
Network Node
Functional Specification

Vers ion 1 .1

S e p t e m b e r 1 7 , 2 0 0 3

T a s k O r d e r N o . : T 0 0 0 2 A J M 0 3 8

C o n t r a c t N o . : G S 0 0 T 9 9 A L D 0 2 0 3

Abstract

This Functional Specification provides a detailed
description of an Exchange Network Node’s expected
behavior including function invocation and expected
output.

Amendment Record

Version Date Amended By Nature of Change

Version 1.1 September 17, 2003 A. Reisser The return type of Query was changed
from queryResults to xsd:string.
Clarified the parameters of positioned
fetch (rowId and maxRows). rowId
must be 0, and maxRows must be -1 if
positioned fetch is not requested.
Added Solicit as a ServiceType in the
GetServices method. This allows user
to retrieve a list of service requests
supported by the Solicit method.
Clarified the transactionId parameter in
the Download parameter, the
parameter may be empty for pre­
established or ad hoc download
operations.

i

Tab le o f Contents

1.0 Introduction and Terminology... 1

1.1 Introduction.. 1

1.2 Terminology... 1

1.3 Principles, Assumptions, and Constraints .. 2

1.4 Requirements .. 2

2.0 Namespaces and Encoding Rules.. 3

3.0 Data Elements and Structures.. 4

3.1 Document Types.. 4

3.2 Document Structure (nodeDocument) ... 4

3.3 SOAP Attachments ... 5

3.3.1 SOAP Message with DIME ... 5

3.4 Fault Details... 5

4.0 Logging.. 9

5.0 Network Service Interfaces.. 10

6.0 Node Web Methods... 12

6.1 Authenticate...12

6.1.1 Description.. 12

6.1.2 Definition ...13

6.1.3 Arguments... 13

6.1.4 Return.. 14

6.1.5 Example.. 14

6.2 Submi t ..15

6.2.1 Description.. 15

6.2.2 Definition ...15

6.2.3 Arguments... 15

6.2.4 Return.. 15

6.2.5 Example.. 16

6.3 Query...16

6.3.1 Description.. 16

6.3.2 Definition ...17

6.3.3 Arguments... 17

6.3.4 Return.. 18

6.3.5	 Example.. 18

ii

6.4 GetStatus...18

6.4.1 Description.. 18

6.4.2 Definition ...19

6.4.3 Arguments... 19

6.4.4 Return.. 19

6.4.5 Example.. 19

6.5 Notify...20

6.5.1 Description.. 20

6.5.2 Definition ...20

6.5.3 Arguments... 21

6.5.4 Return.. 21

6.5.5 Examples...21

6.6 Solicit ..23

6.6.1 Description.. 23

6.6.2 Definition ...24

6.6.3 Arguments... 24

6.6.4 Return.. 24

6.6.5 Example.. 24

6.7 Download ..25

6.7.1 Description.. 25

6.7.2 Definition ...25

6.7.3 Arguments... 25

6.7.4 Return.. 26

6.7.5 Examples...26
Deleted: 27

Deleted: 27

6.8 NodePing ...26

6.8.1 Description.. 26

6.8.2 Definition ...27

6.8.3 Arguments... 27

6.8.4 Return.. 27

6.8.5 Examples...27

6.9 GetServices ..28

6.9.1 Description.. 28

6.9.2 Definition ...28

6.9.3 Arguments... 28 Deleted: 29

iii

6.9.4 Return.. 29

6.9.5 Examples...29

7.0 Node Validation...31

8.0 Appendix.. 32

8.1 Execute ...32

8.1.1 Description.. 32

8.1.2 Definition ...32

8.1.3 Arguments... 32

8.1.4 Return.. 32

8.1.5 Example.. 33

9.0 References...34

iv

Table of Tables

Table 1: Network Exchange Interface Support .. 4

Table 2: Exchange Network Error Codes ...7

Table 3: Methods Supported in Each Interface.. 10

Table 4: Dataflow and Document Relationship.. 21

Table 5: Service Status Codes ... 27

Table 6: Test Message Definitions ...31

Tab le o f F igures

Figure 1. Static UML Diagram for Network Node Services.. 11

v

F o r e w o r d

The Network Exchange Protocol V1.1 (Protocol) and the Network Node Functional Specification
V1.1 (Specification) define the conversation between and the behavior of Nodes on the
Environmental Information Exchange Network (Exchange Network). The Network Steering
Board (NSB) expects the Protocol and Specification to have a shelf life of between 12-24
months. As a result, the documents are forward-looking. They define and describe certain
functionalities that will not immediately be utilized but are expected to become paramount as the
Exchange Network evolves during its initial implementation. For example, the documents
discuss and describe UDDI and other Registries as integral parts of the Network. Their use is
implicit in the Protocol and Specification, but currently no official registries exist but they do
merit discussion in these documents as it is expected that they will exist in the next 12-24
months.

These documents, in their first generation, were/are designed to support relatively simple state
and EPA dataflows. They do so by proposing a small number of primitive Network Web services
which Network Partners group into larger (but still simple) transactions to flow data. Most of
these transactions are now conducted manually through the use of terminal/host clients, email,
ftp, http uploads or diskettes. These Web services are:

� Authenticate
� NodePing
� GetServices
� GetStatus
� Notify
� Download
� Submit
� Solicit
� Query
� Execute (Optional method. Refer to Paragraph 8.1) Formatted: Bulletsand Numbering

As indicated by the “Authenticate” service, the Protocol and Specification present a
decentralized approach for authentication. Each Network Partner is responsible for
authenticating users of their Nodes. While allowing optimum flexibility and ultimate control of
authentication at the level of the Network Partner, decentralizing authentication could place a
resource burden on future Network Partners. The USEPA as part of their Central Data
Exchange (CDX) have created the Network Authorization and Authentication Service (NAAS).
Any Network Partner can use this service to authenticate users. An additional Web service
“Validate,” is required, to use the NAAS. The use of the NAAS is described in a separate
document, the Network Security Guidelines and Recommendations V1.0 found on the
Exchange Network Website. It is expected that in the next 12-24 months, authorization service
will be made available at the NAAS. The “Authenticate” service (the process of determining the
identity of a subject - not just limited to users; it could, and often should, apply to machines and
messages in a secure environment) is nebulous with respect to Nodes or clients. That is, any
Node or client can use the “Authenticate” service to obtain authentication. As a result, all
potential data exchanges are supported.

As in any software project, these documents represent a series of design decisions and
compromises. In their entirety, the Protocol and Specification will strike some implementers as

vi

overly complex, and others (or maybe some of the same) as rudimentary. While these
documents, created as part of a pilot project, went through several iterations, and represent the
most current Network knowledge, the NSB acknowledges that these documents will need
updates for several possible reasons including advances in technology.

Critical note to Node implementers:

A WSDL file accompanies the Protocol and Specification. The WSDL file is machine-readable
and is the canonical description of the Protocol and Specification. Node implementers should
use the WSDL file(s) as the starting point for their Node and client development. Each Node will
have to customize the generic WSDL file for their Node. The ability to generate code from the
WSDL file is an essential feature of most SOAP toolkits.

vii

Acknowledgements

This document has been developed through the support and analytic contributions of a number
of individuals and programs within EPA, ECOS, and several state agencies. These individuals
offered valuable insight, lessons learned from their work on this and prior Node workgroups, and
hard work in creating the Node V1.0 Specification and Protocol.

State Participants

Dennis Burling (State CoChair), Nebraska Department of Environmental Quality

David Blocher, Maine Department of Environmental Protection

Harry Boswell, Mississippi Department of Environmental Quality

Dan Burleigh, New Hampshire Department of Environmental Services

Frank Catanese, New Hampshire Department of Environmental Services

Ken Elliott, Utah Department of Environmental Quality

Dave Ellis, Maine Department of Environmental Protection

Renee Martinez, New Mexico Environment Department

Tom McMichael, New Mexico Environment Department

Melanie Morris, Mississippi Department of Environmental Quality

Dennis Murphy, Delaware Department of Natural Resources and Environmental Control

Brent Pathakis, Utah Department of Environmental Quality

Brian Shows, Mississippi Department of Environmental Quality

Chris Simmers, New Hampshire Department of Environmental Services

Michael Townshend, Delaware Department of Natural Resources and Environmental Control

Robert Williams, Maine Department of Environmental Protection

Karen Knox, Maine Department of Environmental Protection

EPA Participants

Connie Dwyer (EPA CoChair), Office of Environmental Information

Chris Clark, Office of Environmental Information

Patrick Garvey, EPA NSB Executive Staff

Environmental Council of States

Molly O’Neill, ECOS NSB Executive Staff

Support Contractors

Dave Becker, Computer Sciences Corporation

Tom Potter, Computer Sciences Corporation

Glenn Tamkin, Computer Sciences Corporation

Yunhao Zhang, Computer Sciences Corporation

viii

Andrea Reisser, Concurrent Technologies Corporation

Kochukoshy Cheruvettolil, Ross & Associates Environmental Consulting, Ltd.

Louis Sweeny, Ross & Associates Environmental Consulting, Ltd.

Rob Willis, Ross & Associates Environmental Consulting, Ltd.

State Contractors/Consultants

Tony Pruitt, Ciber Federal Solutions

Steven Wu, enfoTech & Consulting Inc.

Chris McHenry, Integro

Calvin Lee, Oracle

Brad Loveland, Venturi Technology Partners

Brett Stein, XAware Inc.

ix

1 . 0 I n t r o d u c t i o n a n d T e r m i n o l o g y

1.1 Introduction

This document describes the expected behavior of a Network Node. It defines the functions the
Node performs, how it invokes these functions, and the output expected.

1.2 Terminology

Term Definition/Clarification

CID Content ID

DBMS Database Management System

DET Data Exchange Template

DIME Direct Internet Message Encapsulation

EPA Environmental Protection Agency

Exchange Network Environmental Information Exchange Network

NAAS Network Authentication and Authorization Services. This is a set of
centralized security services shared by all Network Nodes.

PKI Public Key Infrastructure

RPC Remote Procedure Calls

SAML Security Assertion Markup Language

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

TRG Technical Resource Group

UML Unified Modeling Language. The industry-standard language for
specifying, visualizing, constructing, and documenting the artifacts of
software systems.

URL Uniform Resource Locator

UUID Universal Unique Identifiers

W3C World Wide Web Consortium

WSDL Web Service Definition Language. An XML format for describing
Network services as a set of endpoints operating on messages.
Message definitions in WSDL are used in this document.

XML Extensible Markup Language

XML Namespace XML Namespace is a collection of names, identified by a URI
reference. Namespaces in XML documents provide processing context
and prevent name collisions

1

1.3 Principles, Assumptions, and Constraints

Principles are rules or maxims that guide subsequent decisions. Principles consist of a list of
criteria involving business direction and good practice to help guide the architecture and design.

Assumptions are expectations that form the basis for decisions, which if proven false, would
have a major impact on the project. They identify key characteristics of the future that are
assumptions for the architecture and design, but are not constraints.

Constraints are restrictions that limit options. They are typically things that must or must not be
done when designing the application. They identify key characteristics of the future that are
accepted as constraints to architecture and design.

The principles, assumptions, and constraints for the Network Node Functional Specification
V1.0 are:

1.	 The specification is expected to have a life of 18-24 months. During this time, actual
Network usage information will be used to develop V2.0.

2.	 The specification will be kept as simple as possible. This is to ensure interoperability
without unreasonable Network participation criteria.

3.	 Immediate development of the specification is required because:
- Network participants need the specification to assist their Node implementations.
- The Network Implementation Plan calls for ten (10) Nodes implemented by Q2 2003.

However, a few dozen State agencies began establishing Nodes in 2002.
- Even if the initial specification is imperfect and incomplete, the Network will work more

efficiently and effectively with Network standardized expectations, functional
performance standards, and “rules.”

-	 Given the flexibility of Network technologies, implementers will be looking for all
practical guidance available.

4.	 The specification must be consistent with the Network Exchange Protocol V1.0.
5.	 The specification must be consistent with the Network Security Guidelines provided in a

separate document.
6.	 The specification must be consistent with the Network Registry Guidelines and operation.

1.4 Requirements

These requirements describe what will be delivered as part of the Network Node Functional
Specification Version 1.0. The Network Node Functional Specification V1.0 shall:

1.	 Support all critical requirements for dataflows including the ability to “package” the relevant
data using extensible markup language (XML) schemas developed by exchange partners
and Network participants.

2.	 Use HTTP, Web Services Description Language (WSDL), and Simple Object Access
Protocol (SOAP). Emerging industry standards will be used as consistently as possible in
the application of these protocols.

3.	 Implement, and be compliant with, security procedures identified in the Network Exchange
Protocol V1.0. If the Network Security Guidelines become available during the shelf life of
the protocol, they will supercede security measures outlined herein.

4.	 Be implemented using the most common toolsets in use by Node implementers. A high
degree of customization will be avoided.

2

2 . 0 N a m e s p a c e s a n d E n c o d i n g R u l e s

Messages defined in this specification use either SOAP/Remote Procedure Call (RPC)
encoding (also known as Section 5/Section 7 encoding) or Document/Literal encoding.

The SOAP encoding is governed by rules in SOAP Section 5 specifications, while messages in
Document/Literal encoding must conform to the specified schema.

For purposes of the Network Node 1.0 project, the default XML namespace for data types and
structures is:

http://www.exchangenetwork.net/schema/v1.0/node.xsd

The target namespace used by the corresponding WSDL file is:

http://www.exchangenetwork.net/schema/v1.0/node.wsdl

Versioning information is introduced into the schema from V0.9 and forward. Since the
namespace URL is in all request and response messages, both service providers and
requesters will be able to deal with different versions smoothly.

The namespaces without a version number are considered to be V0.8. For example, V0.8 was
not supported after V0.9 was deployed to the initial Node 1.0 Group. Similarly, V0.9 will not be
supported after V1.0 is deployed. V1.0 is the only normative specification. The actual
deployment of the version level is a future enhancement to the system and that will likely be
supported. The version levels currently being deployed are to create future versioning
positioning.

The Technical Resource Group (TRG) Data Exchange Template (DET) workgroup is developing
guidance on versioning for Network activities that will be incorporated upon completion and
approval.

3

3 . 0 Da ta E lements and S t ruc tures

3.1 Document Types

The unit of exchange in the Network Exchange Protocol V1.0 is the document. Although
documents can be in many different forms, they are classified into three (3) major categories:

1.	 Structured Document: Structured documents conform to a predefined structure.
Documents, in document/literal encoding, carried in the SOAP message header or body are
structured documents. External XML documents attached to SOAP messages are also
structured.

2.	 Unstructured Document: Documents that do not have a predefined structure fall into this
category. Examples include word documents, flat files, and binary files.

3.	 Relational Document: Relational documents are structured documents with relational
constraints imposed on internal data elements. Records from a relational database are
considered relational.

The Network Exchange Protocol V1.0 facilitates document exchanges of all three (3) categories.
Table 1 shows how Network exchange interfaces provide support for these documents.

Document Type Interface Carrier Comment

Structured Send, Retrieve Internal /Attachment

Unstructured Send, Retrieve Attachment

Relational Database Internal Document embedded
message body

in

Table 1: Network Exchange Interface Support

3.2 Document Structure (nodeDocument)

A document in this protocol is defined using XML schema, as a complex data type (a structure):

<complexType name="nodeDocument">

<sequence>

 <element name="name" type="xsd:string"/>

 <element name="type" type="xsd:string"/>

 <element name="content" type="xsd:base64Binary"/>

</sequence>

</complexType>

Where name is the file name, type is one of the following:

�	 XML: An XML document.
�	 Flat: A flat text file.
�	 Bin: A binary file.
�	 ZIP: A compressed file in ZIP format.
�	 OTHER: An unspecified or unknown file type.

4

Note: this list of nodeDocument types will be expanded as needed to accommodate new types.

Note the sequence tag in the definition indicates that all children must be in a sequential order
as specified. The value of the content element is the actual document, and base64 encoded if
embedded in the structure. If the document is an attachment, the content element should be
empty, but with an href attribute of content Id (CID) referencing the attached document. The
following example shows a structure with an attached document:

<q3:myDoc xsi:type="q3:nodeDocument" xmlns:q3="http://www.exchangenetwork.net/xsd">
<name xsi:type="xsd:string">mydata.xml</name>
<type xsi:type="xsd:string">XML</type>
<content xsi:type="xsd:string" href=" f9647203-a4b9-4b1b-bd3c-
8186f75698bc"></content>

</q3:myDoc>

where f9647203-a4b9-4b1b-bd3c-8186f75698bc is a reference to the actual attachment
outside of the SOAP message part.

3.3 SOAP Attachments

In a document exchange process, payloads can be any type of file, including XML files, text
files, and binary files. It is recommended that the payloads be sent as attachments under the
following conditions:

� The file is not a well-formed XML file.
� The document is large.

There are two (2) standards available for attachments: SOAP message with Attachment (SwA)
and Direct Internet Message Encapsulation (DIME). Network Nodes must support DIME.

All attachments must be referenced in the SOAP main message body. Unreferenced
attachments, which have no meaning to the receiver, will not be processed.

3.3.1 SOAP Message with DIME

DIME is a binary protocol originally proposed by Microsoft and IBM. The advantages of DIME
are simplicity and performance. DIME attachments do not need to be encoded, which often
produces a significant savings of time and resources. Each payload, including the main
message body, is encapsulated in a DIME record. A DIME message is a set of records with the
main SOAP message as the first record.

3.4 Fault Details

All fault messages must have a fault detail entry that contains error information specific to Node
operations. The fault detail is a child element of the detail element defined by SOAP 1.1. It is
defined as:
<complexType name="faultdetails">

<sequence>

 <element name="errorcode" type="xsd:string"/>

 <element name="description" type="xsd:string"/>

</sequence>

</complexType>

5

This is a simple structure with two (2) child elements: errorcode and description, both are type
string. An example fault message with fault detail element is shown below.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="

http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body> <SOAP-ENV:Fault>

 <faultcode>SOAP-ENV:client</faultcode>

 <faultstring>Invalid User</faultstring>

<detail><faultdetail

xmlns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

<errorcode>E_UnknownUser</errorcode>

<description>

Authentication failed; please check your userId and password.

</description>

</faultdetail>

 </detail>

</SOAP-ENV:Fault></SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The message indicates that the failure is due to an invalid user name or password.

 Note: The default namespace for fault detail is http://www.exchangenetwork.net/schema/v1.0/node.xsd,
representing a custom structure defined by this specification.

6

The Network Exchange Protocol V1.0 list of predefined Exchange Network error codes is shown
in Table 2.

Error Code Description

E_UnknownUser User authentication failed

E_Query The supplied database logic failed

E_TransactionId A transaction ID could not be found

E_UnknownMethod The requested method is not supported

E_ServiceUnavailable The requested service is unavailable

E_AccessDenied The operation could not be performed due to lack of privilege

E_InvalidToken The securityToken is invalid

E_TokenExpired The securityToken has expired

E_FileNotFound The requested file could not be located

E_ValidationFailed DET validation error

E_ServerBusy The service is too busy to handle the request at this time, please try
later

E_RowIdOutofRange The rowId parameter is out of range

E_FeatureUnsupported The requested feature is not supported

E_VersionMismatch The request is a different version of the protocol

E_InvalidFileName The name element in the nodeDocument structure is invalid

E_InvalidFileType The type element in the nodeDocument structure is invalid or not
supported

E_InvalidDataFlow The dataflow element in a request message is not supported

E_InvalidParameter One of the input parameters is invalid

E_InternalError An unrecoverable error occurred during processing the request

E_InvalidSQL Syntax error in the SQL statement

E_AuthMethod The authentication method is not supported

E_AccessRight User privilege is insufficient for the operation

Table 2: Exchange Network Error Codes

In addition to the error codes listed above, service providers may return the native database
management system (DBMS) error code if a database operation fails.

7

The description element in fault detail is a human readable string description of the error. It
should contain as many details as possible so that the error can be avoided in subsequent
requests.

8

4 . 0 L o g g i n g

All Network Nodes must log received transactions in a persistent storage area and provide
search capability for tracking transactions either by transaction ID or requester’s ID. In addition
to information about submitted documents, the log record should contain the following
information, at a minimum: requester’s ID, time received, transaction status. Additional
information may be provided.

It is also recommended that an activity log, a log that contains detailed processing steps, be
provided to assist problem finding and debugging.

9

5 . 0 Ne twork Serv ice In te r faces

Network services defined in the Network Exchange Protocol V1.0 are classified into four (4)
major abstract interfaces:

1.	 Send Interface: A group of methods for submitting documents and other basic Network
services.

2.	 Database Interface: A set of methods for database operations.

3.	 Retrieve Interface: A set of methods for event notification and polling, and document
retrieval.

4.	 Administration Interface: Methods for Network-wide coordination and management.

Implementation of all the interfaces is mandatory, although a Node may elect to support only
limited database processing commands in Execute and Query. Web methods in each interface
are listed in Table 3.

Interface Methods

Send Authenticate, Submit, GetStatus

Database Query, Solicit, Execute

Retrieve

Administration

Notify, Download

NodePing, GetServices

Table 3: Methods Supported in Each Interface

Figure 1 shows a static Unified Modeling Language (UML) diagram of interfaces in a Network
Node. Note that a Node can own more than one instance of each interface. The database
interface, as well as the notification interface, uses a nodeDocument data structure. The
diagram also shows that at least one (the 1…* notion). Send Interface must be implemented by
a Node.

10

Send
Database

Admin
Retrieve

+Node1

+Send1..*

«datatype»
nodeDocument

Network Node Service

+Notify()
+Download()

«interface»
Retrieve

«uses»

+Authenticate()
+Submit()
+GetStatus()

«interface»
Send

1

-Admin*

1

-Retrieve*

1

-Database*

«uses»

+NodePing()
+GetServices()

«interface»
Admin

+Query()
+Solicit()
+Execute()

«interface»
Database

Figure 1. Static UML Diagram for Network Node Services

11

6 . 0 N o d e W e b M e t h o d s

The Network Node Functional Specification V1.0 describes the behavior and interfaces of the
service provider component. One of the design goals of this document is to create a framework
of Web services such that data exchanges of any type between Nodes can be conducted
seamlessly and automatically. The Web interface layer of the framework will create fully
programmable environments on which clients can build automated tools, in any programming
language, to send documents into the Network or to track previous submissions.

A Node is a service provider. Thus, the key interfaces that must be implemented in a Node
include the following Web methods:

� Authenticate
� Submit
� Query
� GetStatus
� Notify
� Solicit
� Download
� NodePing
� GetServices
� Execute (Optional method. Refer to Paragraph 8.1)

This basic set of functions will be applicable for each given type of dataflow that will be
exchanged through the Node, considering that each Node may be able to handle many kinds
and types of data.

The following subsections define behaviors of each Web method, and give detailed descriptions
of inbound/outbound messages.

6.1 Authenticate

6.1.1 Description

The Authenticate method authenticates a user using a supplied credential. It returns a
securityToken when successful. The securityToken, also referred to as the securityToken, must
be included in all other method invocations, except NodePing, as a proof of identity.

A securityToken is an opaque string that is meaningful only to the issuer or trusted peers. It
may include, but is not limited to, the following information:

� The user ID or profile name.
� A session ID for state management.
� A timestamp for aging, expiration.

Service providers must implement an aging strategy to prevent replay attack. An expired token
should be discarded immediately. A suggested token life span is about ten (10) minutes.

Authenticate messages must be sent through a secure transport such as secure socket layer
(SSL). Note that although SSL is very good in securing communication channels, its usage, as
an authentication system, is problematic; mutual verification of certificates in a large-scale
distributed system is proven to be very expensive (public key infrastructure [PKI] required) and

12

difficult to implement. The securityToken scheme presented here offers a simple yet effective
way of identification and authentication.

Note also that the specification itself does not define exactly how users are authenticated. Each
Node implementer is free to choose any available authentication process in the underlying
operating system. However, due to the Network connectivity, a security breach at one Node
may have a grave impact to the overall operation. It is the responsibility of the Node operator to
choose a secure authentication process. Network Security Guidelines and Recommendations,
describing security practices for Network services, were provided in a separate document dated
February 28, 2003.

As described in the accompanying Network Exchange Protocol V1.0 document delivered on
March 14, 2003, and the Network Security Guidelines document, initial implementations will rely
on an Environmental Protection Agency (EPA) hosted Network Authentication and Authorization
Services (NAAS), supplemented as needed by local security services.

6.1.2 Definition

Authenticate messages are governed by WSDL message definitions below:

 <message name='Authenticate'>

 <part name='userId' type='xsd:string'/>

 <part name='credential' type='xsd:string'/>

 <part name=’authenticationMethod’ type=’xsd:string’/>

 </message>

 <message name='AuthenticateResponse'>

 <part name='return' type='xsd:string'/>

 </message>

Where Authenticate is the request message; AuthResponse is the response. The definition
indicates that the Authenticate request message consists of three (3) variables: userId,
credential, and authenticationMethod all of type string. The response message contains a single
string variable named ‘return’, which contains the securityToken.

6.1.3 Arguments

The Authenticate message requires three (3) parameters: userId, credential, and
authenticationMethod. userId is the user ID of the person or system. The value of credential is
the user’s credential for accessing the Network services.

The authenticationMethod parameter specifies which authentication methods are to be used.
The default authenticationMethod, and the only method supported by the Network Node
Functional Specification V1.0, is password. Possible future authentication methods may include,
but are not limited to:

� Password: The credential parameter contains a clear password.
� Digest: The credential parameter contains a digest (sha1) of the user’s password.
� Certificate: The credential contains the user’s digital certificate.
� SAML: The credential contains an encoded SAML assertion.

13

6.1.4 Return

Upon successful authentication, the service provider returns a SOAP message with a
securityToken that is placed in ‘return’. The securityToken becomes a security ticket for all
subsequent service requests.

The service provider returns a SOAP fault message under the following conditions:

� The user record is unknown.
� The supplied credential is incorrect.
� A server side fault/exception.

The SOAP fault message must contain a detail element with E_UnknownUser as the error code
when authentication fails.

6.1.5 Example

A typical request message is:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:Authenticate

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

<userId xsi:type="xsd:string">JohnDoe</userId>

<credential xsi:type="xsd:string">T34ngPRN2345INt</credential>

<authenticationMethod xsi:type="xsd:string">password</authenticationMethod>

</mns:Authenticate>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

and a positive response would be:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:AuthResponse

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

<return xsi:type="xsd:string">34BjT34ngPRN2345INt</return>

</mns:AuthResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

where 34BjT34ngPRN2345INt is the securityToken. The securityToken, in its encrypted form, is
meaningless to the holder, but contains crucial information to the issuer.

14

6.2 Submi t

6.2.1 Description

The Submit method provides a generic way of sending one or more payloads to a service
provider. Payloads other than the message body are encapsulated in an array of
nodeDocuments. A payload can be embedded into a nodeDocument structure as a base64
encoded value, or as a separate attachment referenced by the nodeDocument.

A dataflow is a logical collection of certain kinds of documents, understandable to the sender
and the ultimate receiver. Therefore, a dataflow can also be understood as a tag of the ultimate
receiver of the payload. A dataflow can carry other information as well, such as Network
events or asynchronous database requests. Such dataflows will be identified by special URLs. A
Submit message can only target to one (1) dataflow at a time.

Network Nodes are required to process the SOAP main body of request messages, but are not
required to understand the contents of attachments unless the Node is the target Node (ultimate
receiver). For instance, a missing telephone number in a submitted document is not a SOAP
error, but rather a process related error that should be dealt with differently.

6.2.2 Definition

 <message name='Submit'>

 <part name='securityToken' type='xsd:string'/>

 <part name='transactionId' type='xsd:string'/>

 <part name='dataflow' type='xsd:string'/>

 <part name='documents' type='typens:ArrayofDoc'/>

 </message>

 <message name='SubmitResponse'>

 <part name='return' type='xsd:string'/>

 </message>

6.2.3 Arguments

The Submit method accepts four (4) top-level arguments:

� securityToken: A security ticket issued by the service provider or a trusted service provider.
� transactionId: A transaction ID for the submission if the operation is a result of an

asynchronous operation. It should be the transactionId associated with a previous solicited
operation (See the Solicit method) if any. It should be empty if the Submit operation is
independent.

� dataflow: The name of target dataflow.
� documents: An array of documents of type nodeDocument. Each nodeDocument structure

describes a single attachment or payload.

6.2.4 Return

The Submit method returns, when successful, a transaction ID, which can be used to query
status of the submission (see GetStatus method).

15

It returns a SOAP fault message with E_InvalidToken, E_AccessDenied or E_TokenExpired as
the error code inside the fault detail element if the securityToken is invalid, insufficient or
expired.

It returns a SOAP fault message (Client Fault) if one of the payloads in the message could not
be processed.

6.2.5 Example

The following example shows a request message with two (2) referenced attachments. The
payloads are targeted to a dataflow called TRI_ME.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" …>

<SOAP-ENV:Body>

<mns:Submit xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <securityToken type='xsd:string'>234tFaU1</securityToken>

 <transactionId type=’xsd:string’/>

 <dataflow type='xsd:string'>TRI_ME</dataflow>

 <documents soap-enc:arrayType="mns:nodeDocument[2]">

<item>

<name type='xsd:string'>My First Attachment.xml</name>

<type type='xsd:string'>xml</type>

<content href=" f9647203-a4b9-4b1b-bd3c-8186f75698bc" type='xsd:base64Binary'/>

</item>

<item>

<name type='xsd:string'>My Second Attachment.txt</name>

<type type='xsd:string'>text</type>

<content href=" fa0b4b41-15af-4bb5-8420-1353e3e66554" type='xsd:base64Binary'/>

</item>
</documents>

</mns:Submit>
</s:Body>

</s:Envelope>

Note that f9647203-a4b9-4b1b-bd3c-8186f75698bc and fa0b4b41-15af-4bb5-8420-

1353e3e66554 are CIDs of the attachments. It is easy to retrieve an attached document
using its CID. A document is an attachment if the content element has an href attribute,
of either CID or universal unique identifier (UUID).

6.3 Query

6.3.1 Description

The Query method is a function in the Database interface. The method is intended to run a
series of predefined information requests that return data in an XML instance document that

16

conforms to a predefined standard schema. Many predefined information requests will be
standard across the Network and some maybe unique to a particular Node.

How the information requests are implemented is Node specific. Node implementers may
choose different ways to implement the standard requests as long as the returned results
conform to the XML schema.

For Network efficiency, the service provider is highly recommended, but not required, to support
positioned-fetches where the requester can ask for a subset of the records within the overall
result set. This feature is especially useful for interactive applications with graphical user
interfaces where only a limited number of records can be displayed at a time.

Another case where positioned-fetch may be important is when the result set is so large that the
Network connection between the requester and the provider will likely timeout. Positioned-fetch
allows requesters to partition the whole result set into smaller chunks and thus avoid possible
Network problems.

Unlike other methods, the response message of this method uses document / RPC encoding
style because the format of result sets varies widely from query to query.

6.3.2 Definition

The Query messages are defined by the following WSDL segments:

 <message name='Query'>

 <part name='securityToken' type='xsd:string'/>

 <part name='request' type='xsd:string'/>

 <part name='rowId' type='xsd:integer/>

 <part name='maxRows' type='xsd:integer/>

 <part name='parameters' type='typens:ArrayOfstring'/>

 </message>

 <message name='QueryResponse'>

 <part name='return' type=’xsd:string'/>

 </message>

6.3.3 Arguments

The Query method requires the following arguments:

� securityToken: A security ticket issued by the service provider or a trusted security provider.
� request: The database query to be processed. It should be the name of a predefined

information request.
� rowId: The starting row for the result set, it is a zero based index to the current result set.

The value of rowId must be 0 if positioned-fetch is not requested.
� maxRow: The maximum num ber of rows to be returned. The service provider uses a default

value if maxRow is 0 or negative. The value of maxRow must be -1 if positioned-fetch is not
requested. A special value, -1, means all records from the current row (specified by rowId) to
the end of the result set.

� parameters: An array of parameter values for the information request.

17

6.3.4 Return

The Query method returns a result set as string if successful. It must return a SOAP fault
message when it fails. The fault detail element may contain an SQL error code and/or an error
description from the native database system.

If the number of records returned is less than the value of maxRow, it means the end of the
result set. The requester should stop subsequent-fetches.

The service provider must return a SOAP fault message (E_RowIdOutofRange) if the rowId is
out of range of the whole result set. It must also return a SOAP fault (E FeatureUnsupported) if
positioned-fetch is unsupported and rowId is greater than 0.

Note that an empty result set is not an error. The service provider must return a positive
response with 0 records.

6.3.5 Example

Suppose exchange partners agree to honor a query request named GetFacByZipcode, which
might correspond to the SQL statement in a stored procedure:

select * from FACILITY where zipcode = _zipcode

In which _zipcode is a parameter, the request message would be:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:Query xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <securityToken type='xsd:string'>32yFw3</securityToken>

 <request type='xsd:string'>GetFacByZipcode</request>

 <rowId type='xsd:integer'>0</rowId>

 <maxRows type='xsd:integer'>200</maxRows>

 <parameters soap-enc:arrayType="mns:ArrayOfstring[1]">

<item type='xsd:string'>20001</item>

 </parameters>

</mns:Query>

</s:Body>

</s:Envelope>

As can be seen, the parameters array now has one item in it, (i.e., the value of _zipcode).

When there are multiple parameters, the position of a parameter in the parameters array is
significant; it must match to that in the database query request.

6.4 GetStatus

6.4.1 Description

GetStatus is a method for transaction tracking. Once submitted, a transaction enters into
different processing stages. The GetStatus method offers the client a way of querying the
current state of the transaction.

18

For Nodes that do not support staged transactions, the status of a submission degrades to a
Boolean value: Failed or Completed.

6.4.2 Definition

The GetStatus method has simple request and response messages defined below:

 <message name='GetStatus'>

 <part name='securityToken' type='xsd:string'/>

 <part name='transactionId' type='xsd:string'/>

 </message>

 <message name='GetStatusResponse'>

 <part name='return' type='xsd:string'/>

 </message>

6.4.3 Arguments

The GetStatus method requires two (2) mandatory parameters: securityToken and
transactionId. transactionId is a transaction identification returned by the Submit, Solicit or
Notify method.

6.4.4 Return

The GetStatus method returns a string description of the current status if the operation is
successful. A list of common status strings is defined below:

� Received: A submission was received by the service but has not been processed.
� Pending: One or more documents are to be downloaded and processed by the service.
� Processed: The submission has been processed by the Node, but is waiting to be delivered

to the target Node (the ultimate destination).
� Completed: The submission is complete and accepted by the target Node.
� Failed: The submission has failed. The requester should resubmit.

The method returns a SOAP Fault with an error code of E_TransactId if the transaction ID is
invalid; it returns a SOAP Fault with an error code of E_InvalidToken or E_TokenExpired if the
securityToken is invalid or has expired.

6.4.5 Example

A requester may send the following message:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:GetStatus

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <securityToken type='xsd:string'>32yFw3</securityToken>

 <transactionId type='xsd:string'> 8aa828c3-53a0-41ae-9760-

7d9f54158090</transactionId>

19

</mns:GetStatus>

</s:Body>

</s:Envelope>

A positive response could be:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

… >

<SOAP-ENV:Body>

<tns:GetStatusResponse

xmlns:tns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

<return xsi:type="xsd:string">received</return>

</tns:GetStatusResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

6.5 Notify

6.5.1 Description

The Notify method has three (3) intended uses: document notification, event notification, and
status notification described as follows:

� Document notification: A Node or client notifies a service provider about availability of some
documents (soliciting). The service provider can retrieve the documents anytime.

� Event notification: A Node sends, or possibly broadcasts, an event that is of interest to other
parties. Event messages can be security alerts, shutdown notices, and other Network
management notes.

� Status notification: A service provider sends a message to a requester to provide the current
status of a submission or service request.

In document notification, locations of the documents are provided in the nodeDocument
structure. The service provider will use the same structure to download the available
documents, so it is very important for requesters to include sufficient information so that the
documents can be easily located.

This specification does not define the semantics of events, as they are operation specific.
Service providers are free to state the specific meaning of Network events. The event URI,
however, must be unique and have a prefix of:

http://www.exchangenetwork.net/node/event

6.5.2 Definition

The request and response are defined by the following WSDL messages:
<message name='Notify'>

 <part name='securityToken' type='xsd:string'/>

 <part name='nodeAddress' type='xsd:string'/>

 <part name='dataflow' type='xsd:string'/>

 <part name='documents' type='typens:ArrayofDoc'/>

20

 </message>
<message name='NotifyResponse'>

 <part name='return' type='xsd:string'/>

 </message>

6.5.3 Arguments

The request message has the following arguments:

� securityToken: A security ticket issued by the service provider or a trusted security provider.
� nodeAddress: For document notification, the parameter contains a Network Node address

where the document can be downloaded. It should contain the initiator's Node address, or
be empty if not applicable, for event and status notifications.

� dataflow: The target dataflow that identifies an event or status if the value is
http://www.exchangenetwork.net/node/event or
http://www.exchangenetwork.net/node/status documents: An array of related documents.

Documents have different meanings depending on the value of the dataflow. Table 4 shows the
relationships given different streams:

nodeDocument

Dataflow Name Type Content

http://www.exchangenetwork.net/node/
event

Name of the
event Type of the event Description

the event
of

http://www.exchangenetwork.net/node/ A description of
status Transaction

ID Status String
the status, or
error message if
the transaction
failed.

Other Name of the Type of the
document document

Table 4: Dataflow and Document Relationship

6.5.4 Return

The returned value, if processed successfully, is a transaction ID for document notification. The
ID can be used to query status of the submission (see GetStatus method). The returned value
can be any other string signaling acceptance of the event or status in other cases.

6.5.5 Examples

The example below shows a document notification. The client, in this case, made available two
(2) files: http://example.com/myFile.xml and http://example.com/MyText.txt for the
service provider to retrieve later.
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

21

<mns:Notify xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <securityToken type='xsd:string'>3F4T322V</securityToken>

 <dataflow type='xsd:string'>TRI_ME</dataflow>

 <documents soap-enc:arrayType="mns:nodeDocument[2]">

<item>

<name type='xsd:string'>http://example.com/myFile.xml</name>

<type type='xsd:string'>XML</type>

<content href="fa0b4b41-15af-4bb5-8420-1353e3e66554" type='xsd:base64Binary'/>

</item>

<item>

<name type='xsd:string'>http://example.com/MyText.txt</name>

<type type='xsd:string'>Flat</type>

<content href=" fa0b4b41-15af-4bb5-8420-1353e3e66555"

type='xsd:base64Binary'/>

</item>

</documents>

</mns:Notify>

</s:Body>

</s:Envelope>

The following example shows an event message, perhaps to announce the unavailability of a
Network Node:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:Notify xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <securityToken type='xsd:string'>3F4T322V</securityToken>

 <dataflow

type='xsd:string'>http://www.exchangenetwork.net/node/event</dataflow>

 <documents soap-enc:arrayType="mns:nodeDocument[1]">

<item>

<name type='xsd:string'>State Node 5</name>

<type type='xsd:string'>Down</type>

<content type='xsd:base64Binary'>The node will be down at 12:32:00 07/12/2002

and will not be available until 13:30:00 07/12/2002.</content>

 </item>

</documents>

</mns:Notify>

</s:Body>

</s:Envelope>

Note that message in the content element is not base64 encoded for clarity. A status notification
message is similar to:

22

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:Notify xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <securityToken type='xsd:string'>3F4T322V</securityToken>

 <dataflow

type='xsd:string'>http://www.exchangenetwork.net/node/status</dataflow>

 <documents soap-enc:arrayType="mns:nodeDocument[1]">

<item>

<name type='xsd:string'> 8aa828c3-53a0-41ae-9760-7d9f54158090</name>

<type type='xsd:string'></type>

<content type='xsd:base64Binary'>Accepted</content>

</item>

</documents>

</mns:Notify>

</s:Body>

</s:Envelope>

It indicates that a transaction with ID 8aa828c3-53a0-41ae-9760-7d9f54158090 has been
accepted.

6.6 Solicit

6.6.1 Description

The Solicit method performs the requested operation in the background or sometimes offline. It
is designed especially for queries that may take a long time.

In most situations, the Solicit method is used to ask for a Query operation. The service provider
may kick off the Query operation immediately when the request is received, thus avoiding
management of a transaction queue.

The service provider decides whether to process the transaction immediately or later. It may
spawn a separate thread to process the request in a relatively low priority mode, or save the
request in a transaction queue, that will be processed sequentially sometime later. However, it
must return a transaction ID immediately to the requester, thereby acknowledging the
acceptance of the transaction.

The service provider must return a SOAP fault message if the requested operation could not be
honored.

Once the requested operation is processed successfully, the service provider should update the
status of the transaction toComplete. If the operation failed for some reasons, the status of the
transaction should be set to Failed.

The requester may optionally ask the service provider to submit the result to a Network Node
location by specifying a returnURL. The location must contain a Network Node address that
has an implementation of the Submit method. It is the requester’s responsibility to download the
result if the returnURL is empty.

23

6.6.2 Definition

The Solicit messages are defined by the following WSDL segments:

 <message name='Solicit'>

 <part name='securityToken' type='xsd:string'/>

 <part name=’returnURL’ type=’xsd:string’/>

 <part name='request' type='xsd:string'/>

 <part name='parameters' type='typens:ArrayOfstring'/>

 </message>

 <message name='SolicitResponse'>

 <part name='return' type=’xsd:string’/>

 </message>

6.6.3 Arguments

The Solicit method requires the following arguments:

� securityToken: A security ticket issued by the service provider or a trusted security provider.
� returnURL: A Node address where results can be submitted. The service provider must call

the Submit method at the specified address if it is not empty. If returnURL is empty, then it is
the requester’s responsibility to download the result.

� request: The operation to be performed. It is usually the name of a predefined information
request.

� parameters: An array of parameter values for the information request.

6.6.4 Return

The method returns a transaction ID that can be used to check the status of the transaction.

6.6.5 Example

The following is a Solicit request for facility list within zip code 20001:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:Solicit xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <securityToken type='xsd:string'>32yFw3</securityToken>

 <returnURL type='xsd:string'></returnURL>

 <request type='xsd:string'>GetFacByZipcode</request>

 <parameters soap-enc:arrayType="mns:ArrayOfstring[1]">

<item type='xsd:string'>20001</item>

 </parameters>

</mns:Solicit>

</s:Body>

</s:Envelope>

24

The requester will download the document when available.

6.7 Download

6.7.1 Description

The Download method is a function in the Retrieve Interface. It is different from the Submit
method in two (2) ways:

1. Document flows from callee to caller (document retrieval).
2. The Download operation is usually initiated by a service provider.

The Download method is often used to fulfill a requested operation. For instance, after being
notified by a submitter, a Node invokes the Download method to retrieve available documents.

If there is a pre-established contract between the two parties, e.g., names of the documents and
their availability are predetermined, then a Node can actively retrieve the documents at fixed
time periods without prior notification. The transactionId parameter may be empty in such cases.

The ability to download documents makes mutual data exchange possible. Any Node in the
Exchange Network can be a service provider and, at the same time, a service consumer. From
the caller’s point of view, submitting is an operation of sending documents to a remote Node,
while downloading is an operation of receiving documents from a remote Node.

Unlike the Submit method, however, the Download method gives access to some documents to
the requester. The directory where the document resides should be limited to only those who
have access rights. It is recommended that each user have a separate folder so that a
document for one user cannot be accessed by another user.

6.7.2 Definition

The request message:
<message name='Download'>

 <part name='securityToken' type='xsd:string'/>

 <part name='transactionId' type='xsd:string'/>

 <part name='dataflow' type='xsd:string'/>

 <part name='documents' type='typens:ArrayofDoc'/>

 </message>

The response message:

 <message name='DownloadResponse'>

 <part name='documents' type='typens:ArrayofDoc'/>

 </message>

6.7.3 Arguments

The Download method takes the following parameters:

� securityToken: A security ticket issued by the service provider or a trusted security provider.
� transactionId: A transaction ID for the submission. It should be the same transaction ID

issued by the Node (See the Notify method.) The parameter may be empty for a pre­
established or ad hoc download.

25

� Documents: An array of nodeDocument structures. It should contain the same set of
documents given by the Notify method.

When a Node is actively retrieving documents without prior notification, transactionId may
contain a unique ID for the document to be retrieved. The documents parameter, in such a
scenario, can be empty as long as the two parties know what documents are to be exchanged.

6.7.4 Return

The response message contains a dataflow identifier and a set of documents. Documents
transmitted can be either embedded payloads or separate attachments.

6.7.5 Examples

The sample message below shows a Download request with two (2) documents:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:Download

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <securityToken type='xsd:string'>3F4T322V</securityToken>

 <transactionId type='xsd:string'>2345-345</transactionId>

 <documents soap-enc:arrayType="mns:nodeDocument[2]">

<item>

<name type='xsd:string'>http://example.com/myFile.xml</name>

<type type='xsd:string'>XML</type>

<content type='xsd:base64Binary'/>

</item>

<item>

<name type='xsd:string'>http://example.com/MyText.txt</name>

<type type='xsd:string'>Flat</type>

<content type='xsd:base64Binary'/>

 </item>

</documents>

</mns:Download>

</s:Body>

</s:Envelope>

6.8 NodePing

6.8.1 Description

The NodePing method is a function in the Admin interface. It is a utility method for determining
whether a Node is accessible. A positive response from the Node indicates that it is live and
well. A Network error (no response) or SOAP Fault (not ready) means that the service is not
available at this time.

NodePing is the only operation that does not require authentication.

26

6.8.2 Definition

<message name='NodePing'>

 <part name='Hello' type='xsd:string'/>

 </message>

 <message name='PingResponse'>

 <part name='return' type='xsd:string'/>

 </message>

6.8.3 Arguments

The NodePing method has one argument that may contain arbitrary text, preferably short or
even null.

6.8.4 Return

The NodePing method returns a positive response in normal operational mode. It may return a
SOAP fault if the service is not ready. The service provider should return the Table 5 service
status codes in the positive response message.

Status Meaning

Ready The service is up and ready.

Busy The service is heavily loaded, please call back later.

Unavailable The service is currently unavailable.

Table 5: Service Status Codes

A Node can return other status codes in human readable form when needed. A response
message without a status code is understood as Ready.

6.8.5 Examples

A NodePing example:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:NodePing

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <Hello />

</mns:NodePing>

</s:Body>

</s:Envelope>

A positive response from the Node may be:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

27

<mns:NodePingResponse

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <return type='xsd:string' >Ready</return>

</mns:NodePingResponse>

</s:Body>

</s:Envelope>

6.9 GetServices

6.9.1 Description

The GetServices method is a function in the Admin interface. It allows requesters to query
services provided by a Network Node. The type of services that can be queried includes, but is
not limited to:

� Interfaces: The Web service interfaces supported by the Node.
� Query: Predefined information requests that can be used in the Query method.
� Solicit: Predefined information requests that can be used in the Solicit method.
� Execute: Predefined procedures that can be used in the Execute method.

A Node may choose to support additional types (meta-data) when needed. To get a complete
list of all service types, a requester can pass ServiceType as the value of the ServiceType
element.

Using GetServices, a requester can determine the capability of a Node at runtime and proceed
accordingly. On the other hand, it allows the service provider to extend the services provided,
(e.g., add a new database report), without changing the infrastructure. The smart invocation
and easy extensibility can greatly enhance the overall usability, stability and capability of the
Exchange Network. See the Network Exchange Protocol V1.0 document for further discussion.

6.9.2 Definition

<message name='GetServices'>

 <part name='securityToken' type='xsd:string'/>

 <part name='ServiceType' type='xsd:string'/>

 </message>

 <message name='GetServicesResponse'>

 <part name='return' type='typens:Arrayofstrings'/>

 </message>

6.9.3 Arguments

The method requires a ServiceType string, which is defined as follows:

� ServiceType: A complete list of all service types that can be used as the value of the
element.

� Interfaces: The Web service interfaces supported by the Node.
� Query: Predefined information requests supported by the Node.
� Execute: A list of predefined information requests provided by the Node.

28

Since service providers may elect to provide additional services, the method provides a
capability of querying all ServiceTypes. A list of returned service types can then be used to get
a list of services under a given service type.

6.9.4 Return

The returned message contains an array of all services of specified service type. An empty
array should be returned if the service type is unknown or not supported.

If the ServiceType is Query or Execute, the Node must return a list of all predefined information
requests suitable for being used as the argument for the Query and Execute methods. It must
return an empty array with 0 items, not fault, if no query or procedure is provided.

6.9.5 Examples

The request message below gets a list of all service types from a service provider:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:GetServices

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

<securityToken type='xsd:string'>3F4T322V</securityToken>

 <ServiceType type='xsd:string'>ServiceType</ServiceType>

</mns:GetServices>

</s:Body>

</s:Envelope>

The response message could be:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<mns:GetServicesResponse

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

<return xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[3]">

<Item xsi:type="xsd:string">Interfaces</Item>

<Item xsi:type="xsd:string">Query</Item>

<Item xsi:type="xsd:string">Execute</Item>

</return>

</mns:GetServicesResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

This response message indicates that the service provider supports Query, among other things.
The requester can call the method again, using Query as the value of ServiceType this time, to
obtain a list of available information requests to be used as the parameter to the Query method.
The following example demonstrates this:

The requester sends,

29

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:GetServices

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

<securityToken type='xsd:string'>3F4T322V</securityToken>

 <ServiceType type='xsd:string'>Query</ServiceType>

</mns:GetServices>

</s:Body>

</s:Envelope>

The provider may send a response message:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<mns:GetServicesResponse

xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

<return xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[4]">

<Item xsi:type="xsd:string">GetMyTransaction</Item>

<Item xsi:type="xsd:string">GetFacilityByName</Item>

<Item xsi:type="xsd:string">GetFacilityById</Item>

<Item xsi:type="xsd:string">GetFacilityByChangeDate</Item>

</return>

</mns:GetServicesResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

which indicates that the Node support four (4) predefined information requests. XML schema
definitions of the information requests may be provided in a separated XML document.

30

7 . 0 Node Va l ida t ion

Node validation is a process to assure full compliance with this specification. It is conducted
using a series of test messages. Test messages are request messages for verifying Node
operations and validating responses.

Data exchanged through test messages can be discarded following validation. The service
provider, however, must perform operations as requested.

Tests are conducted using the same set of methods defined in this specification, with special
identifiers indicating that the messages are only tests. Table 6 shows the specification 1.0 test
identifiers for all Web methods.

Web Method Test Identifier Comment

Authenticate None Authentication is required for all tests.

Submit dataflow = test

GetStatus None

Notify dataflow = test

Download dataflow = test A Node can choose a fixed number of fixes to return
regardless of the file names in the message.

NodePing None

GetServices None

Table 6: Test Message Definitions

For example, if a dataflow name is “test” in a Submit message, then it is a validation message.
The message may contain random, generated data, which can be discarded immediately.
However, the service provider must return a valid transaction ID for status tracking.

For those methods that do not have any side effects, (e.g., read-only methods such as
NodePing and GetServices), no test identifier is defined.

All Nodes participating in the Exchange Network can perform tests against other Nodes, and
publish test results. Tests can be either positive (e.g., submitting correct documents) or
negative (e.g., login with an incorrect ID). The overall test score of a Node is calculated as the
total number of successful tests minus the number of self-tests divided by the number of testers.
Unimplemented methods are counted as failures.

Online tools will be provided to automate testing of Network Nodes in accordance with the
Network Node 1.0 WSDL.

31

8 . 0 A p p e n d i x

8.1 Execute

Due to complexity and extra security requirements, Execute is defined as an optional method.

8.1.1 Description

The Execute method is a function in the Database interface. It is used to run stored procedures
or other predefined operations. There are two basic usage scenarios:

1.	 The requested operation is a predefined name of service requests, as natural extensions to
interfaces defined in the document.

2.	 The requested operation is a stored procedure defined by the service provider; the
requester references it and supplies necessary parameters.

The first case allows the service provider to extend the functionality defined in the specification
and to offer “value added” services without changing the programming interface.

Different from Query, where database records are read-only, the Execute method may allow
requesters to modify database contents. A higher privilege should be required for such
operations to mitigate the risk of data corruption.

8.1.2 Definition

The Execute message is defined by the following WSDL segments.
 <message name='Execute'>

 <part name='securityToken' type='xsd:string'/>

 <part name='request' type='xsd:string'/>

 <part name='parameters' type='typens:ArrayOfstring'/>

 </message>

 <message name='ExecuteResponse'>

 <part name='return' type=’xsd:string’/>

 </message>

8.1.3 Arguments

The Execute method accepts three (3) arguments:

� securityToken: An authentication ticket issued by the service provider or a trusted security
provider.

� request: The database logic to be processed. It can be either the name of an operation or
the name of a procedure.

�	 parameters: An array of parameter values for SQL statements or stored procedures.

8.1.4 Return

The Execute method returns the number of rows affected by the request or procedure if
successful. It returns a fault message in all other cases. The fault detail element must contain
native error information if the database operation fails, (i.e., syntax error or constraint violation).

32

8.1.5 Example

In the following example, the requester asks the service provider to execute a stored procedure
named PROC5:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

…>

<SOAP-ENV:Body>

<mns:Execute xmlns:mns="http://www.exchangenetwork.net/schema/v1.0/node.xsd">

 <securityToken type='xsd:string'>32yFw3</securityToken>

 <request type='xsd:string'>PROC5</request>

 <parameters soap-enc:arrayType="mns:ArrayOfstring[0]"/>

</mns:Execute>

</s:Body>

</s:Envelope>

33

9 . 0 Re fe rences

1.	 Network Exchange Protocol V1.0, a deliverable to the EPA by CSC, March 14, 2003.

2.	 Advanced SOAP for Web Development, Dan Livingston, Copyright 2002, Prentice Hall
PTR, Upper Saddle River, NJ, 07458.

3.	 Web Services Essentials , Ethan Cerami, Copyright 2002, O’Reilly & Associates,
Sebastopol, CA, 95472.

4.	 Programming Web Services with SOAP, James Snell, Doug Tidwell, Paul Kulchenko,
Copyright 2002, O’Reilly & Associates, Sebastopol, CA, 95472.

5.	 WS-Security, version 1.0. April 5, 2002.

6.	 W3C Node "Simple Object Access Protocol (SOAP) 1.1", May 22, 2000. (See
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/).

7.	 W3C Working Draft "SOAP Version 1.2 Part 1: Messaging Framework", Martin Gudgin,
Marc Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen, 26 June 2002 (See
http://www.w3.org/TR/2002/WD -soap12-part1-20020626.)

8.	 W3C Working Draft "SOAP Version 1.2 Part 2: Adjuncts", Martin Gudgin, Marc Hadley,
Jean-Jacques Moreau, Henrik Frystyk Nielsen, 26 June 2002 (See
http://www.w3.org/TR/2002/WD -soap12-part2-20020626.)

9.	 W3C Recommendation "Namespaces in XML", Tim Bray, Dave Hollander, Andrew
Layman, 14 January 1999. (See http://www.w3.org/TR/1999/REC-xml-names-
19990114/.)

10.	 W3C Node "SOAP Messages with Attachments", John J. Barton, Satish Thatte, Henrik
Frystyk Nielsen, December 11, 2000.

11.	 Internet Draft " Direct Internet Message Encapsulation (DIME)”, Henrik Frystyk
Nielsen, Henry Sanders, Russell Butek, Simon Nash, June 17, 2002.

12.	 W3C Node “Web Services Description Language (WSDL) 1.1”, Erik Christensen,
Francisco Curbera,Greg Meredith, Sanjiva Weerawarana, March 15, 2001 (See
http://www.w3.org/TR/wsdl).

13.	 UDDI Version 3 Specification - http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm, July 19, 2002.

34

