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ABSTRACT

Improvement of the quality of surface meshes is important for mesh generation and numerical simulation. The
challenge with surface mesh improvement is to improve element quality while preserving the surface characteristics
as much as possible. A procedure is presented here to optimize the quality of elements in surface meshes by node
repositioning while keeping the nodes on the original mesh faces and close to their original locations. The nodes
are repositioned in a series of local parametric spaces derived from individual mesh elements rather than a global
parametric space constructed from the complete mesh. The local parametric spaces are derived from barycentric
mapping of triangles and isoparametric mapping of quadrilaterals. The procedure has been tested successfully on a
number of complex triangular and quadrilateral meshes. Quantitative measures are presented to prove that the mesh
quality is improved and the deviation of the optimized mesh from the original mesh is small.

Keywords:mesh generation, surface meshes, quality improvement, condition number, triangles,
quadrilaterals

1. INTRODUCTION

Improvement of mesh quality is a very important prob-
lem for mesh generation and numerical simulation.
The quality of a surface mesh heavily influences the
ability of mesh generation algorithms to generate good
quality solid meshes. Since surface meshes define the
boundaries of computational domains where boundary
conditions are imposed, they also influence the accu-
racy of numerical simulations.

One method to improve the quality of a mesh is to
reposition its nodes such that the shape of its ele-
ments is improved. In this case the topology of the
mesh is not altered, a desirable feature when proper-
ties defined over the original mesh must be transferred
to the new mesh. Other methods to improve meshes
include edge swapping, vertex insertion, vertex dele-
tion and local retriangulation [1, 2]. However, these
methods are primarily applicable for simplicial (trian-
gular,tetrahedral) meshes. Also, since these methods

modify mesh topology, they may not be suitable for
all applications.

When improving the quality of a surface mesh, an im-
portant consideration is to minimize changes in the
discrete surface characteristics like discrete normals
and curvature. Preservation of such characteristics
is critical for large deformation of free boundaries in
metal forming and interfaces in multi-material gas dy-
namics. Sometimes, in such applications, a severely
deformed part of the mesh may have to be improved
and the solution transferred from the old mesh to the
new before resuming the simulation. In such a case,
it is clearly desirable that the new mesh be of im-
proved quality and yet remain close to old mesh. Pre-
serving the surface characteristics also prevents drastic
changes in forces like surface tension that depend on
surface characteristic.

When repositioning nodes of a surface mesh, changes
in the surface properties can usually kept small by
constraining the nodes to the smooth surface under-



lying the mesh or to the discrete surface described by
the faces of the original mesh. A common approach
to constrain the nodes to the smooth or discrete sur-
face is to reposition them in a 2D parametrization of
the surface. When nodes that are repositioned in the
parametric space of the surface are mapped back to
3D, they lie on the original smooth or discrete surface.

If the mesh has an underlying smooth surface, the
parametric space of the surface is usually available
from the geometric modeler that provided the surface
definition. However, if such a surface is not available,
then one approach is to create a global 2D parametric
space from the discrete surface. Several researchers
have developed techniques to build such global para-
metric spaces for triangular meshes [3, 4, 5]. However,
all these methods involve substantial computational
cost since they often require solution of a system of
nonlinear equations. Also, they cannot be used di-
rectly to parametrize closed surfaces. Instead, the
closed surfaces must be cut into one or more pieces
which are then parametrized separately.

In this paper, a procedure is presented to improve
the quality of a mesh by repositioning its nodes such
that they are constrained to remain on the surface.
The nodes are repositioned in a series of local para-
metric spaces derived from individual mesh elements
(faces,edges) rather than a global parametric space de-
rived from the complete mesh. The local parametric
spaces are constructed either by barycentric mapping
of triangles and by isoparametric mapping of quadri-
laterals. The repositioning procedure keeps track of
the original mesh element that each node is moving
in and if a node moves out of the parametric space of
the element, the procedure switches to the parametric
space of an adjacent element. When the repositioned
nodes are mapped back to the real space, each node
lies on the mesh element whose local parametric space
it is in. The method imposes no restrictions on the
nature of the discrete surface or how far nodes may
move on it. The procedure has been implemented for
surface meshes containing triangles and quadrilaterals.
Using a recent publication on the barycentric mapping
of general polygons, it is expected that the procedure
can be extended to handle general mesh elements eas-
ily [6].

Improvement of the surface mesh quality is achieved
by a two-step optimization process that seeks to im-
prove the shape of the elements but keep the modified
mesh close to the original mesh. A similar procedure
for optimization of planar meshes has been described
earlier by Shashkov and Knupp [7]. The shape mea-
sure used to evaluate the quality of elements is based
on the Jacobian matrix condition number of elements
presented by Knupp [8]. The procedure has been
tested on a number of complex triangular and quadri-

lateral surface meshes. Several quantitative measures
have been incorporated into the procedure to evaluate
the deviation of the modified mesh from the original
and the preservation of surface characteristics like sur-
face normals.

The rest of the paper is organized as follows. Section 2.
below describes the method of optimizing a function
with respect local parametric coordinates. The section
describes the element based local parametrization, line
search with respect to local parametric coordinates
and moving nodes from one parametric space to an-
other. Section 3. describes two methods for improv-
ing the condition number quality measure of surface
mesh faces using optimization with respect to local
parametric coordinates. The first method aims only
to improve the condition number quality measure of
all elements in the mesh as much as possible. The
second method aims to improve the quality of all el-
ements in the mesh and to minimize the deviation of
the improved mesh from the original mesh. Section 4.
presents several examples of triangular and quadrilat-
eral meshes to demonstrate the capabilities of the fea-
tures of both optimization methods.

2. OPTIMIZATION WITH RESPECT TO
PARAMETRIC COORDINATES

Consider the gradient-based minimization of an objec-
tive function, Φ(x), defined in terms of the real coor-
dinates, x, of all the vertices of a surface mesh. In any
gradient-based optimization process, each iteration in-
volves finding the gradient of the objective function,
computing a search direction based on the gradient,
conducting a 1D minimization or line search along the
search direction and updating the optimization vari-
ables (which in this case are the vertex coordinates)
[9, 10].

If an optimization procedure is applied directly to the
objective function with respect to the real coordinates
of the vertices, the gradient direction may indicate
vertex movement off the original surface mesh. To
constrain the movement of the vertices to the origi-
nal surface mesh, the optimization is done with re-
spect to the coordinates of the mesh vertices in a se-
ries of local parametric spaces derived from the faces
of the original mesh. The parametric coordinates of
a vertex in the interior of the mesh is derived from
a local parametrization of the original mesh face it is
contained in. The parametric coordinates of a ver-
tex on the surface mesh boundary (model edge) is de-
rived from the parametrization of the original bound-
ary mesh edge that it is contained in. The optimiza-
tion process moves each vertex in its appropriate local
parametric space and when mapped back to real space,
the vertex lies on the original mesh face corresponding
to the local parametric space. If the optimization pro-



cess drives the vertex out of bounds of a local paramet-
ric space, the vertex switches to the parametric space
of an adjacent element. By this process, the vertices
of the mesh are guaranteed to stay on the faces of the
original mesh.

In the following sections, element based local
parametrization, 1D minimization in local paramet-
ric spaces and parameter updating for repositioning
vertices are described in more detail.

2.1 Element based Local Parametrization

In this work, a local parametric space for a mesh tri-
angle is derived using a barycentric mapping [11], re-
sulting in parametric coordinates 0 ≤ (s1, s2) ≤ 1 as
shown in Figure 1a. A local parametric space for
a quadrilateral is derived using isoparametric map-
ping [11], giving rise to parametric coordinates 0 ≤
(s1, s2) ≤ 1, shown in Figure 1b. Meyer et. al. [6] have
proposed a new barycentric mapping method which
can be used to extend this procedure for parameteriz-
ing general straight sided polygonal faces.

Any procedure using the local parametrization defined
above must keep track of which mesh element of the
base mesh each node is in (referred to as the base ele-
ment) and the coordinates of the node in the paramet-
ric space of the base element. During the optimization
process, all objective function evaluations are done af-
ter mapping the parametric coordinates of the vertices
to real coordinates. Also, the gradient of the objective
function is computed with respect to the parametric
coordinates by numerical differentiation.
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Figure 1: (a) Barycentric mapping for triangle, (b)
Isoparametric mapping for quadrilateral.
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Figure 2: Line search constraints: (a) Parameter
bounds, (b) Invalid Mesh.

2.2 Line Search or 1D minimization

In the optimization procedure described here, the gra-
dient with respect to the local parametric coordinates
is used to compute a search direction in the local para-
metric space. Then a line search is conducted to find
a distance α, to move along the parametric search di-
rection, d, until the objective function is minimized or
the constraints of the line search are encountered. For
surface optimization with local parameterization, the
line search is subject to two constraints, parametric
bounds and mesh validity, as discussed next.

During a line search, a node that travels out of the
parametric space of a base mesh face, moves out of
the face and off the original surface mesh. In such a
case, computing quantities such as the gradient of the
objective function with respect to the current para-
metric coordinates of the vertex becomes meaningless.
Therefore, if a node tries to move out of bounds of
the local parametric space, the line search is stopped
at the boundary of the base face. For example, in
Figure 2a, the line search tries to proceed from point
2 to point 3’, which is outside the triangle and off
the surface triangulation. However, it encounters the
parametric bounds of the triangle at point 3 (which
is on an edge of the triangle) and therefore, the line
search is stopped at that point.

Also, it is possible that one of the elements connected
to the vertex becomes invalid due to the movement
along the search direction in which case the line search
must be stopped. This is shown in Figure 2b where
the line search must be stopped at point 2 because
further movement toward point 2’ renders the shaded
triangle invalid.

The line search procedure is implemented as an in-
cremental stepping algorithm with step size control.
The line search starts with a very small step size and
checks if the function has decreased, the parameters
are within bounds and if the mesh is valid. If so, the
step size is increased and the process is repeated; if
not, the step size is cut in half (up to a minimum) and
the checks are repeated. The algorithm has additional



refinements for zeroing in on the minimum with better
accuracy.

At the start of the optimization, the base mesh face for
initial movement of a node is chosen arbitrarily from
the set of faces connected to the node. Therefore, it is
possible that the objective function does not decrease
along any direction in the chosen face and that a line
search in the face will terminate without any move-
ment from the current location. In such a case, an
adjacent face connected to the node is chosen as the
base face and the optimization iteration is repeated.
Also, if the node is at a common edge of two faces of
the original mesh, it is possible that the gradient in one
face points into the adjacent face and vice versa, lead-
ing to the search switching infinitely between the two
faces. This condition is recognized in the algorithm
and resolved by moving the node along the edge. The
line search direction along the edge is taken to be the
one closer to the negative of the gradient direction.

2.3 Parameter Update and Parametrization
Change

Once the line search along a direction has termi-
nated, the step size (α) obtained from it is used to
update the parametric coordinates of the vertex as
snew = sold + αd. If the line search terminated nor-
mally at a minimum or because further movement in
the search direction would have made the mesh invalid,
a new optimization iteration is started with a new
gradient calculation. However, if the line search ter-
minated because the parametric bounds were reached,
then it is assumed that the vertex is trying to move out
of the current mesh face. In such a case, the optimiza-
tion iteration is terminated and the node is switched to
the parametric space of an adjacent mesh face. Since
the node is moved into a different parametric space,
the optimization procedure is restarted from the para-
metric location of the node in the new face, discarding
the previous search direction and any saved gradient
information (in a conjugate gradient method).

Figure 3 illustrates the movement of vertices during an
optimization with respect to parametric optimization
for a planar triangulation. The mesh was improved by
minimizing an objective function based on the condi-
tion number quality measure (See Sec. 3.2) over the
entire mesh. Note the node movements across several
elements of the original mesh as well as movements
along mesh edges.

(a)

(b)

(c)

Figure 3: (a) Original (light lines) and final (dark
lines) mesh, (b) Paths taken by vertices from their
original positions (shown as ♦) to their final posi-
tions (shown as •), (c) Zoom-in of one of the paths.
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Figure 4: Definition of edge vectors, ep, eq for cal-
culating the Jacobian of an element Fj at vertex Vi.

3. OPTIMIZATION OF SURFACE MESH
QUALITY

3.1 Condition Number Shape Measure for
Mesh Faces

Of the many measures for evaluating the shape (or
quality) of triangular and quadrilateral elements, the
Condition Number Shape Measure [8] is one with a
strong mathematical foundation. This measure is de-
rived from the Jacobian matrix of a triangle mapping
as described below.

Consider a vertex Vi, connected to a set of of edges,
{E(Vi)}, and triangles, {F (Vi)} as shown in Figure 4.
Assume that one of the triangles Fj ∈ {F (Vi)} has
edges Ep ∈ {E(Vi)} and Eq ∈ {E(Vi)} connected to
vertex Vi. This triangle can always be mapped to a
right triangle in 2D space with Vi at the origin, a unit
vector representing Ep along the x-axis and a unit vec-
tor representing Eq along the y-axis. Then, the Jaco-
bian matrix, Jji, of the mapping of Fj to the right tri-
angle, evaluated at vertex Vi, is given by Jji = [ep eq]
where, ep and eq are edge vectors representing edges
Ep and Eq, of lengths lp and lq respectively.

Since Jji is a 3x2 matrix for a triangle in 3D, its con-
dition number must be calculated by singular value
decomposition methods. On the other hand, the Ja-
cobian matrix of a triangle in 2D space is a 2x2 matrix
whose condition number can be calculated more easily
as κ(Jji) = (l2p + l2q)/Aj , where Aj is twice the area of
face Fj [7, 8]. This condition number is only a function
of triangle lengths1; therefore, it is invariant with ro-
tation of the triangle in the plane. Since there always
exists a coordinate system in which an arbitrarily ori-
ented triangle lies on one of its coordinate planes, it
suggests that the condition number is also useful for
measuring the quality of arbitrarily oriented triangles
in space.

1Aj is function of the lengths of the triangle sides

3.2 Condition Number Based Optimization

Consider the minimization of the sum of condition
number measures of faces incident at a given vertex
as given by the expression below:

ψc
i (xi) =

∑
j

κ(Jji(xi)) =
∑

j

l2p(xi) + l2q(xi)

Aj(xi)
,

j ∈ {j | Fj ∈ {F (Vi)}} (1)

where lp and lq are the lengths of edges Ep and Eq re-
spectively and xi is the coordinate vector of Vi. Note
the presence of area Aj in the denominator as a bar-
rierfunction which discourages node movements that
tend to make the triangle formed by Ep and Eq de-
generate.

The objective function ψc is designed such that its
minimization attempts to smooth the distribution of
face angles and edge lengths around a vertex. Based on
this property, a strategy can be formed for improving
the quality of a mesh by minimizing a global condition
number based objective function, Ψc, defined as:

Ψc =
∑

i

ψc
i , i ∈ {i | Vi ∈ {V }} (2)

where {V } is the set of all mesh vertices. To mini-
mize the global function, each vertex of the mesh is
visited in turn and the position of the vertex is opti-
mized using the local objective function, ψc

i . The local
optimization can be done by any optimization method
such as the non-linear conjugate gradient method. For
surface meshes, the optimization is conducted with
respect to local parametric coordinates as described
in Section 2. Several optimization iterations are made
over all the vertices of the mesh leading to a minimiza-
tion of the global function, Ψc. The iterations are
stopped when the movement of all vertices becomes
negligible.

3.3 Reference Jacobian based Mesh Im-
provement Method

3.3.1 Motivation

The global condition number minimization procedure
allows mesh vertices to move along the surface as much
as necessary to minimize the objective function. How-
ever, in certain applications, it is of interest to keep
the nodes of the original mesh as close as possible to
their original locations while improving the shape of
the mesh elements. The Arbitrary Lagrange-Eulerian
(ALE) method [12] is one instance where it is im-
portant to minimize the deviation of the optimized
mesh from the starting mesh. In ALE methods, the



Lagrangian step dictates a certain movement for the
nodes based on the physics of the problem. This can
cause the mesh to be distorted enough that the simula-
tion cannot proceed unless the quality of the elements
is improved. After the mesh is improved, the solution
from the distorted mesh must be transferred to the im-
proved mesh before continuing the simulation. Since
the accuracy of the solution transfer depends strongly
on the similarity of the two meshes, it is important
to devise a procedure that improves mesh quality but
also limits the extent that nodes can move from their
original locations. Such an optimization procedure,
referred to here as Reference Jacobian based Mesh Im-
provement, has been described earlier by Shashkov et.
al. [7, 12] for planar meshes. In this work, the ref-
erence Jacobian based mesh improvement procedure
has been combined with optimization with respect to
local parametrizations, resulting in a strategy for im-
proving surface mesh quality while keeping the nodes
of the mesh on the faces of the original mesh and close
to their original positions.

3.3.2 Local Condition Number based Op-
timization (Step I)

This is the first stage of the Reference Jacobian based
mesh improvement strategy. In this step, the locally
optimal position of each mesh vertex is computed with
respect to the fixed position of its neighbors. The ob-
jective function for optimization is the local condition
number function, ψc

i , described in Eq. 1, Section 3.2.
However, in this step, the node is not moved to its lo-
cally optimal position. Rather, the optimal position of
each node, described by a base face and the paramet-
ric coordinates of the node in the base face, is stored
as a virtual position for use in the second stage of the
mesh improvement procedure.

3.3.3 Reference Positions, Reference
Edges and the Reference Jacobian
Matrix

The locally optimal position computed and stored for
each vertex in the first stage of the procedure is known
as the reference position for the vertex. After reference
positions are calculated for all mesh vertices, two ref-
erence edge vectors are calculated for each edge in the
mesh; each reference edge vector goes from the refer-
ence position of one vertex of the edge to the original
position of the other. The idea of reference edges is
illustrated in Figure 5, where Ek is an edge with ver-
tices Vi and Vj . The reference positions of Vi and Vj

are V R
i and V R

j respectively. The two reference edge
vectors for Ek are (eR

k )i and (eR
k )j , where the outer

subscript indicates which of the vertices is at its refer-
ence position.

Using the concept of reference edge vectors, it is now
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Figure 5: Reference positions and reference edge
vectors.

possible to define Reference Jacobian Matrices just as
Jacobian matrices were defined for a mesh without ref-
erence positions. Therefore, if the edges of Fj con-
nected to vertex Vi are Ep and Eq, then the reference
Jacobian of Fj at Vi is defined as JR

ji =
[
(eR

p )i (eR
q )i

]
.

3.3.4 Global Optimization based on Refer-
ence Jacobian Matrix (Step II)

The second stage of the mesh improvement procedure
is a global optimization based on the definition of refer-
ence Jacobian matrices. The goal of this step is to find
a valid mesh configuration such that each edge is in a
compromise configuration between its pair of reference
edge vectors. It is expected that such a configuration
for the edges will improve mesh quality, since the ref-
erence edge vectors were formed by locally improving
mesh quality at each mesh vertex. It is also expected
that the optimized mesh will not deviate drastically
from the base mesh, since each reference edge vector
has one of its vertices at its original position and the
other at the locally optimal position.

The objective function for the global optimization
quantifies the difference between the Jacobian matri-
ces of the mesh being optimized and the reference Ja-
cobian matrices as shown below:



ΨR =
∑

i

∑
j

‖Jji − JR
ji‖2

Aj/AR
ji

,

i ∈ {i | Vi ∈ {V }}, j ∈ {j | Fj ∈ {F (Vi)}} (3)

where, {V } is the set of all mesh vertices, ||.|| is the
Frobenius norm2, AR

ji is the twice the area of the tri-
angle formed by edge vectors, (eR

p )i and (eR
q )i. Note

that, similar to the objective function for local op-
timization, the objective function includes a barrier
term Aj in the denominator in the form of the trian-
gle area to prevent mesh invalidity. Since the Jacobian
matrix and the reference Jacobian matrix are formed
from the mesh edges and the reference edges respec-
tively, optimization of ΨR makes the edges of the final
mesh as close as possible to their respective reference
edge vectors.

It would be most efficient if a global procedure could
be used to minimize the objective function ΨR so that
all the mesh vertices could be moved toward their opti-
mal position simultaneously. However, the use of local
parameterization for node movement imposes strong
constraints on a global optimization process. The line
search necessary in the global optimization seeks a sin-
gle step size for the parametric coordinates of all the
nodes. However, if a parametric coordinate for even a
single vertex goes out of bounds, the line search must
end for all the parameters in the problem and the op-
timization restarted, making the optimization very in-
efficient.

Therefore, the second optimization step is modified
so that the mesh vertices are repositioned one vertex
at a time using a local piece of the global objective
function. Consider a vertex Vi, connected to the set of
faces {F (Vi)}. Then the piece of the global objective
function that involves the real and reference positions
of Vi is given as:

ψR
i =

∑
j

∑
k

‖Jjk − JR
jk‖2

Aj/AR
jk

,

j ∈ {j | Fj ∈ {F (Vi)}},
k ∈ {k | Vk ∈ {V (Fj)} ∩ {V ({E(Vi)}} }

In the expression, the outer sum is over all faces con-
nected to the vertex and the inner sum is over all
vertices of a face that include Vi itself or are edge-
connected to Vi. Figure 6 shows the vertices involved
in the expression ψR

i for Vi.

2Frobenius norm of matrix A is defined as ‖A‖ =√
tr(AT A) where tr(A) =

∑
i aii

���

Figure 6: Vertices involved in the local objective
function expression, ψR

i , for Vi. The shaded cir-
cles along with the black circle ( Vi) represent the
vertices at which real and reference Jacobians are
computed for use in ψR

i . The white circles repre-
sent vertices whose real locations contribute to the
Jacobians at the vertices with shaded circles.

Thus, the second stage of optimization visits each
mesh vertex, Vi, and conducts a minimization of the
local function, ψR

i by repositioning Vi. Minimization
of the local function results in a reduction of the global
function, ΨR. The procedure loops over all the mesh
vertices several times until the optimization converges
to a solution. The criteria for convergence is that the
movement of all the nodes is negligible for several iter-
ations. It can be seen that the first and second stage
optimizations are similar except for the use of different
objective functions.

4. RESULTS

Figure 7 shows a simple example to illustrate the ef-
fects of a condition number optimization (CN Opt.
or CNO) and reference Jacobian based optimization
(RJ Opt. or RJO) on a non-planar surface mesh.
Figure 7a shows the original pyramid shaped mesh
on which the two optimization techniques are applied.
Figure 7b shows the effect of optimizing the CN ob-
jective function and Figure 7c shows the effect of op-
timizing the RJ objective function. In both cases, the
apex node lies on the left lateral surface of the origi-
nal pyramid. It can be seen that the CN optimization
improves the shapes of the triangles more than the RJ
optimization. On the other hand, the RJ optimization
results in lesser movement of the apex node from its
original position.

Figure 8 shows a quadrilateral mesh and the results of
the CN optimization and RJ optimization. It is again
clear from the example that the CN optimization im-
proves the shape of mesh elements more than the RJ
optimization, but it also causes much more movement
of the nodes. This is verified by the following data
about the change in the mesh characteristics between



(a)

(b) (c)

Figure 7: (a) Original Mesh, (b) Mesh optimized
with condition number objective function, (c) Op-
timized with reference Jacobian objective function.
Note that in both cases, the apex node is on the
lateral surface of the original pyramid.

K̄ Original CNO RJO

1.0 – 1.5 84 114 112
1.5 – 2.0 26 0 2
2.0 – 3.0 3 0 0
3.0 – 4.0 1 0 0
4.0 – 0 0 0

Table 1: Histograms of Normalized Average Condition
Number in Original and Optimized Meshes for example
shown in Figure 8

the two meshes. Table 1 shows the improvement in the
distribution of normalized average condition number,
K̄, of elements in the mesh with the two types of op-
timization. The normalized average condition number
for an element is defined as the mean of the condition
numbers at the vertices of an element, normalized so
that an equilateral triangle or square quadrilateral will
produce a value of 1.

Table 2 shows various quantities computed to measure
the change in the mesh and the surface using the two
methods of optimization. In the computation, the nor-
malized Hausdorff distance is computed by computing
the minimum distance from each node of the original
mesh to the new mesh, taking its maximum [13, 14]
and normalizing it by the problem size. The problem
size is defined as the maximum length of the domain

(a)

(b)

(c)

Figure 8: (a) Quadrilateral mesh of curved surface,
(b) Mesh optimized with global condition number
function, (c) Mesh optimized with reference Jaco-
bian function.



Measure CN Opt. RJ Opt.

Hausdorff Distance 5.6% 1.0%
Max. Node Movement 19.1% 5.7%
Ave. Node Movement 5.2% 1.5%
Max. Change in Normals 13.3◦ 8.9◦

Ave. Change in Normals 3.2◦ 1.9◦

Table 2: Quantitative measures of the change in the
mesh and discrete surface characteristics for CN op-
timization and RJ optimization for example shown in
Figure 8; distances are presented as a percentage of the
problem size

along the three coordinate directions. The maximum
node movement is the maximum distance traveled by
any node from its original position and the average
node movement is the mean of the distance traveled
by all nodes from their original positions; these are
also normalized by the problem size. The change in
surface normals is computed as the deviation between
the discrete normal at a node of the optimized mesh
and the normal at the corresponding location in the
old mesh as shown in Figure 9. The average change in
normals is simply the mean of the deviation in the nor-
mals over the entire mesh and the maximum change in
normals is the maximum of the deviation in normals.

������ � ��
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Old Mesh

New mesh

h:  Hausdorff 
     Distance

d:  Node
     Movement

Figure 9: Comparing normals of the original and
optimized meshes illustrated using an edge mesh.

Figure 10a shows a mesh of pig3 with localized refine-
ment and anisotropic triangles. Figure 10b illustrates
the effect of the CN optimization procedure and Fig-
ure 10c illustrates the effect of the RJ optimization
procedure. Note how the CN optimization procedure
creates nearly isotropic triangles in the mid-section
of the pig while the RJ optimization preserves the
anisotropy while improving the mesh quality. Also, the
CN optimization destroys the local refinement defin-
ing the pig’s mouth and the RJ optimization preserves
this feature of the original mesh. The condition num-
ber histograms for the three meshes are presented in
Table 3 and the measures for change in surface charac-
teristics are presented in Table 4. The data confirms
the visual observation that CN optimization better im-
proves the element quality while RJ optimization bet-
ter preserves the surface mesh characteristics.

3Original mesh: Benjamin Watson, Northwestern Univ.

(a)

(b)

(c)

Figure 10: (a) Mesh of Pig (from Benjamin Watson,
Northwester Univ.), (b) Mesh optimized with CN ob-
jective function, (c) Mesh optimized with RJ objec-
tive function.



K̄ Original CN Opt. RJ Opt.

1.0 – 1.5 3921 6830 5124
1.5 – 2.0 1734 156 1257
2.0 – 3.0 917 48 525
3.0 – 4.0 247 3 100
4.0 – 5.0 102 0 22
5.0 – 7.5 93 2 7
7.5 – 10.0 11 1 1

10.0 – 15.0 12 0 4
15.0 – 3 0 0

Table 3: Histograms of Normalized Average Condition
Number in Original and Optimized Meshes for pig (Fig-
ure 11).

Measure CN Opt. RJ Opt.

Hausdorff Distance 2.7% 0.6%
Max. Node Movement 11.1% 3.1%
Ave. Node Movement 1.7% 0.3%
Max. Change in Normals 150.6◦ 152.9◦

Ave. Change in Normals 10.3◦ 12.1◦

Table 4: Quantitative measures of the change in the
mesh and discrete surface characteristics for CN opti-
mization and RJ optimization for pig (Figure 10); dis-
tances are presented as a percentage of the problem
size

Finally, a complex mesh of a sculpture is presented
in Figure 11 to illustrate the effectiveness of this pro-
cedure on large surface meshes. The original mesh
for this model was obtained from the Cyberware,
Inc. (http://www.cyberware.com/samples) which
was then coarsened using software from the Scientific
Computation Research Center at Rensselaer Polytech-
nic Institute. The coarsened mesh (Figure 11a) was
used to obtained the optimized meshes shown in the
example. A CN optimization resulted in the mesh
shown in Figure 11b and a RJ optimization yielded
the mesh shown in Figure 11c. Figure 12a,b,c show
zoomed in views of the original mesh, CN based opti-
mized mesh and RJ based optimized mesh of the same
example.

The condition number histograms for the three meshes
are presented in Table 5 and the measures for change
in surface characteristics are presented in Table 6.

5. CONCLUSIONS

A procedure was presented to improve the quality of
complex surface meshes without an underlying smooth
surface using numerical optimization. The optimiza-
tion is designed to improve the quality of the mesh
faces without distorting the discrete surface too much.
The vertices are kept on the original surface triangu-
lation using movement in local parametric spaces of
mesh faces. Two forms of optimization were proposed

(a)

(b)

(c)

Figure 11: (a) Mesh of the Igea artifact (from Cy-
berware, Inc.), (b) Mesh optimized with CN objec-
tive function, (c) Mesh optimized with RJ objective
function.



(a)

(b)

(c)

Figure 12: Zoom in of mesh of Igea artifact (Cyber-
ware, Inc.), (a) Original mesh, (b) Mesh optimized
with CN objective function, (c) Mesh optimized with
RJ objective function.

K̄ Original CN Opt. RJ Opt.

1.0 – 1.5 29572 39764 37432
1.5 – 2.0 7325 277 2371
2.0 – 3.0 2683 0 232
3.0 – 4.0 335 1 5
4.0 – 5.0 64 0 1
5.0 – 7.5 50 0 1
7.5 – 10.0 9 0 0

10.0 – 15.0 3 0 0
15.0 – 1 0 0

Table 5: Histograms of Normalized Average Condition
Number in Original and Optimized Meshes for Igea ar-
tifact (Figure 11).

Measure CN Opt. RJ Opt.

Hausdorff Distance 0.5% 0.2%
Max. Node Movement 3.0% 1.3%
Ave. Node Movement 0.4% 0.2%
Max. Change in Normals 77.3◦ 66.3◦

Ave. Change in Normals 6.2◦ 7.0◦

Table 6: Quantitative measures of the change in the
mesh and discrete surface characteristics for CN op-
timization and RJ optimization for Igea artifact (Fig-
ure 11); distances are presented as a percentage of the
problem size

for improving the quality of the mesh. The first type
of optimization was a global condition number opti-
mization in which the condition numbers of faces at
each mesh vertex were locally improved. The second
type of optimization was a reference Jacobian based
optimization in which the local condition number im-
provement is used only to calculate the locally optimal,
virtual position for each mesh vertex. These virtual or
reference positions are then used to form a reference
Jacobian based objective function that effects a com-
promise between improving quality and keeping the
nodes close to their original positions.

The procedure has been successfully tested on a num-
ber of complex triangular and quadrilateral surface
meshes. Several quantitative measures were presented
to show that both types of optimizations do not do
not distort the surface much. The reference Jacobian
based optimization strategy improves the mesh quality
considerably but also keeps the nodes of the original
mesh close to their original positions. On the other
hand, the global condition number based optimization
can cause considerable movement of the nodes from
their original positions in order to provide a small im-
provement in mesh quality beyond what is possible by
the reference Jacobian based method.

Future work will attempt to extend the procedure to
general polygonal meshes.
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