et al 2006). 
This project aims to develop in vitro biological assays that would be predictive of in vivo
chemical toxicity. 

In this study, the recent HTS results for known carcinogens were used as biological 
descriptors in Quantitative Structure Activity Relationship (QSAR)-based “disease-
oriented” modeling. We show that the use of the HTS biological-content descriptors 
improves the predictive power of QSAR models of animal and human chemical 
carcinogenicity as compared to conventional models utilizing chemical descriptors only.

Figure 1. Combining chemical and biological descriptors in QSAR 
modeling of chemical carcinogenicity.

The NTP-HTS data on 1,408 chemicals were obtained from PubChem (PUBCHEM) and 
the Distributed Structure-Searchable Toxicity (DSSTox) Database Network. After 
removing duplicates, inorganic, organo-metallic compounds and mixtures, the curated 
subset of the original NTP-HTS dataset used in our studies included 1,289 unique 
chemical agents (Table 1).

The cell lines used for screening in NTP-HTS include: BJ (human foreskin fibroblast), 
HEK293 (transformed human embryonic kidney cell line), HepG2 (human hepatoma), 
Jurkat (clone E6-1, human acute T cell leukemia), MRC-5 (human lung fibroblast) and 
SK-N-SH (human neuroblastoma). 

The rodent carcinogenicity data were obtained from the DSSTox version of the 
Carcinogenic Potency Database (CPDBAS) (Gold et al 1997). The dataset used in this 
study included a total of 270 compounds: 178 were active and 92 inactive. The rodent 
carcinogenicity data for these compounds in four different species are shown in  Table 
2.

Table 1. NTP-HTS screening outcome for 1,289 Compounds

 Male Rats Female Rats Male Mice Female Mice 

Active 122 112 124 134 

Inactive 130 135 125 113 

Total 252 247 249 247 

 

Classifications BJ HEK293 HepG2 Jurkat MRC-5 SK-N-

SH 

All tests 

Actives 42 63 41 121 37 74 140 

Inconclusives 44 79 47 89 44 54 90 

Inactives 1,203 1,147 1,201 1,079 1,208 1,161 1,059 

 

Figure 2. Flowchart of predictive toxicology framework based 
on validated combi-QSAR models.

Table 2. Rodent Carcinogenicity Results for 270 Compounds 
from NTP-HTS Database

Chemical carcinogenicity data were analyzed using the predictive QSAR modeling 
framework (Figure 2) developed in our laboratory. The workflow incorporates modules 
for combinatorial QSAR model development (i.e., using all possible binary combinations 
of available descriptor sets and statistical data modeling techniques), rigorous model 
validation, and virtual screening of available chemical databases to prioritize chemicals 
for toxicity testing. Chemical toxicity models were developed using chemical descriptors 
only, or using chemical descriptors combined with NTP-HTS biological descriptors. 

Most computations were carried out using kNN QSAR modeling method developed in this 
laboratory (Zheng et al., 2000).  Chemical descriptors reflecting molecular connectivity, 
shape, and charge distribution were calculated with the MolConnZ software.
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The relationship between HTS activity and rodent carcinogenicity of 270 
compounds is shown in Table 3. As indicated, HTS active compounds have 
81% chance to be rodent carcinogens.  On the contrary, an HTS inactive 
compound is not necessarily expected to be non-carcinogenic (only 35%  of 
HTS inactives are CPDB inactives as well). Thus, the HTS data alone are 
insufficient to forecast the in vivo carcinogenicity. 

Table 3. The relationship between HTS activity and rodent 
carcinogenicity of 270 compounds.

The same dataset was analyzed with the conventional QSAR approach using 
chemical descriptors of 270 compounds only. Using the computational workflow 
of Fig. 2 we identified  nine rigorously validated kNN QSAR models that had high 
prediction accuracy for both training and test sets (q2 and R2, respectively) 
greater than 0.7. 

We then examined whether the use of in vitro bioassay (HTS) data as biological 
fingerprint descriptors could improve the prediction accuracy of QSAR models. 
We found that when using the combined chemical and seven HTS biological 
descriptors the number of kNN QSAR models that satisfy the q2/R2 > 0.7 cutoff 
increased to 34.

Not only the number of successful kNN QSAR models increased but the external
prediction accuracy of the models relying on combined chemical and biological 
descriptors improved as well. Figure 3 compares the prediction accuracy of 
conventional QSAR models vs. those generated with the combined descriptors for 
46 compounds in the external evaluation set.  The data indicate that the average 
accuracy of the models using the combined  descriptors is 17% higher.

Figure 3. Comparison of the results from kNN QSAR models using 
two types of descriptors.
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Chemical (MolConnZ)
Descriptors 

Chemical (MolConnZ)
Descriptors + Biological (HTS)
Descriptors

 HTS actives HTS inconclusives HTS inactives 

CPDB actives 30 12 136 

CPDB Inactives 7 11 74 

Correlation 81% - 35% 
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HTS results generated in six different cell lines were given equal 
weights in assigning  the overall HTS activity of a compound. 
However, we examined the differential significance of each cell 
line in contributing to QSAR models. Figure 4 shows that the 
frequency of use of the seven HTS descriptors in the 34 kNN
QSAR models is not the same. This distribution suggests that the
choice of cell lines could significantly influence the significance of 
HTS screening in predicting chemical carcinogenicity in vivo.
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Figure 4. Seven HTS descriptors with their frequency of 
use in the 34 kNN QSAR models.

We have examined the usefulness of NTP-HTS data for predicting chemical 
toxicity in vivo. We have shown that the current HTS results, from assays 
not deliberately chosen for carcinogenicity relevance, have limited predictive 
power (Table 3) by themselves. However, using HTS results as biological 
fingerprint descriptors significantly improved the overall prediction accuracy 
of QSAR models as compared to those based on chemical descriptors alone 
(Figure 3). 
This observation suggests that  in vitro bioassay results add new 
information content useful in prediction and may be ultimately helpful in at 
least partially replacing in vivo toxicity testing.  This is most likely to be the 
case if the battery of HTS assays is expanded to include cell lines and 
processes with known relevance to carcinogenicity.
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