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Summary. The proposed quad-dominant mesh adaptation algorithm is based on
simplicial optimization. It is driven by an anisotropic Riemannian metric and uses
specialized local operators formulated in terms of an L∞ instead of the usual L2

distance. Furthermore, the physically-based vertex relocation operator includes an
alignment force to explicitly minimize the angular deviation of selected edges from
the local eigenvectors of the target metric. Sets of contiguous edges can then be
effectively interpreted as active tensor lines. Those lines are not only packed but
also simultaneous networked together to form a layered rectangular simplicial mesh
that requires little postprocessing to form a cubical-dominant one. Almost all-cubical
meshes are possible if the target metric is compatible with such a decomposition and,
although presently only two-dimensional tests were performed, a three-dimensional
extension is feasible.
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1 Introduction

Elementary modification operators are essential to optimize the computational
meshes used by finite element and finite volume solvers. They have been suc-
cessfully employed to automatically adapt simplicial meshes of triangles, in
two dimensions, and tetrahedra, in three dimensions [1]. However, this level of
automation has not yet been duplicated for cubical meshes of quadrilaterals,
in two dimensions, and hexahedra, in three dimensions. Generation, let alone
adaptation, of such meshes is still a challenge. There is, nevertheless, a strong
demand for quality cubical meshes either due to the intrinsic properties of
such elements or simply for compatibility with existing solvers.

Although fairly robust two-dimensional methods have been developed, cur-
rent conformal all-hexahedral algorithms are usually limited in scope and can-
not automatically process arbitrary shaped domains [2]. Acknowledging this
difficulty, cubical-dominant algorithms allow a small percentage of non-cubical
elements in order to achieve an increased level of automation. The present
work proposes such an algorithm that combines cubical particle packing [3, 4]

Quad-dominant, mesh adaptation, anisotropic Riemannian metric.
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with tensor line networking [5] and recasts the whole process as a specialized
simplicial optimization. More precisely, physically-based attraction-repulsion
forces are used to distribute the vertices of a simplicial mesh according to
the local density prescribed by an anisotropic Riemannian control metric.
Coupled with appropriate particle or vertex population control, this results
in an approximate centroidal Voronoi-Delaunay triangulation. Furthermore,
the proximity-based particle interaction force is modified to promote cubical
Voronoi regions by using an L∞ norm instead of the usual L2 norm to com-
pute metric distance. Particle population control is also reformulated in terms
of simplicial refinement and coarsening operations using the same chessboard
distance. These modifications provide, however, only local alignment and an
additional constraint is needed to recover the globally layered structure of an
ideal cubical mesh. An angle-based torsional spring-like force is used for this
purpose and aligns selected mesh edges with the local metric eigenvectors. A
physical interpretation of this optimization process can best be described as
line networking. Set of contiguous mesh edges indeed effectively form tensor
lines that are not only packed but also simultaneously interconnected together
to form a layered rectangular simplicial mesh that requires little processing
to form a cubical-dominant one. Almost all-cubical meshes are also possible if
the target metric is compatible with such a decomposition. Finally, although
presently only two-dimensional cases were considered, a three-dimensional ex-
tension is feasible and should be computationally competitive with classical
simplicial optimization.

Following a brief summary of existing adaptation methods, the present
paper describes the proposed specialized simplicial optimization algorithm
and uses both academic and practical test cases to illustrate its capabilities.

2 Simplicial Versus Cubical Mesh Adaptation

2.1 Riemannian Metrics and Distance

Mesh adaptation algorithms are typically controlled by a target map spec-
ifying the desired element size according to its location in the domain. For
anisotropic maps, size also varies according to element orientation. Metric-
based algorithms cast such a target map as a tensor representing a deforma-
tion of space that modifies how the length, area and volume of mesh entities
are measured [6, 7]. Such a Riemannian metric tensor is a symmetric positive
definite matrix M and can be factored as the product of a rotation matrix R
and a diagonal matrix Λ as in this two-dimensional formula

M = RΛR−1 =
(
e1 e2

)
(

λ1 0
0 λ2

)(
et
1

et
2

)
. (1)

The columns of R are the eigenvectors of M and correspond to two prescribed
directions e1 and e2. The diagonal terms λ1 and λ2 are the strictly positive
eigenvalues of M. The target sizes h1 and h2 along e1 and e2 are given by the
inverse square root of those eigenvalues, i.e., hi = 1/

√
λi.
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Fig. 1. Two-dimensional ε-balls for a metric distance based on an L2 (left), an L1

(middle) and an L∞ norm (right).

Using such a target map, adapting a simplicial mesh is equivalent to re-
quiring that all its edges have a unit metric length, as explained in Sect. 2.2.
The notion of metric distance between two vertices is thus essential. For a
locally constant metric M, it is defined as follows

lab =
√

(pb − pa)t M (pb − pa) (2)

where a and b are any two vertices and p is a position vector. For non-constant
metrics, lab can be approximated by integrating this formula along segment ab
or by using an averaged metric. Following Minkowski’s formula in Euclidean
space, a generalized distance can also be defined in metric space as an Lp

norm

lab =

(
d∑

i=1

|xi|p
)1/p

(3)

where xi =
√

λi ei. (pb − pa) and d is the considered dimension. If p = 2 then
distance is measured using the classical L2 norm given in Eq. 2. On the other
hand, p = 1 corresponds to an L1 norm also called taxicab or Manhattan
distance while p = ∞ corresponds to the infinity norm also called Chebyshev
or chessboard distance

lab = max
1≤i≤d

|xi| . (4)

The differences induced by those norms in the partition of space are illustrated
in Fig. 1. The chessboard distance, i.e., the L∞ norm, is of particular interest
for cubical adaptation as explained in Sect. 3.1.

2.2 Simplicial Adaptation

The ideal simplex is considered to be a regular one, i.e., an equilateral triangle
in two dimensions (Fig. 2) or an equilateral tetrahedron in three dimensions. A
quality regular simplicial mesh should be composed of such elements. However,
equilarity implies constant or almost-constant element sizes. To facilitate the
generation of variable density simplicial meshes, a Riemannian metric tensor
can be introduced. A quality mesh should then be composed of regular sim-
plices in metric space, i.e., the edges of its elements should all have the same
metric length or, more precisely, a unit metric length. A perfectly adapted



24 K.-F. Tchon and R. Camarero

mesh is therefore called a unit mesh. This compact and elegant framework to
measure shape quality and size conformity has been extensively used to gen-
erate adapted simplicial meshes. See for example [1] and the references cited
therein. Furthermore, adapting a mesh to a solution is an iterative process
that can be done by global mesh regeneration or local mesh modifications.
In an iterative adaptation context where modifications to a previous mesh
are expected to be minimal, the latter approach may be advantageous. The
elementary simplicial mesh modification primitives or operators optimize the
vertex density and element shape quality to get as close as possible to a unit
mesh in metric space. They can be classified as follows:

• refinement and coarsening improve local vertex density by inserting and
deleting vertices;

• reconnection improves element shape by flipping faces and edges;
• relocation improves both element shape and local vertex density by repo-

sitioning individual vertices at optimal locations.

Those primitives can also be used after global mesh generation as postprocess-
ing operations. Global remeshing can then be viewed as a way to produce good
initial meshes for a local optimization process.

2.3 Cubical Adaptation

As for simplices, the ideal cubical element is a regular one, i.e., a square in
two dimensions (Fig. 2) or a cube in three dimensions. This, however, im-
plies edges not only equal in length but also joined at right angles. In prac-
tice, this orthogonality is very important and, in an anisotropic metric-based
adaptation framework, can be preserved in physical space only if the edges
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Fig. 2. Ideal triangle (left) versus ideal quadrilateral and its triangular decomposi-
tions (right) in metric space and in physical space. The metric tensor is considered
locally constant.
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of the cubical element are aligned with the local eigenvectors. This explicit
directional constraint contrasts with the weak and indirect alignment of an
adapted simplex. A perfect simplicial element can indeed have any orientation
as long as its edges have a unit metric length and its loose alignment with
the minor eigenvector of the metric, corresponding to the smallest eigenvalue
and thus the biggest target size, is only due to the stretching introduced by
the spacial transformation (Fig. 2). A perfectly adapted cubical mesh is thus
understandably more difficult to obtain than a simplicial one. In addition to
this directional constraint, cubical connectivity is also more complex to ma-
nipulate. It indeed has a layered structured that practically precludes strictly
local modifications. Vertex relocation or smoothing is the most widely used
method to adapt cubical meshes, particularly structured ones [8]. However,
although it can improve both vertex density and element shape, smoothing
is limited by a fixed mesh topology. Mesh refinement and coarsening, on the
other hand, involve connectivity modifications [9, 10, 11, 12]. The major issue
with conformal refinement-coarsening is, however, that element shape quality
cannot be maintained without a powerful local reconnection method and the
coveted cubical flip operator is still only theoretical in three dimensions [13].

Simplicial-to-cubical conversion methods avoid this problem by optimiz-
ing simplicial meshes and generating cubical elements only in a postprocessing
step. Local mesh modifications thus only involve simplex manipulation and are
greatly facilitated. Once the target vertex density is achieved, adjacent simpli-
cial elements are merged to form cubical ones. Different merging strategies are
possible including advancing fronts [14, 15, 16], graph theory [17] and qual-
ity constraints [18, 3, 4]. Although, some non-cubical elements may remain,
particularly in three dimensions, such cubical-dominant meshes are accept-
able in many applications. Furthermore, while Riemannian metrics have been
used with direct cubical adaptation, the lack of a proper local reconnection
operator limits their appeal. This indirect approach, on the other hand, can
use the full complement of local optimization operators available for simplicial
meshes. However, the ideal vertex distribution for a unit simplicial mesh is
very different from the one required by perfectly adapted cubical elements.
Not all edges should indeed have a metric length of one. For example, in
two dimensions, edges that correspond to diagonals in the quadrilateral mesh
should have a metric length of

√
2. Additionally, right triangles with sides

aligned with the local metric eigenvectors are better suited than equilateral
ones for simplicial-to-cubical conversion (Fig. 2).

Better vertex distributions can be obtained using physically-based packing
algorithms that approximate centroidal Voronoi-Delaunay triangulations. An
appropriate modification of the proximity-based force used to distribute the
mesh vertices indeed enables the partition of the domain into cubical Voronoi
regions [3, 4]. This improves the local alignment with the metric eigenvec-
tors of the resulting simplices. The merged cubical elements thus have better
shape and require much less postprocessing. The globally layered structure
of the ideal cubical mesh is, however, difficult to recover using a strictly lo-
cal method. Networks of tensor lines everywhere tangent to the local metric
eigenvectors can be used for this purpose [5]. Due to the orthogonal nature
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of this network, the resulting quadrilateral elements are very well shaped and
triangular elements are only inserted when the tensor lines are fragmented
to ensure the conformity of the final mesh. The practical implementation of
such a method requires, however, an assortment of techniques that are not
as computationally efficient as simplicial adaptation and may be difficult to
extend to three dimensions.

The next section proposes an alternative approach that combines cubical
particle packing with tensor line networking and recasts the whole process as
a specialized simplicial optimization.

3 Specialized Simplicial Optimization

3.1 Specialized Simplicial Operators

For high quality simplicial-to-cubical conversion, edges corresponding to di-
agonals should have an L2 metric length of

√
2, in two dimensions, or

√
3, in

three dimensions, and not 1. The unit meshes generated by classical simplicial
operators based on such an L2 distance are thus not best suited. This discrep-
ancy can be avoided by using an L∞ norm to compute metric distance because
all edges should then have a unit length including diagonals. This chessboard
distance has thus been used to modify the specialized two-dimensional oper-
ators presented here.

Vertex relocation – A physically-based approach was chosen in the present
work [19, 20, 3, 4]. In this paradigm, mesh vertices are particles and the follow-
ing potential is used to derive the interaction forces between those particles

φ(x) =
1
4

e−x4 − 3
16

Γ

(
1
4
, x4

)
+ C (5)

where Γ (a, z) =
∫∞

z
ta−1e−tdt is the incomplete gamma function and C is an

arbitrary constant. The first derivative of this potential corresponds to the
function given by Bossen and Heckbert [20]

φ′(x) =
dφ

dx
=
(
1− x4

)
e−x4

. (6)

If an L2 norm is used to measure distance then the following attraction-
repulsion force is exerted on vertex or particle i by particle j

Fij = −φ′(lij)
lij

(pj − pi) = −φ′(lij)hijuij (7)

where lij is the metric distance between i and j as defined in Eq. 2, hij is
the target size along edge ij and uij is the unit vector (pj − pi)/‖pj − pi‖.
When coupled with appropriate population control, such a force will distribute
the particles according to the density prescribed by the target metric. At
equilibrium, the empty region maintained by this force around each particle
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Fig. 3. Two-dimensional attraction-repulsion potential field (left) and the modulus
of the corresponding force (right) for an L∞ distance and an Euclidean metric, i.e.,
the identity matrix. The constant C in Eq. 5 is chosen so that the potential is equal
to zero at a unit distance.

is analogous to an approximate Voronoi cell. Furthermore, since the particle
is at the center of this cell, the resulting partition of space is an approximate
centroidal Voronoi tessellation. The Voronoi cells have the shape of the ε-ball
associated with the type of distance used to define the attraction-repulsion
potential (Fig. 1). When an L2 distance is used, those Voronoi cells have an
elliptic or ellipsoidal shape. However, if an L∞ or chessboard distance is used
instead then those cells will have the desired cubical shape. Let m be the index
of the eigenvector for which |

√
λm em.(pj −pi)| is maximum. The chessboard

attraction-repulsion force is then given by

Fij = −α φ′(lij)hmem (8)

where lij is computed with Eq. 4, α is the sign of em.(pj−pi) and hm = 1/
√

λm

is the target size associated with the local metric eigenvector em (Fig. 3). Using
a first order equation of motion [20], the position of a particle or vertex i is
updated at each iteration n as follows

pn+1
i = pn

i + ω
∑

j∈Nv
i

Fn
ij (9)

where ω is a constant set to 0.2 and N v
i is the set of vertices sharing an edge

with i. Of course boundary vertices have to be reprojected after each update.

Refinement and coarsening – Mesh refinement and coarsening correspond
to particle population control in the physical paradigm. When the local density
is too low, a particle is created and, when it is too high, a particle is destroyed.
The normalized density around a particle i can be estimated by the inverse
of the averaged metric area of its neighbors

ρi =
β |N e

i |∑

j∈N e
i

√
det(Mj) A(Tj)

(10)

where A(Tj) is area of triangle Tj , Mj is the averaged metric within Tj , N e
i

is the set of triangles sharing i and |N e
i | is the number of triangles in this set.
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The constant β is set to
√

3/4 for ellipse packing and 0.5 for square packing.
The associated error is computed as follows

δ(ρ) =
{

ρ− 1 if ρ ≥ 1,
1
ρ − 1 otherwise. (11)

The edge splitting and collapsing primitives from simplicial optimization can
be used to insert and delete vertices and control this density. More precisely, if
an edge has a metric length greater than a given threshold lmax then it is split
in two by introducing a new vertex in the middle. Similarly, if an edge has a
metric length lower than a given threshold lmin then it is collapsed by merging
its two end vertices. Depending on the optimization strategy used, those op-
erators may, however, tend to oscillate for rapidly varying metrics: they delete
vertices that they just inserted. To stabilize the process, an estimation of the
normalized density after each operation can be used as a safeguard [20]. Let
ρi be the local density around a vertex i as defined in Eq. 10. When one of
the interior edges connected to i is split then the local density becomes

ρ+
i = ρi (|N e

i |+ 2) /|N e
i | (12)

because two neighboring triangles must also be split in two. Similarly, when
one interior edge connected to i is collapsed then the local density becomes

ρ−i = ρi (|N e
i | − 2) /|N e

i | (13)

because two neighboring triangles must also be collapsed. Only the length
based criterion is used for boundary edges but interior edges are split or
collapsed only if δ(ρ+

i ) ≤ δ(ρi) or δ(ρ−i ) ≤ δ(ρi) respectively. Again, to make
the packing cubical, an L∞ norm is used to compute the metric length of the
edges. Furthermore, care must be taken when dealings with edges on curved
boundaries to avoid degenerate configurations. See for example [21] for more
details on how it can be done.

Local reconnection – In simplicial-to-cubical conversion methods, what is
important is the rectangular distribution of the vertices more than their con-
nectivity, as long as it is reasonable, i.e., coherent with the local target mesh
density. This simplicial connectivity is essentially used for fast neighbor search-
ing during relocation and population control operations. Once the vertex dis-
tribution is rectangular their simplicial connections will naturally be made of
right angle simplices. That is why the local reconnection used in the present
work is the classical operator from simplicial optimization. Furthermore, as
only two-dimensional cases have been considered for now, only an edge swap
or flip has been implemented. This operator replaces the edge shared by two
triangles with a new edge linking their opposite vertices. This flip is only per-
formed if the worst shape of the resulting triangles is better than the shape
of the initial ones. The following measure of shape quality was used

Q(T ) = 4
√

3 A(T ) min
1≤i≤3

√
det(Mi)∑

1≤j<k≤3

(pk − pj)T Mi(pk − pj)
(14)

where i, j and k refer to the vertices of triangle T .
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3.2 Tensor Line Alignment

Although an improvement over classical simplicial operators, the modifica-
tions presented in the previous section provide only local alignment with the
eigenvectors of the target metric. The resulting Voronoi regions will be cubical
but there is no guaranty that those regions will be aligned to form continuous
layers that are so important to maximize the proportion of cubical elements in
the final mesh. The staggered configuration in Fig. 4 is as valid as the aligned
one. Only adequate boundary conditions can favor the latter one. A stronger
and more explicit global alignment force is needed. The approach proposed
here is reminiscent of the method introduced in [5]. The difference is that here
the global metric topology embodied by the tensor line network is no longer
traced beforehand but is recovered through essentially local modifications of
a simplicial mesh.

For this purpose a torsion spring-like force explicitly minimizes the angular
deviation of selected mesh edges with the local metric eigenvectors. Associ-
ated with lineal springs, such angle-based forces are already used in mesh
smoothing [22]. Their use here is, however, more analogous to active polylines
in computer graphics. More precisely, those active polylines are tensor lines
formed by links that correspond to selected mesh edges. These edges will be-
come the sides of the final cubical elements. They are identified by computing
their angular deviation from the local eigendirections. Taking into account the
deformation introduced by a metric M, this angular deviation for an edge ij
is given by

θij = arccos
√

λm em.(pj − pi)√
(pj − pi)tM(pj − pi)

(15)

where m has the same definition as in Eq. 8. If |θij | ≤ θmax/2 then ij is a
candidate tensor line link for the eigenvector field m (Fig. 5). If more than
one edge is admissible for a given combination of eigenvector and orientation
along this eigenvector then the one with the smallest deviation is chosen. The
corresponding alignment force acting on vertex i is computed as follows

Gij∗ = Cθ (pj − pj∗) (16)

where Cθ is a constant and pj∗ = pi + [(pj − pi).em] em is the projection
of pj along em (Fig. 5). This alignment constraint can be introduced as a
modification to the relocation force and the vertex position update is then
written as follows

pn+1
i = pn

i + ω




∑

j∈Nv
i

Fn
ij +

∑

j∗∈Nv∗
i

Gn
ij∗



 (17)

Fig. 4. Staggered (left) and aligned (right) square packing.
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where N v∗

i is the set of links associated with i. Note that the constant Cθ

must be chosen carefully. The greater Cθ, the better the alignment but also
the stiffer the optimization problem will be. After some numerical experimen-
tations, Cθ was set to 2 and θmax to π/4.

Reevaluated each time a vertex position is updated, those links play the
role of a specialized reconnection operator. More than simplicial connectivity,
those links indeed reflect the topology of the final cubical mesh. Because of the
continuity of the metric, the end-to-end collection of links also forms tensor
lines. Those lines are continuous as long as the metric is continuous and the
prescribed element size is reasonable compared to the metric variation or
tensor line curvature. Those active lines can also be considered as directional
agglomerations of particles and their thickness is equal to the local target
size prescribed by the metric. When links are set or broken then those lines
are effectively fused or split. When particles are created, moved or destroyed
so are those lines. The packing of particles also means that lines are packed
and form layers upon layers. Furthermore, since particles are linked along
both eigenvectors, those lines are also interconnected. The process can thus
be interpreted as physically-based line networking or weaving.

3.3 Optimization Algorithm

Algorithm 1 sums up the main steps performed during the optimization
process. A coarse initial triangulation is required as an input. The boundary
of the domain must be represented by this triangulation and, when refining
boundary edges, those constraints must be preserved. An empty constrained
Delaunay triangulation is a good example of initial mesh. The algorithm is
vertex-wise. It loops through all the vertices, moves them and enforces popu-
lation control until convergence or a given number of iterations is completed.
The threshold lmin is set to 0.75 while lmax is set to 1.33. The movement of
a vertex due the attraction-repulsion as well as alignment forces is limited to
the visibility zone of its immediate neighbor vertices, i.e., no inverted triangle
should be created by the computed displacement. Any displacement that does
not meet this requirement is discarded. Furthermore, after each successful re-
location or refinement-coarsening operation, the local reconnection operator
is called recursively to maintain the quality of the neighboring simplices. Note
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Algorithm 1 Specialized simplicial optimization
Require: constrained empty triangulation

repeat
for all vertex i do

update position
if moved then

reconnect neighborhood
end if
find is and il, the shortest and longest edges connected to i
if lis < lmin and (is on boundary or δ(ρ−

i ) ≤ δ(ρi)) then
collapse is

else if lil > lmax and (il on boundary or δ(ρ+
i ) ≤ δ(ρi)) then

split il
end if
if an edge has been collapsed or split then

reconnect neighborhood
end if

end for
until convergence

also that the metric is stored at each vertex of the triangulation. For new ver-
tices or when vertices are moved, the metric is computed using an analytical
function or by interpolation in a background mesh. In all edge-based compu-
tations, the metric is considered constant and the average of the values stored
at the two end vertices is used.

Although similar in purpose, the present cubical packing force field was es-
tablished by a very different reasoning and does not have the same shape than
the one proposed in [3, 4]. An alignment force is also used to further promote
the formation of continuous layers and ultimately increase the percentage of
cubical elements in the final mesh. Additionally, like the pliant method pro-
posed by Bossen and Heckbert [20], this process is recast as a simplicial mesh
optimization and should eventually have the same computational efficiency.
The problem has, however, more constraints and should thus take more time
to converge. One potential difficulty is, as with other optimization methods, to
get stuck in a local minimum. A possible approach to avoid such local minima
is to start with a wider permissible edge length range and to slowly tighten
it as the mesh is adapted. This results in a gradual and globally consistent
evolution of the mesh that is more likely to reach a global minimum. An addi-
tional strategy is to first adapt the mesh using only attraction-repulsion forces
combined with refinement-coarsening operations. The result is then used as
an initial mesh for the stiffer problem with alignment forces. Both of these
strategies are used for the test examples presented in the next section.

Once optimized, very little additional processing is needed to produce
the final high quality quad-dominant mesh. Available edges for simplicial-to-
cubical conversion are first identified. Forbidden edges are tensor line links
and constrained boundary edges. For each of the available edges, the quality
of the candidate quadrilateral element Q formed by the adjacent triangles is



32 K.-F. Tchon and R. Camarero

computed as follows

Q(Q) =
2√
3

min
1≤i≤4

Q(Ti) (18)

where Ti is the corner triangle associated with vertex i of Q. Edges with
Q < 0.3 are discarded. The remaining edges are listed in decreasing order
according to this quality, the corresponding quadrilaterals are constructed
and their edges removed from the list until it is empty.

4 Numerical Results

4.1 Academic Test Examples

The first example is defined on a [0, 7] × [0, 9] rectangular domain. The
prescribed target sizes for this example are

h1 =






1− 19
40y if y ∈ [0, 2] ,

20(2y−9)/5 if y ∈
]
2, 9

2

]
,

5(9−2y)/5 if y ∈
]
9
2 , 7

]
,

1
5 + 1

20 (y − 7)4 if y ∈ ]7, 9]

(19)

and h2 = 1.01h1 with e1 and e2 corresponding to the Cartesian axes. This is a
quasi-isotropic version of the analytic metric from [1]. Purely isotropic metrics
are indeed considered degenerate for tensorline-based cubical meshing because
e1 and e2 would then be indefinite [5]. The resulting adapted triangular and
quad-dominant meshes are presented in Fig. 6. The size variation prescribed
by this metric does not allow an all-quadrilateral mesh but the algorithm is
still able to directionally partition the domain and maximize the number of
such elements, i.e., there is 84.8 percent of quadrilaterals. Table 1 gives some

Fig. 6. Quasi-isotropic metric (Eq. 19) – Unit simplicial mesh obtained using clas-
sical L2-based (left) and specialized L∞-based operators (middle) as well as final
quad-dominant mesh (right).
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Table 1. Some statistics for the meshes presented in Figs. 6 to 10.

Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10

Nb edges 5268 2853 8895 11815 39917
Min. length 0.652 0.983 0.487 0.485 0.499
Ave. length 1.006 0.999 0.986 0.997 0.987
Max. length 1.364 1.026 1.890 1.686 1.778
Std dev. 0.071 0.005 0.096 0.070 0.094

Nb triangles 292 0 606 446 2100
Min. quality 0.703 - 0.501 0.507 0.454
Ave. quality 0.854 - 0.885 0.845 0.864
Max. quality 0.982 - 1.000 0.989 1.000
Std dev. 0.044 - 0.065 0.084 0.070

Nb quads. 1624 972 2671 3874 12307
Min. quality 0.530 0.667 0.310 0.353 0.304
Ave. quality 0.894 0.943 0.873 0.876 0.855
Max. quality 0.996 1.000 0.996 0.990 0.995
Std dev. 0.119 0.057 0.122 0.068 0.101

Quad-dom. 84.8% 100% 81.5% 89.7% 85.4%

statistics for this mesh as well as the other meshes presented in this section.
These statistics include the number of edges and their metric length as well as
the number of triangular and quadrilateral elements and their shape quality
as computed with Eqs. 14 and 18. Note that, for comparison, a mesh obtained
with classical operators is also presented in Fig. 6.

The next example is anisotropic and is defined on the same rectangular
domain. Again the prescribed directions correspond to the Cartesian axes
while the target sizes are computed as follows

h1 =






1− 19
40x if x ∈ [0, 2] ,

20(2x−7)/3 if x ∈
]
2, 7

2

]
,

5(7−2x)/3 if x ∈
]
7
2 , 5

]
,

1
5 + 1

20 (x− 5)4 if x ∈ ]5, 7] ,

h2 =






1− 19
40y if y ∈ [0, 2] ,

20(2y−9)/5 if y ∈
]
2, 9

2

]
,

5(9−2y)/5 if y ∈
]

9
2 , 7

]
,

1
5 + 1

20 (y − 7)4 if y ∈ ]7, 9] .
(20)

The resulting mesh is presented in Fig. 7. Contrary to the first test case, a
completely quadrilateral mesh is possible and the present method is able to
generate it.

The final analytic test case is another quasi-isotropic metric, dubbed ba-
nana, that uses a size distribution taken from Lewis et al. [23] and is defined
as follows

h1 =
1

100
[
1 + 30 (y − x2)2 + (1− x)2

]
(21)

and h2 = 1.01h1 with (x, y) ∈ [−1.25; 1.25] × [−0.5; 1.25]. The normalized
gradient of the size distribution, i.e., ∇h1/‖∇h1‖, is taken as e1 while e2 is
simply equal to e1 rotated by an angle of 90 degrees. The tensor line network
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Fig. 7. Anisotropic metric (Eq. 20) – Unit simplicial mesh obtained using clas-
sical L2-based (left) and specialized L∞-based operators (middle) as well as final
quadrilateral mesh (right).

Fig. 8. Banana metric (Eq. 21) – Tensor line network (top) and corresponding
adapted quad-dominant mesh (bottom).

for this metric is not aligned with the Cartesian axes as in the previous ex-
amples and is presented in Fig. 8 along with the final adapted quad-dominant
mesh. The quality of the quadrilaterals in this mesh is substantially superior
to the quality of the merged elements obtained by Borouchaki and Frey [18],
i.e., an average of 0.87 versus 0.63, although the percentage of triangular el-
ements is higher, i.e., 18.5 versus 3 percent (Table 1). Element shape quality
is intentionally favored by the present method.

4.2

The first practical application example is a mesh generated for a geometry-
based metric. It shows how to use level set information encapsulated in a
metric to generate high quality meshes. The considered domain is a heat
exchanger and the metric is constructed using a variation of the ideas proposed
in [24]. The vector e1 is set to the normalized gradient of φ, the distance-to-the-
closest-boundary function, while e2 is again equal to e1 rotated by an angle of

Practical Application Examples
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90 degrees. The target size h1 along e1 is limited by the local thickness of the
domain. The function φ can be used to compute the medial axis of the domain
and deduce this local thickness [24]. Furthermore, a user defined clustering
has been added to the strictly geometric information extracted from φ. More
precisely, the target size h1, which is normal to the boundaries of the domain,
is computed as follows

h1 = min (hw
1 + (γ − 1)φ, hτ ) (22)

where hw
1 is the user prescribed size of the elements at the closest boundary,

γ is the associated geometric growth ratio and hτ is a limiting size computed
from the local thickness τ of the domain. For the considered example, hτ was
set to 0.25τ . Along e2, the target size h2 is computed as follows

h2 = hw
2 (1 + |κ|φ) (23)

where κ is the curvature of the closest boundary and hw
2 = 2π/N |κ|. The user

prescribed constant N corresponds to the number of elements needed to dis-
cretize a perfectly circular boundary. Furthermore, using Eq. 23 with adjacent
circular and completely flat boundaries introduces very difficult size transi-
tions and explicit gradation has to be used to ensure high quality meshes [25].
The maximum target size growth between adjacent elements, γ0, was set
to 1.2. Figure 9 shows the tensor line network for N = 32, γ = 1.2 and
hw

1 = 0.1r with r being the radius of the internal circular boundaries. The re-
sulting adapted mesh is also presented in Fig. 9 and counts almost 90 percent
of quadrilaterals with an average quality of 0.876 (Table 1).

The final example uses a solution-based metric extracted from the com-
puted flow around a NACA 0012 airfoil using an Hessian-based error estimator

Fig. 9. Heat exchanger – Tensor line network (left) and corresponding quad-
dominant meshes (right).
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Fig. 10. Naca 0012 airfoil – Quad-dominant mesh adapted to an unsteady flow at
a Mach number of 0.85 and a Reynolds number of 5000.

[26]. An unsteady laminar transonic flow with a Reynolds number of 5000 and
a Mach number of 0.85 was considered. Again, gradation with γ0 = 1.2 was
used. The resulting mesh is presented in Fig. 10 and counts about 85 percent
of quadrilaterals with an average quality of 0.855 (Table 1).

4.3 Future Developments

The results presented above show that the proposed algorithm is able to gener-
ate high quality quad-dominant meshes. However, to obtain high percentages
of quadrilateral elements, the metric must prescribe smoothly varying target
sizes. Just as for triangles, there is a physical limit on how fast target size can
vary to get well shaped quadrilaterals. A specialized gradation algorithm must
be developed as already suggested in [5]. All-cubical meshes are also possible
if this gradation algorithm can provide compatible metrics. The problem of
obtaining such meshes is thus displaced from the actual generation task to
the metric construction task. This is hopefully a simpler problem.

The more compatible the metric, the easier it is to obtain a global min-
imum. However, even for a completely compatible metric such as the one
defined by Eq. 20, local minima are possible and this implies the presence
of unnecessary triangles in the final mesh. To avoid such a local minimum,
the following two-step strategy was used. The mesh is first adapted without
alignment forces. Three passes are used: 200 iterations with lmin = 0.75 and
lmax = 2.66 then 200 iterations with lmax reduced to 2.00 and finally 200 iter-
ations with lmax = 1.33. The second step uses the result as an initial mesh and
performs an additional 200 iterations with alignment forces, lmin = 0.75 and
lmax = 1.33. This fixed number of iterations is probably overkill but the goal
of the present work is to prove the soundness of the proposed specialized op-
erators and not yet their efficiency. Given those considerations, CPU timings
are not very meaningful but, to give an order of magnitude, the quadrilateral
mesh presented in Fig. 7 took 101.62 seconds on an Intel Pentium M run-
ning at 1.3GHz. There is, furthermore, little overhead per iteration per vertex
compared to classical operators. The real increase in computer time is due to
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the number of iterations needed to converge to a more difficult problem. An
optimized iterative process will also be the goal of future developments.

Finally a three-dimensional extension is very possible and more practical
than tensor surface networks. Simplicial-to-cubical conversion templates in-
deed already exist [4, 17] and classical simplicial reconnection operators can
be used in a future three-dimensional optimizer. The generalization of all the
other operators presented in Sect. 3 is mostly trivial.

5 Conclusion

The proposed specialized simplicial optimization is capable of automati-
cally generating high quality quad-dominant meshes with a layered struc-
ture aligned along the local eigenvectors of an anisotropic Riemannian control
metric. This confirms the soundness of the L∞-based simplicial operators and
the angle-based alignment force. The computational efficiency is not yet es-
tablished but is expected to be similar to classical simplicial optimization.
Only two-dimensional cases were considered in the present paper but a three-
dimensional extension is feasible. Besides cubical meshes, the present method
can also provide simplicial mesh postprocessing when right angle simplices
are required. All-cubical meshes are also possible if the metric is compatible.
Automatic cubical mesh generation can thus be achieved using a two-prong
approach: the construction of a compatible metric and the generation of the
corresponding mesh. The present paper deals with the second part. Future
developments should take care of the first part.
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