Tissue Engineering in Microgravity

Neal R. Pellis, Ph.D.

Chief, Biological Systems Office NASA Johnson Space Center Houston, TX 77058 Npellis@ems.jsc.nasa.gov

Why Tissue Engineering?

Millions suffer tissue or organ loss from diseases
 and accidents every year

- Yearly cost of treatment exceeds \$400 billion

- Major medical treatment is transplantation
 Shortages of replacement tissue and organs
- Development of Alternative Sources for Transplantations by Engineering Tissue
- In vitro tissue models may allow better understanding of disease pathology to avoid organ failure

Biomedical Applications of Tissue Engineering

- In vitro Growth of Tissues for Implantation
 - Replacement of Diseased or Damaged Tissues
 - » Skin replacement for treatment of serious burns
- Extracorporeal Support
 - External Devices Containing Tissue that Replace the Function of Internal Organ

» Artificial liver

Human Disease Models

- Differentiated Tissues for Pathogen Propagation

» Models for HIV, Cyclospora

– Three-Dimensional Cancer Models

» Prostate, Colon

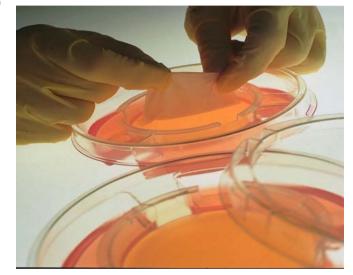
Biomedical Applications of Tissue Engineering

- Drug Testing and Development
 - New Tissue models for drug development
 - » Renal Toxicity, Heart
- Biomaterial-guided Tissue Regeneration
 - Implantation of Biomaterials to Induce Tissue Regeneration
 - » Absorbable collagen matrix for guiding tissue regeneration in periodontal surgery.

Immune System Problems

- Immunosuppressive Drugs
 - Serious Complications
- Autologous
 - Use the person's cells
 - Best approach if possible
- Encapsulation: Immunoisolation
 - Biopolymer coating to keep immune system out
 - Pancreatic Islets
 - » 1-2% of Pancreatic Volume
- Future: Genetically Modified Cells
 - Major Histocompatibility Complex Genes
 - Mesenchymal Stem Cells

Current Commercial Products


Human Skin Equivalent with Cells

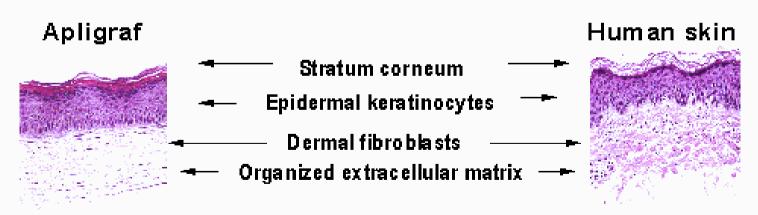
– Autologous

- » Genzyme (Epicel): Epidermal Grafts
- » 16 Days
- » Close a serious burn wound: If you live
- » Currently one layer (two layer: strength)

Neonatal foreskin

» Used for skin ulcers

- » Stimulates the host tissue to regenerate: Not there at end
- » Advanced Tissue Science: Dermagraft (frozen)
- » Organogenesis: Apligraf Two layers

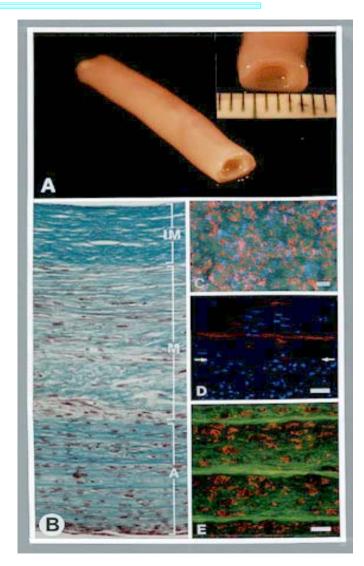

Cell-based Procedure to Repair Knee Injuries

– Autologous

- » Genzyme (Carticel)
- » Inject chondrocytes under periosteal flap: Jury is out

Human Skin Equivalent

- Organogenesis Inc.
 - Apligraf: skin construct with upper epidermal and lower dermal layer comprised of viable human skin cells
 - No blood vessels, hair follicles, sweat glands, melanocytes
 - 20 Days to produce product

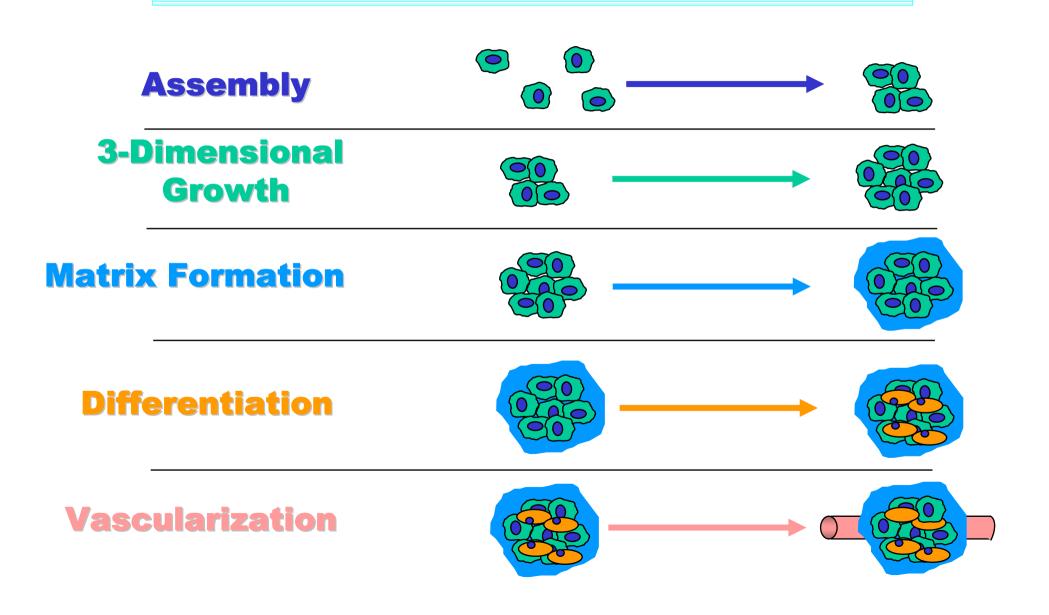

Apligraf compared to human skin under a microscope.

Growth Approach is Important

- Monolayer Growth
 - Can be applied to cell proliferation
 - Monolayers can be used to buildup tissue
- Perfused Systems
 - Force Fluid through the tissue
 - Support larger tissue constructs
 - Provide asymmetrical growth conditions
 - Mechanical loads
 - Pulsed-flow
- Coupling of monolayer proliferation and perfused systems
 - Blood vessels

Blood Vessel Formation

- Monolayer Technique
 - Build Tissue Layer by Layer
- Grow Tissues Independently
 - Vascular smooth muscle cells
 - Fibroblasts
 - Endothelial: seeded on lumen
- Three-layer Structure
 - ECM with elastin
- Differentiation Markers
 - Desmin
- Burst strength comparable to native blood vessels



FASEB Vol. 12, 1998, p 47

Cellular Requirements for Engineering Tissue

- Proliferation of Cells Required
 - Start with limited number of cells
 - Expand large number of times
- Cellular Assembly into 3-D Constructs
 - Cell-matrix adhesion: intergrins
 - Cell-cell adhesion: cadherins
 - Intercellular Junction Formation
- ECM formation Required
- Differentiation Required
- Angiogenesis
 - Co-culture with endothelial cells
- Innervation

Tissue Engineering in 5 Steps

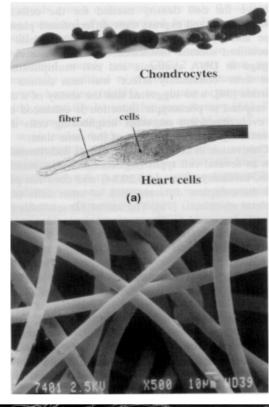
Four Primary Requirements for Engineering Tissue

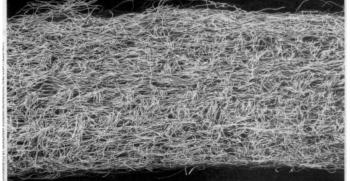
- Cell Source
 - Proliferation and Differentiation Required
 - Pluri-potent Stem Cells
- Biomaterial Scaffold: Biopolymers
 - Provides Appropriate Substratum to Support Cell-cell, Cellmatrix Interactions
- Bioreactors
 - Maintains Physiological Conditions
 - Uniform Concentrations of Gases and Nutrients
- Specific Factors
 - Growth factors, hormones, metabolites
 - Depends on tissue type and developmental stage

Scaffolds for Tissue Engineering

- Desirable Properties
 - Biodegradable & Biocompatible
 - Highly porous
 - » High permeability (PGA: 97% Porous)
 - Cell adhesion
 - » ECM establishes adhesion (fibronection)
 - » Strengthened by CAM's (cadherins)

– Tailor and control


» Shape, strength, speed of degradation, and microstructure


Mimic natural materials

» Fibronectin RGD sequence in polymers improves cell adhesion

Materials

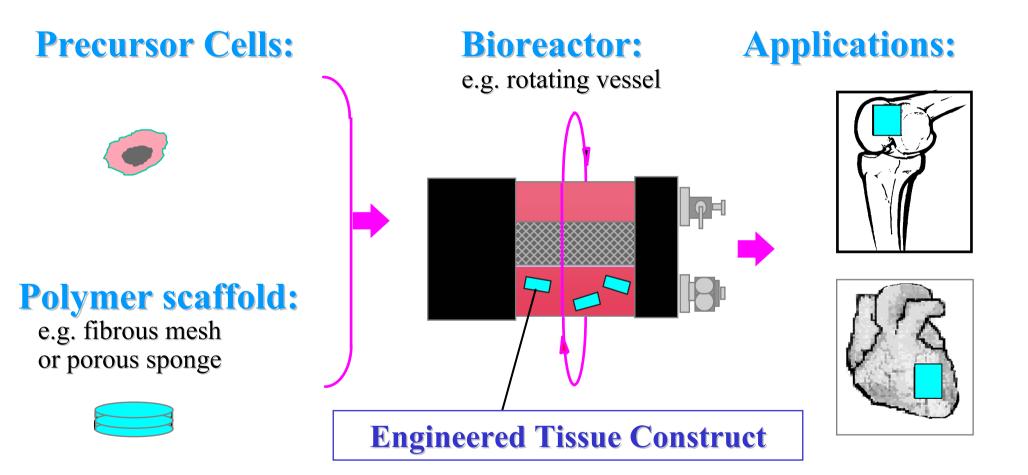
- » Suture material: polyglycolic acid
- » Collagen, Alginate, Hyaluronic Acid

Limitations on Engineered Tissue Size

- Tissue Size is Limited By
 - Transport of nutrients and gases
 - Metabolic rates of component cells and permeability of the construct
- Angiogenesis
 - Most cells are no more than 100 um from the nearest capillary
 - Capillaries: effective mass transfer
 - » small diameter (6-8 um)
 - » Residence time of blood is greater than radial diffusion time
- Mixed and Perfused Systems
 - Force flow of fluid through tissue
 - Too much fluid shear damages cells and tissues

Engineered Tissue Thickness

- Total Cardiac Output Recieved
 - Skeletal & cardiac muscle ~ 25% (~75% strenuous exercise)
 - Cartilage ~ 2%
 - Bone ~ 10%


Tissue that are normally vascularized

- Bone, muscle
 - » Mass transfer limited
- Avascular cartilage

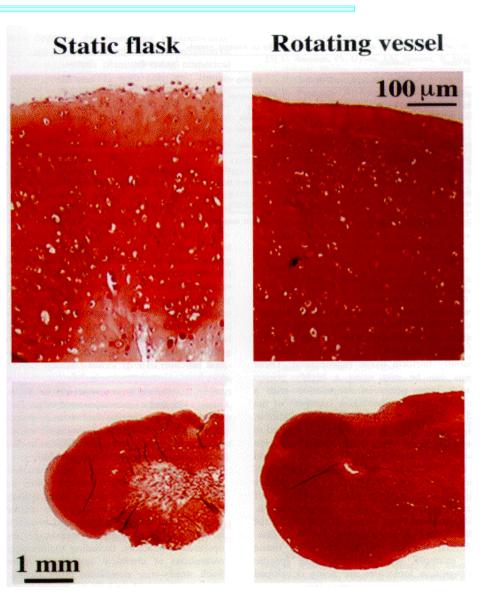
Current thickness of engineered tissues

- Cartilage ~ 5 mm
 - » Thickness is appropriate for human articular cartilage repair
- Bone-like ~ .5 mm
- Cardic-like ~ .18 mm

Cell-Polymer-Bioreactor System

Cartilage Cell Sources

- Need sufficient number of chondrogenic cells
 - Cell density plays critical role in the initiation of chondrogenesis
- Chondrocytes
 - Bovine calves
 - Obtained from articular cartilage and expanded
- Bone Marrow Stromal Cells
 - Differentiate into several mesenchymal lineages
 - » Osteoblasts, chrondrocytes, adipocytes, myocytes
 - Involved in natural repair of tissue
 - Growth factors required (FGF-2, TGF-beta 1)
 - Embryonic chicks and bovine calves


Advantages of Bone Marrow Stromal Cells

- Low numbers of cells required
 - Rapidly expanded in monolayers and maintain differentiation potential
- Relative simplicity of the procedure to harvest bone marrow
- High biosynthetic activity in older individuals
- Possibility of engineering composites of bone and cartilage for osteochondral defects

Tissue Engineering of Cartilage

Cell Seeding Density and Assembly

- Critical to promoting cell-cell contacts
 - » 4 to 10 million per 10x5mm scaffold
 - » At Lower seeding levels, insufficient ECM produced and construct loses structural integrity
- Associated with high rates of ECM biosynthesis chondrocytes
- Expression of a chondrogenic phenotype by progenitor cells in marrow

Effects of Media on Engineered Cartilage

TABLE 1. Effects of Medium Composition on Construct Properties

Measured Parameter	Group 1	Group 2	
Medium composition (over 5 weeks)			
Oxygen tension (mm Hg)	86.5 ± 7.3 (60)*	42.7 ± 4.5 (60)	
pH	6.98 ± 0.07 (60)*	6.73 ± 0.09 (60)	
Lactate to glucose ratio (mol/mol)	1.65	2.17	
Construct properties (at 5 weeks)			
Wet weight (mg)	139 ± 12 (3)*	101 ± 8.0 (3)	
Cells (millions per construct)	13.5 ± 1.29 (3)*	9.96 ± 1.52 (3)	
Glycosaminoglycan (% of wet weight)	4.18 ± 0.22 (3)*	3.07 ± 0.28 (3)	
Total collagen (% of wet weight)	$2.76 \pm 0.03^{*}$	0.77 ± 0.03 (3)	
Macromolecular incorporation of ${}^{35}SO_4$ (ng/µgDNA day)	110 ± 17 (3)*	37 ± 1.0 (3)	
Macromolecular incorporation of ³ H (ng/µgDNA day)	104 ± 21 (3)	117 ± 8.0 (3)	
Fraction of incorporated ³ H in hydroxyproline (% of total)	$21.1 \pm 0.8 (3)^*$	4.7 ± 1.2 (3)	

The number of samples is given in parentheses.

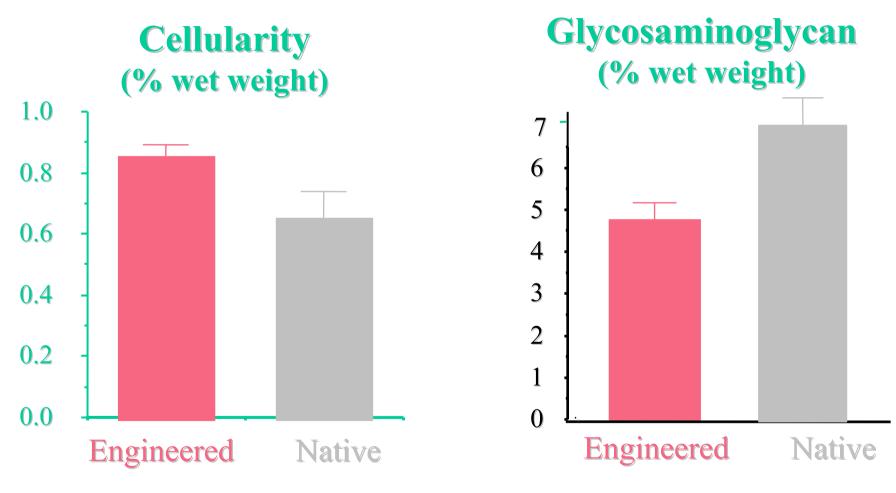
*Significant difference between groups.

Effects Bioreactor Vessel on Engineered Cartilage

TABLE 2. Effects of Bioreactor Vessel and Cultivation Time on Construct Properties

13 **(**14)

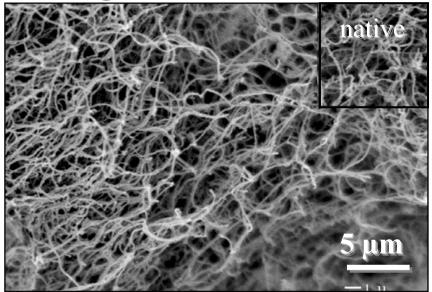
Construct Culture Vessel and Time (versus native articular cartilage)	Glycosaminoglycan	Total Collagen	Equilibrium Modulus
	(% of wet weight)	(% of wet weight)	(MPa)
Static flask, 6 weeks constructs	2.73 ± 0.20 (6)	1.41 ± 0.08 (6)	0.053 ± 0.011 (3)
Mixed flask, 6 weeks constructs	2.19 ± 0.17 (6)	2.74 ± 0.16 (6)	0.051 ± 0.004 (4)
Rotating bioreactor, 6 weeks constructs	4.71 ± 0.41 (6) [†]	3.79 ± 0.05 (6) ⁺	0.172 ± 0.035 (4) [†]
Rotating bioreactor, 3 day constructs	0.71 ± 0.03 (3)	$\begin{array}{l} 0.48 \pm 0.08 \ (3) \\ 3.79 \pm 0.05 \ (6) \\ 2.7 \pm 0.75 \ (3) \\ 3.68 \pm 0.27 \ (3)^{\sharp} \end{array}$	~ 0
Rotating bioreactor, 6 week constructs	4.71 ± 0.41 (6)		0.172 ± 0.035 (4)
Rotating bioreactor, 3 month constructs	6.03 ± 0.84 (3)		0.108 ± 0.047 (2)
Rotating bioreactor, 7 month constructs	$8.83 \pm 0.93^{*,\pm}$		0.932 ± 0.049 (3)*
Bovine calf cartilage, freshly explanted	6.81 ± 1.12 (24)	9.69 ± 1.68 (24)	0.939 ± 0.026 (6)


The number of samples is given in parentheses.

*Significant difference between constructs cultured for 7 months and those cultured in rotating bioreactors for shorter times.

†Significant difference between constructs cultured in rotating bioreactors and those cultured in either static flasks or mixed flasks.

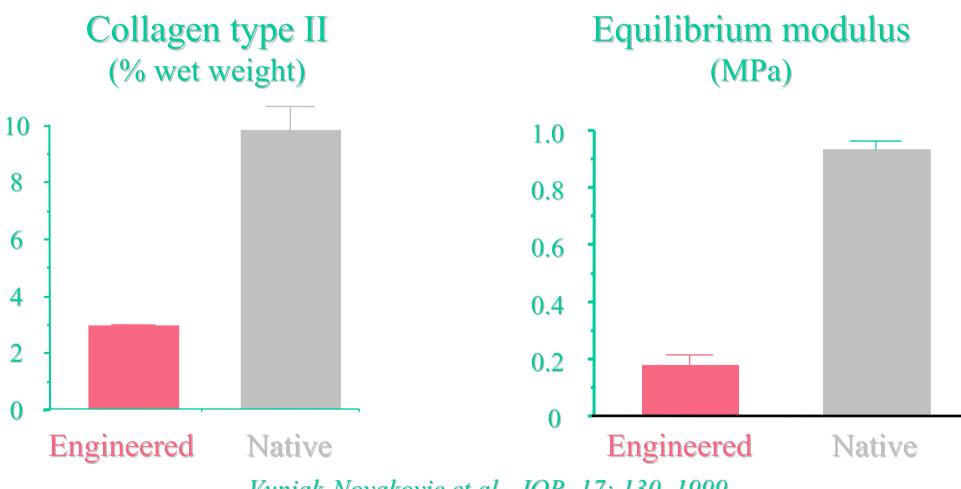
*Significant difference between 7-month constructs and native articular cartilage.


Engineered* vs. native cartilage (*cultured 6 weeks in rotating bioreactors)

Freed et al., Exp Cell Res 240: 58, 1998

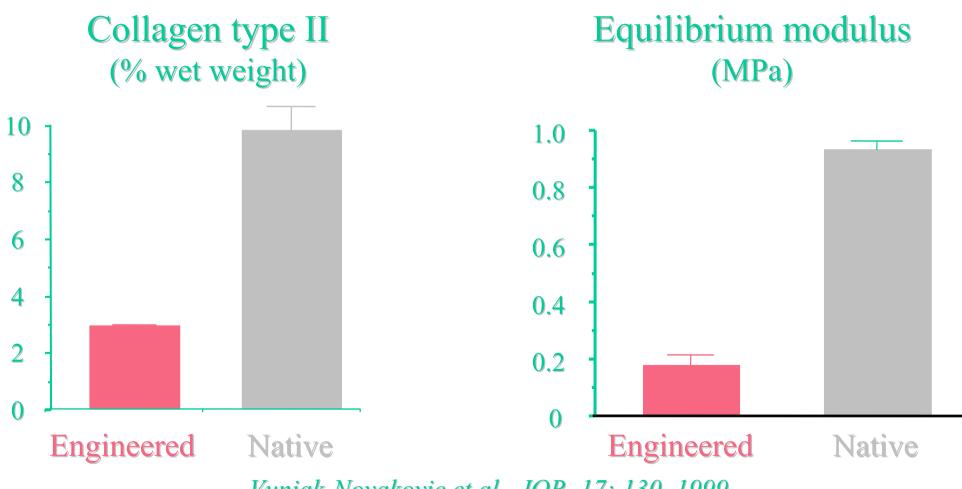
Structure and Protein Expression in Engineered Cartilage

Collagen network, SEM

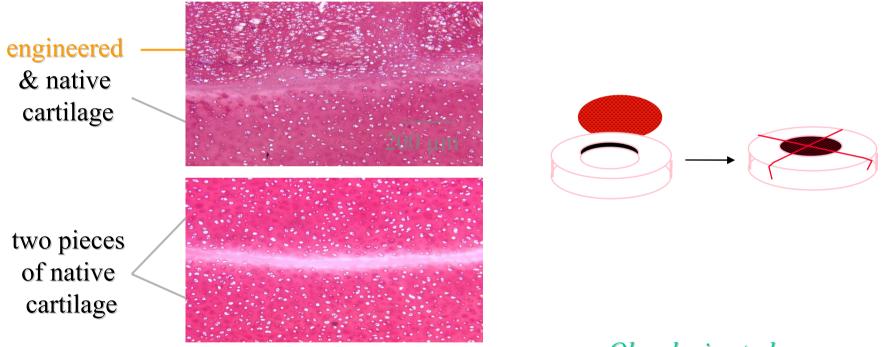

Riesle et al., J Cell Biochem 71: 313, 1998 SDS-PAGE Collagen II estern blot

Collagen II Collagen IX Native cartilage Engineered cart Collagen II

Native cartilage


Engineered cart

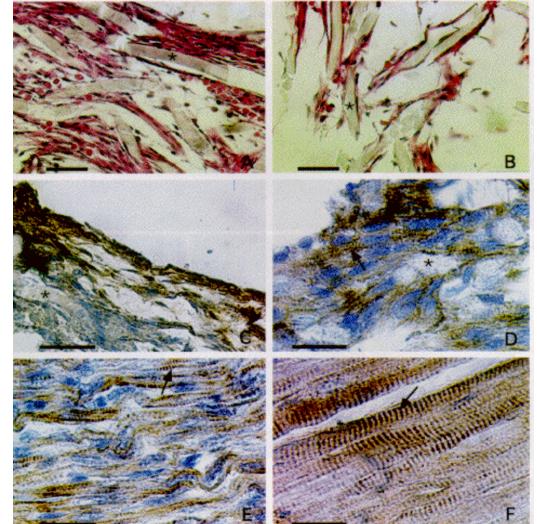
Engineered* vs. native cartilage (*cultured 6 weeks in rotating bioreactors)


Vunjak-Novakovic et al., JOR 17: 130, 1999

Engineered* vs. native cartilage (*cultured 6 weeks in rotating bioreactors)

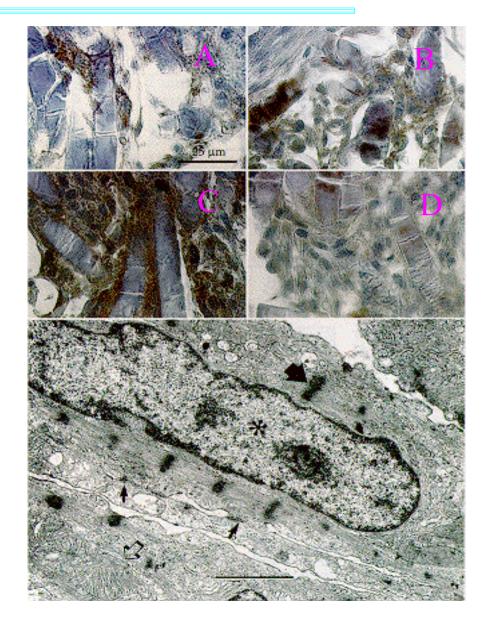
Vunjak-Novakovic et al., JOR 17: 130, 1999

Engineered cartilage integrated with native cartilage

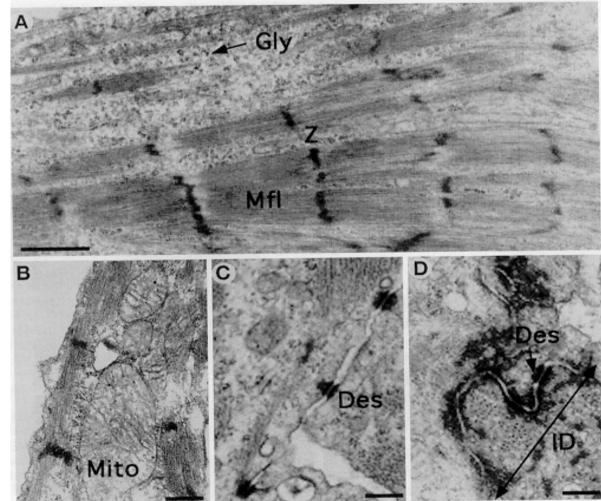


Obradovic et al., Trans ORS 25: 616, 2000

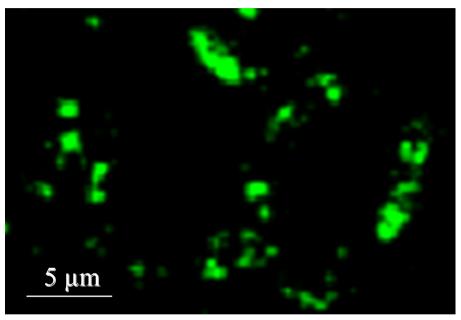
- Develop cardiac constructs for developmental, physiological, and pharmacological studies
- Compared with monolayer cultures, 3-D multilayer cultures more closely resemble intact cardiac tissue
 - Cellular differentiation
 - Electrical properties
- In vivo cardiac repair
 - If constructs can be grown sufficiently large and functional
- Check functionality with impulse propagation
- Cardiac Myocyte Cell Source
 - Neonatal Rat ventricles
 - » Enzymatic digestion of ventricles
 - » Monolayer expansion
 - » Cell seeding on scaffold (5x2 mm)


Histology

- Cells in outermost part of construct formed 3-D tissuelike structures
 - » Attached to other cells and spreading along PGA fibers
- 100-200 um thick outer tissue
- At construct center, cells were sparsely distributed
- Immunohistochemistry
 - Majority of cells expressed muscle-specific sarcomeric tropomyosin (brown color)


Cardiac Constructs

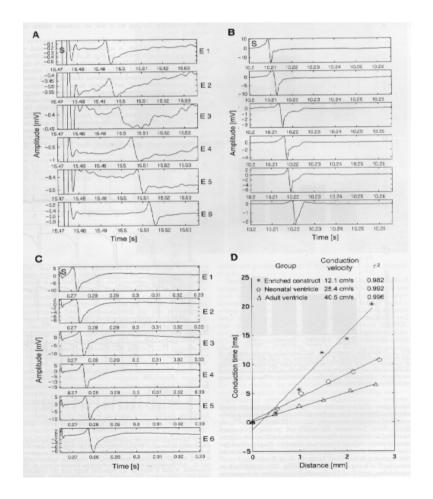
- One week of culture
- Cell Seeding Density
 - » 4-8 million cells per scaffold
 - » Allowed synchronous contractions over macroscopic areas
- Immunohistochemical Labeling: Muscle Specifc
 - A) Muscle desmin (IF)
 - B) Cardiac myosin
 - C) Cardiac troponin-T
 - D) Sarcomeric tropomyosin
- TEM
 - Desmosomes (little arrows)
 - Myofibrils: Z lines (broad arrow)

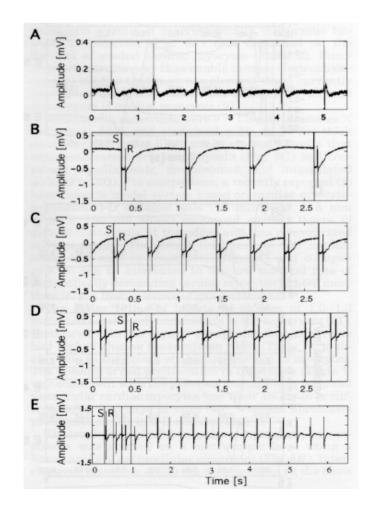

• TEM: Cardiac Myocytes

- Myofilaments with well defined: sarcomeres, Z-lines, and glycogen granules
- Mitochondria
- Intercellular Junctions: Desmosomes
- Intercellular Junctions:
 Desmosomes and
 Intercalated disc

- Intercellular Coupling
 via Gap Junctions
 - Connexin- 43
 - 43 kD subunits found in Gap Junctions
 - Electrically couples cardiac cells
 - Ion currents flow to propagate action potentials

Connexin-43, immunolabeling




Connexin-43 Western blot

Native Engineered ventricle tissue

- Impulse Propagation and Pacing Frequencies
 - Steady state response at 80, 150, and 200 beats/min

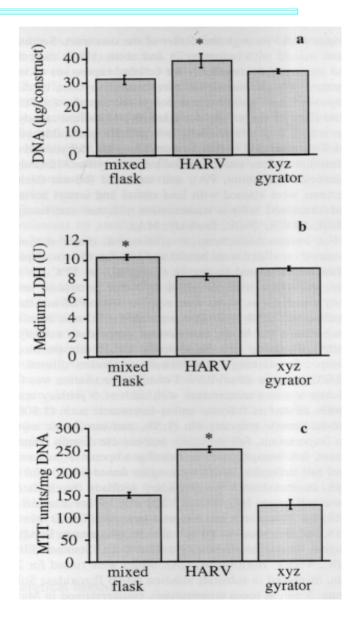
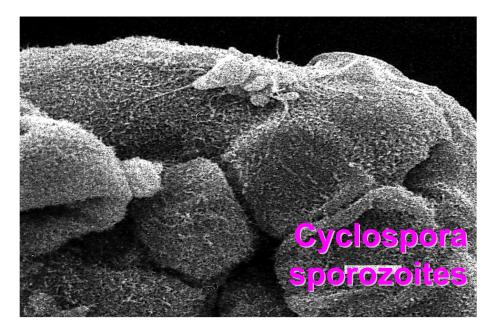
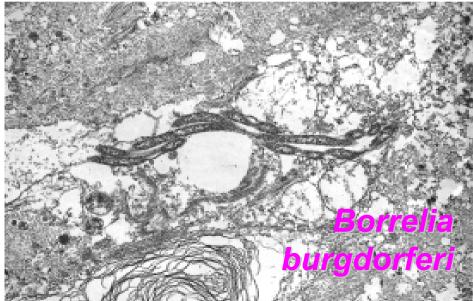

- Inferior electrophysiological properties compared with native ventricles
 - High excitation thresholds and low response amplitudes
 - » Low construct cellularity
 - Low conduction velocities
 - » Decreased cell coupling (Gap Junctions)

Table 2.	Electrophysiological	parameters in	7-day constructs	and native ventricles
----------	----------------------	---------------	------------------	-----------------------

Group	n	Excitation Threshold, V	Conduction Velocity, cm/s	Maximum Amplitude, mV	Average Amplitude, mV	Maximum Capture Rate, beats/min
Constructs		and the states of the	and a second second second second	and a second second second	white the second sol	water and makes and a
Regular*	6	2.70 ± 0.24	9.35 ± 0.27	0.52 ± 0.05	0.26 ± 0.09	111.7 ± 9.5
Enriched*	6	2.97 ± 0.30	$11.89 \pm 0.46 \dagger$	$0.90 \pm 0.14 \ddagger$	0.43 ± 0.14	$175.0 \pm 21.3 \dagger$
Ventricles						
Neonatal	10	0.74 ± 0.20	21.82 ± 1.48	31.91 ± 3.53	18.34 ± 4.31	475.0 ± 25.0
Adult	10	$1.34 \pm 0.17 \ddagger$	$31.69 \pm 4.44 \ddagger$	25.82 ± 2.81	14.62 ± 3.59	$281.2 \pm 21.0 \ddagger$


Data represent means \pm SE; n = no. of constructs or ventricles. *Significant difference between constructs and ventricles; †significant difference between neonatal and adult ventricles.

- Constructs seeded in low shear vessels
 - Highest cell densityand most uniformly distributed cells
 - Higher DNA contents
 - Lowest index of cell damage and cell death
 - Highest metabolic activity index
- Should result in improved
 electrical properties



Human Tissue Models that Enable Biomedical Research

- Universal Pathogen Culture System
 - Liver, epithelial, lymphoid coculture
 - » Multiple tissue provide correct microenvironment for most common human pathogens
 - EBV, Ebola, Monkeypox

