

Establishing the Utah EPHT
Node

 To date Utah EPHT has moved both
air monitoring and drinking water data
in large quantities from Utah
Department of Environmental Quality
(DEQ) to EPHT using proprietary
software.

 Utah EPHT has also moved example
data and JPG images from DEQ using
a client version of their NEIEN node
resident at EPHT.

Questions To Be Resolved During
State FY 2007
 Will the client node version of the DEQ NEIEN

node continue to be developed and supported?
As the Utah EPHT node is developed out of code
which implements the DEQ server node, will there
by two nodes, one copy at DEQ and one at
EPHT?

 Or will there just be one node (at DEQ), with
proprietary exchange of data between EPHT and
DEQ?

Considerations 1

 Data movement between EPHT and DEQ
has been one way to date (DEQ to EPHT)
using mostly proprietary
Powerbuilder/Infomaker data pipeline
objects.

 Such movement is highly efficient but is
not considered optimally secure by DEQ,
primarily because it may occur without
DEQ’s knowledge.

Considerations 2
 EPHT and DEQ have a well established trading

partner agreement to exchange data – both
ways.

 DEQ understands that good public health
outcomes are central to DEQ’s mission.

 Concerns remain at DEQ regarding when their
data is quality assured (QA) enough to release to
EPHT

 For example Air Quality data, before submission
to EPA is not regarded as QA’ed.

Considerations 3
 Most likely as the DEQ node is rebuilt to add

EPHT functionality, client functions will be
included within it.

 With the final node built there will be one copy (at
DEQ only) with Powerbuilder pipeline links to
EPHT or two copies, with one each at DEQ and
EPHT?

 Means must be established to have the resultant
node serve EPHT’s local health department
clients.

Current Status of DEQ NEIEN Node
 Part 1
 The Utah NEIEN node is part of an XML

web services network.
 Such networks are expected to become

the preferred method for routine inter-
governmental transfers of data.

 The DEQ node up to this time has been
largely developed by a private contractor
– Comsys of Salt Lake City.

Current Status of DEQ NEIEN Node
 Part 2
 The development language chosen was

Powerbuilder.
 The database engine is Oracle.
 The web service application server is

Powerbuilder’s EAServer (Enterprise
Application Server).

 Utah’s EAServer realease is Windows
based with a Linux front end to protect it.

Current Status of DEQ NEIEN Node
 Part 3
 The DEQ NEIEN node was initially

certified with the EPA central data
exchange (CDX) in December 2004.

 In February 2005 DEQ hired a full time
node programmer/project manager.

 The node was recertified in December
2005, though not yet fully operational.

Data Flows Requested By EPA
 Air Quality
 Drinking Water
 Ambient Water Quality
 Environmental Response and Remediation (Toxic

Release Inventory Exchange)
 Solid and Hazardous Waste (Resource Conservation and

Recovery Act Information Exchange – RCRA)
 Facility Registry
 Homeland Security System Exchange
 Substance Registry System Exchange
 Biodiversity Data Exchange

Current NEIEN Node Architectural
Overview
 In the NEIEN network nodes are intended

to be “full” nodes, i.e. they are to be both
clients and servers depending on the
intent of the moment.

 The Utah DEQ node is in a “dynamic”
state of completion.

 NEIEN network message exchanges are
always XML encoded.

Current NEIEN Node Architectural
Overview Continued
 Network messages must always conform to

network defined XML schema.
 Errors generated are always SOAP errors.
 Lengthy attachments are always DIME

encapsulated.
 The NEIEN network requires Secure Socket

Level connections.
 Accordingly, a certificate has been secured and

installed.

Current NEIEN Node Architectural
Overview Continued
 As a measure of protection, the Utah

DEQ node is front-ended with an Apache
Web Server associated with a redirector
which redirects received XML messages
to the EAServer.

 This provides an extra layer of security as
to internet visibility.

 The redirector is part of the EAServer
distribution package.

Current NEIEN Node Architectural
Overview Continued
 When a web service request from the

world wide web is received by the Apache
Web Server, the request is passed to the
EAServer behind the utah.gov firewall.

 The EAServer looks up the service in the
deploy.wsdd file.

 If the request is supported, the EAServer
passes it to the UTDEQNEIEN Java
wrapper class.

Current NEIEN Node Architectural
Overview Continued
 The java wrapper recognizes the request as one

of the Powerbuilder based web service
components pushed on the EAServer using the
Powerbuilder Eclipse tool.

 When the components are pushed, EAServer
creates the web service and the
“webserviceoperations” Java classes which are
CORBA IDL links to the web service target in the
Powerbuilder code.

 This web service Powerbuilder target includes a
method for each primitive web service supported.

Primitive Web Services Supported
By The Utah DEQ NEIEN Node
 The primary primitive web services

supported are AUTHENTICATE,
SOLICIT, and SUBMIT.

 Primitive Web Services:
AUTHENTICATE, SOLICIT, SUBMIT,
DOWNLOAD, GETSERVICES,
GETSTATUS, NODEPING, NOTIFY, and
QUERY.

Purposes of Primitive Web Services

 AUTHENTICATE – Authentication is part
of the NEIEN security protocol.

 SOLICIT – The SOLICIT request calls for
a named SQL statement or stored
procedure to be executed on the server
side, that is, the procedure resides on the
server. It is intended for queries that may
take a long time.

Purposes of Primitive Web Services
Continued
 SUBMIT – The SUBMIT service provides for the

transfer of a result set across the network, usually
in response to a SOLICIT but it could also be an
unSOLICITed SUBMIT.

 DOWNLOAD – The DOWNLOAD service
requests transmission of a result set that is ready
for exchange. The transaction “ready” status may
have been passed by a GETSTATUS or a
NOTIFY.

 GETSERVICES – The GETSERVICES request
provides a node running as a client with a method
of obtaining information about the services a
server provides

Purposes of Primitive Web Services
Continued
 QUERY – The QUERY request calls for a

named SQL statement or stored
procedure to be executed. The statement
or procedure resides on the server. It is
typically used for smaller information
requests.

 NOTIFY – The NOTIFY service provides
a method by which a node can broadcast
a network message announcing result set
availability.

Purposes of Primitive Web Services
Continued
 GETSTATUS – The GETSTATUS service

provides a node running as client with a
method of determining the current status
of a previous SOLICIT, SUBMIT, or
NOTIFY.

 NODEPING – The NODEPING service is
the network method of determining if a
node is responsive.

Utah State FY 2007
Considerations
 Current Utah DEQ NEIEN node Powerbuilder

code will provide the core of the Utah EPHT
node.

 If there is only one combined DEQ/EPHT node,
data will be moved to and from that node using
Powerbuilder pipeline objects.

 If Utah EPHT has its own node it will likely use
unused capacity on the EAServer.

 EPHT metadata storage, handling, and
processing must be added.

 Means of supporting Utah EPHT’s health
department clients must be developed.

Simulation of National EPHT
Network
 In developing Utah EPHT node

functionality it would be useful to develop
a prototype node to serve as a stand in
for the national central EPHT node, for
test purposes.

Creating a Web Interface For Local
Health Department Clients
 The EAServer application server includes

an Apache web server.
 Java Server Pages (JSP’s) can be readily

created from within enterprise
Powerbuilder, as an implementation of the
J2EE application model.

 JSP web page creation proceeds in a
manner similar to Dreamweaver.

Advantages For Utah EPHT In Using The Utah
DEQ Node As A Base For Its Own Node – A
Consideration For Others
 The Utah DEQ node includes a large mass of

reusable code, which Utah EPHT doesn’t have to
write.

 Utah DEQ has programming expertise useful to
EPHT

 The Powerbuilder environment supports ready
access to a wide range of proprietary databases.

 Powerbuilder code is Basic based.
 CDC and DEQ-partner EPA are already

collaborating.

Utah DEQ Deployment View

There are only 9 messages that NEIEN nodes respond to. They
are

Authenticate
Submit
Query
Get Status
Notify
Solicit
Download
Node Ping
Get Services

AUTHENTICATE Web Service
Before a client can do anything else it must AUTHENTICATE to receive
permission to use the network by passing credentials and asking the Network
Authentication and Authorizing Service (NAAS) node for a security token.

Authenticate
Submit
Query
Get Status
Notify
Solicit
Download
Node Ping
Get Services

SUBMIT Web Service

In the Toxic Release Inventory (TRI) exchange, a business uses a specialized
client to SUBMIT a report to the EPA. As soon as the Central Data
Exchange (CDX) node receives such a report it immediately reflects it to the
state node using the SUBMIT web service. This saves the business double
reporting and saves the state reconciliation with the EPA.

Business
Specialized

Client

CDX
Node

State
Node

EPA
TRI

Database

State
 TRI

Database

SUBMIT

SUBMIT
Authenticate
Submit
Query
Get Status
Notify
Solicit
Download
Node Ping
Get Services

State
TRI Coordinator

Notification

Authenticate
Submit
Query
Get Status
Notify
Solicit
Download
Node Ping
Get Services

QUERY Web Service

The DOH Environmental Public Health Tracking project (EPHT)
would like to obtain air data reports from DAQ using the node. One
approach would be for EPHT to email their QUERY request to the
node. The node would then perform the query and return the results
as an Excel spreadsheet attachment in a response email.

EPHT

EPHT

Node
DAQ

Database
QUERY

RESPONSE

SOLICIT/GETSTATUS Web Services

It may become desirable to obtain the entire EPA FRS facility
database to compare with our own . The SOLICIT web service
was created to handle large data sets that may involve multiple
packet responses. If a great deal of time is consumed and the client
user wants a progress report, they may use GETSTATUS to
determine the progress of the SOLICIT response.
Authenticate
Submit
Query
Get Status
Notify
Solicit
Download
Node Ping
Get Services

Client

Node

SOLICIT

GETSTATUS

GETSTATUS
RESPONSE

SUBMIT (SOLICIT RESPONSES)

DOWNLOAD Web Service

When the CDX reflects a TRI report to the state, the node
automates the loading of that report into the state TRI database.
However, someone from DERR may wish to view that report as the
node received it in standard report form. They might use their email
to issue a DOWNLOAD request to the node and receive the TRI
report as a response email attachment.
Authenticate
Submit
Query
Get Status
Notify
Solicit
Download
Node Ping
Get Services

EPHT

EPHT

Node
DOWNLOAD

RESPONSE

NOTIFY Web Service

The EPA node may have an automated SOLICIT for the AIRS
report from DAQ before it is ready. The Utah node would respond
with a NOTIFY that the report was not ready. Then, at some later
time, the Utah node would NOTIFY the EPA node that the report
was ready and the EPA node would DOWNLOAD the report.

Authenticate
Submit
Query
Get Status
Notify
Solicit
Download
Node Ping
Get Services

EPA
Node

Utah
Node

SOLICIT AIRS Report

NOTIFY – Report not ready

NOTIFY – Report now ready

DOWNLOAD request

DOWNLOAD response – AIRS Report

DAQ
Database

Email that EPA has
SOLICITED AIRS
report

DAQ AIRS Coordinator
Email that EPA has
DOWNLOADED AIRS
report

The NEIEN nodes also use XML “schemas” to validate exchanged
data. If the XML data does not match the XML schema then the data
is rejected. The XML schema is a QA/QC tool. This is a portion of
the NEIEN CDX XML schema.

<message name="Authenticate">
<part name="userId" type="xsd:string"/>
<part name="credential" type="xsd:string"/>
<part name="authenticationMethod" type="xsd:string"/>

</message>
<message name="AuthenticateResponse">

<part name="return" type="xsd:string"/>
</message>
<message name="Query">

<part name="securityToken" type="xsd:string"/>
<part name="request" type="xsd:string"/>
<part name="rowId" type="xsd:integer"/>
<part name="maxRows" type="xsd:integer"/>
<part name="parameters" type="typens:ArrayOfstring"/>

</message>
<message name="QueryResponse">

XML

NODE DESIGN

Foreign
Node

Apache
Web-Server

Java-Wrapper

Sybase EAServer
Application

Server

9 Services
 Authenticate

Submit
Query

Get Status
Notify
Solicit

Download
Node Ping

Get Services
Internet

The several states have used a variety of tools to
build their nodes depending on their shop
standards. The Microsoft “.NET” package is very
popular. The Utah node web services are written
in Sybase Powerbuilder, a rapid application
development (RAD) language. These web service
components are deployed to a Sybase EAServer
Application Server. Utah built a thin Java wrapper
to translate network protocol terms that are
protected keywords in Powerbuilder.

