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Abstract—This paper primarily addresses the usefulness
of phase-modulation (PM) noise measurements versus noise
figure (NF) measurements in characterizing the merit of an
amplifier. The residual broadband (white PM) noise is used
as the basis for estimating the NF of an amplifier. We have
observed experimentally that many amplifiers show an in-
crease in the broadband noise of 1 to 5 dB as the signal
level through the amplifier increases. This effect is linked
to input power through the amplifier’s nonlinear intermod-
ulation distortion. Consequently, this effect is reduced as
linearity is increased. We further conclude that, although
NF is sometimes used as a selection criteria for an amplifier
for low-level signal, NF yields no information about poten-
tially important close-to-carrier 1�f noise of an amplifier
nor broadband noise in the presence of a high-level signal,
but a PM noise measurements does. We also have verified
experimentally that the single-sideband PM noise floor of
an amplifier due to thermal noise is �177 dBc/Hz, relative
to a carrier input power of 0 dBm.

I. Introduction

This paper addresses the appropriateness of noise figure
(NF) measurements in amplifiers in the presence of a

carrier signal. NF is a common amplifier specification that
is used to calculate the noise at Fourier frequencies f that
represent the offset from a carrier frequency v0. In the
presence of a carrier signal, the noise level near the carrier
is no longer constant but often increases as f decreases.
This increase usually changes at a rate of at least 1/f ,
flicker behavior, which often significantly dominates over
the white-noise level given by the NF, which in practice is
measured in the absence of an actual signal through the
amplifier. Furthermore, the flicker-noise level depends on
the amplifier’s linearity and input power. Because of this
signal-induced rise in amplifier noise, many systems do not
achieve the performance predicted by using the no-signal
NF characterization.

The inherent near-direct current (DC) noise of an am-
plifier, which is usually flicker noise, is nonlinearly multi-
plied, hence up-converted as alias noise onto the signal be-
ing amplified and projected partially as phase-modulation
(PM) noise and partially as amplitude-modulation (AM)
noise [1], [2]. This behavior significantly limits the perfor-
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mance of an amplifier used to amplify and/or distribute
low-noise, spectrally pure oscillating signals designed as
reference clocks for RF and digital systems. Most notably,
timing jitter often is used to assess the limit of system
performance, and an amplifier’s merit under these circum-
stances is always better characterized by a PM noise mea-
surements than by a NF measurement.

In this paper, we have used a well-established expression
[1]–[3] to calculate the NF of an amplifier in terms of single-
sideband PM noise, which is given by:

L(f) ≡ 1
2
Sφ(f) =

kT0NF
2Pin

, (1)

where k is the Boltzmann’s constant, T0 is the temperature
in kelvins, NF is the noise figure, and Pin is the input power
to the amplifier. Though L(f) is represented as a function
of f , it has no frequency dependence because the function
is due to thermal noise.

We have extensively and carefully measured the phase-
noise L(f) of different low-noise GaAs amplifiers at 10 GHz
and of a SiGe amplifier at 2.5 GHz under different condi-
tions of input signal. We have observed that the NF de-
rived from a measurement of PM noise is often higher by
1 to 5 dB than that obtained with zero input signal. We
also have observed that some amplifiers with low NF do
not have lower 1/f noise than those having a higher NF.
We conclude that PM noise measurements are substan-
tially more useful in characterizing an amplifier’s noise
than measurements of no-signal NF.

II. Measurement System

To ensure that the noise contribution of the measure-
ment system is much lower than the PM noise of an am-
plifier under test, a two-channel, cross-correlation system
for PM noise measurement is used [4]–[7]. A block dia-
gram is shown in Fig. 1. The two-channel system com-
prises two separate phase-noise measurements that op-
erate simultaneously. Each comprises a power splitter, a
phase shifter, and a mixer. The phase shifters establish
true phase quadrature between two signals at the mixer
inputs. A variable attenuator is used after the device un-
der test (DUT) to maintain a constant power level at port
B for different input power to the DUT. For PM noise mea-
surements, the mixer should be in saturation to reduce AM
to PM conversion [8]. Therefore, while measuring the PM
noise of an amplifier with high gain and low output power,
an additional amplifier (shown by dotted lines in Fig. 1) is
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Fig. 1. Block diagram of PM noise-measurement system for ampli-
fiers. LNA is low noise amplifier and DUT is device under test.

introduced in each channel of the measurement system to
keep the mixer in saturation. The output of each mixer af-
ter amplification is fed to a two-channel, cross-correlation
fast Fourier transform (FFT) spectrum analyzer. The ad-
vantage of two-channel, cross-correlation method is that
only the coherent noise present in both channels averages
to a finite value. The time average of the incoherent noise
[6], [7] approaches zero as N−1/2, where N is the num-
ber of averages. The measurement system has a PM noise
floor of approximately L(10 Hz) = −140 dBc/Hz at a car-
rier frequency of 10 GHz. This noise level is much lower
than the PM noise of the amplifiers under test that are the
subject of this paper.

III. Experimental Results

We measured the PM noise of different amplifiers under
different input conditions. Fig. 2(a) shows the PM noise of
a GaAs high electron mobility field effect transistor (HEM-
FET) amplifier as a function of Fourier frequency for dif-
ferent input power levels at 10 GHz. For this particular am-
plifier, the broadband noise is higher for low input power,
and 1/f noise is lower for low input power. It is apparent
from Fig. 2(a) that white PM noise is not flat; there is a rise
in the noise level close to f = 10 MHz. This is due to noise
contribution of the FFT analyzer as well as mismatch of
delay between two signals at the mixer inputs. In order to
estimate NF from the experimental graph, a horizontal line
has been drawn [shown in Fig. 2(a)] for each input power
level and is considered as the thermal noise level, L(f). The
NF of the amplifier is calculated from 177 + Pin + L(f),
which is obtained from (1) by computing 10∗log L(f). The
dependence of NF on Pin is shown in Fig. 2(b). When the
carrier power is low, there is good agreement between NF
measured with no carrier and NF measured with a carrier.
But, as the carrier power is increased, there are discrepan-
cies between two results. The calculated NF is higher by
2 dB when the amplifier is under 1 dB compression. This
effect is due to nonlinear intermodulation processes inside
the amplifier [1], [2]. Furthermore, Fig. 2(b) also shows the
NF obtained using 174+Pin+L(f), yielding a negative NF,
which is physically impossible. These observations confirm

(a)

(b)

Fig. 2. (a) PM noise of GaAs HEMFET amplifier at different input
power levels. Gain = 32.5 dB, NF = 1 dB, frequency = 10 GHz. The
noise floor of the measurement system is 30 dB lower than plot 5
(see Fig. 7) (b). Variation of NF of GaAs HEMFET amplifier with
input power. It also shows the uncertainty in NF that is calculated
from (2) for k = 1.9 and number of averages, N = 10, 000.

that a PM noise floor of an amplifier due to thermal noise
is −177 dBc/Hz, rather than −174 dBc/Hz (referenced to
0 dBm) as reported in previous literature [9], [10].

Fig. 2(b) also indicates the statistical uncertainty in NF
calculated from PM noise measurement. The uncertainty
is estimated from a formula [7], [11] given by:

La(f) = L(f)
[
1 ±

(
2kLs(f)
L(f)

√
N

)]
, (2)

where, k is the confidence interval index, N is the number
of averages, Ls(f) is the single channel PM noise, L(f) is
the measured cross-correlated PM noise, and La(f) is the
actual PM noise.

Similar results are shown in Figs. 3(a) and (b) for a
different GaAs FET amplifier having a NF of 1.5 dB. The
results indicate that this amplifier shows an increase of the
broadband PM noise of 1 to 3 dB as the signal level in-
creases. In other words, the equivalent NF computed from
L(f) is a function of input carrier power.
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(a)

(b)

Fig. 3. (a) PM noise of GaAs FET amplifier at different input power
levels. Gain = 35 dB, NF = 1.5 dB, frequency = 10 GHz. The noise
floor of measurement system is 30 dB lower than the values shown in
plot 5 (see Fig. 7). (b) Variation of NF of GaAs FET amplifier with
input power. It also shows the uncertainty in NF that is calculated
from (2) for k = 1.9 and number of averages, N = 10, 000.

A wideband amplifier with feedback that is fabricated
in IBM’s (Burlington, VT) 5 AM SiGe process has been
used1. At this writing, PM noise is most conveniently mea-
sured with a SiGe amplifier at 2.5 GHz, having a noise
figure of 3 dB and a gain of about 16 dB due to the as yet
unavailability of a SiGe amplifier at 10 GHz for testing [12].
Fig. 4(a) shows the PM noise of the amplifier at different
input power levels and Fig. 4(b) shows the dependence of
NF on input power. Because the gain of this amplifier is
low compared to the amplifiers discussed before, the PM
noise and NF were measured for input powers higher than
−6 dBm. Due to the requirement of a minimum power for
a valid PM noise the measurement, we could not establish
the fact that, when the carrier power is very low, there
is good agreement between NF measured with no carrier

1Commercial products are identified for information only and do
not constitute endorsement. Other products may have equal or better
performance.

(a)

(b)

Fig. 4. (a) PM noise of SiGe FET amplifier at different input power
levels. Gain = 16 dB, NF = 3 dB, frequency = 2.5 GHz. (b) Variation
of NF of SiGe FET amplifier with input power. It also shows the
uncertainty in NF that is calculated from (2) for k = 1.9 and number
of averages, N = 10, 000.

and NF measured with a carrier. However, when the am-
plifier is under 5 dB compression (for an input power of
7.4 dBm), NF is about 7 dB higher than NF measured with
no carrier. This seems to emphasize the fact that amplifier
NF increases as it is pushed into compression, as we have
already seen for GaAs amplifiers.

If this effect is due to nonlinear intermodulation pro-
cesses, it should be reduced in the case of a highly lin-
ear, low-distortion amplifier. We test this hypothesis by
measuring a feed-forward-type linear amplifier, the block
diagram of which is shown in Fig. 5. The feed-forward con-
figuration implements the technique of carrier suppression,
which to a large extent reduces the effect of third order in-
termodulation [13]. We have measured the PM noise of a
commercially available feed-forward amplifier at 10 MHz.
The results are shown in Figs. 6(a) and (b). Note that the
1/f noise of this amplifier is very low, due to the high lin-
earity of the amplifier. Previous work [1], [2] showed that
the nonlinear up-conversion of the baseband noise is absent
in a perfect linear amplifier. The broadband noise of this
feed-forward-type linear amplifier is also relatively low in
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Fig. 5. Block diagram of a feed-forward linear amplifier. Two-tone in-
termodulation byproducts are shown in the power spectra at various
points in the diagram.

(a)

(b)

Fig. 6. (a) PM noise of a high-linearity, feed-forward amplifier at dif-
ferent input power levels at 10 MHz. Gain = 12.5 dB, NF = 4 dB.
(b) Variation of NF of high-linearity, feed-forward amplifier with in-
put power. It also shows the uncertainty in NF that is calculated
from (2) for k = 1.9 and number of averages, N = 10, 000.

Fig. 7. Variation of flicker noise of different amplifiers with Fourier
frequency at 10 GHz. Amp1, Amp2, and Amp3 are all GaAs PHEMT
amplifiers.

comparison to other commercially available amplifiers [14].
Fig. 6(b) shows that there is very good agreement between
NF with no carrier and NF with a carrier, as long as carrier
suppression is in effect in the amplifier. Furthermore, the
observations with this linear amplifier once again confirm
that PM noise floor of an amplifier due to thermal noise is
−177 dBc/Hz.

The results above show that a PM noise measurement
is more useful than a NF measurement in estimating the
operating NF of an amplifier. Another advantage of a PM
noise measurement is that it yields information about the
flicker, 1/f noise of an amplifier, but a NF measurement
does not because NF is only meaningful at Fourier fre-
quencies f where phase noise is white. In order to support
this fact, we measured the PM noise of different amplifiers.
Fig. 7 shows the flicker noise of three different amplifiers
under the same input conditions but with different NF’s.
All three are GaAs pseudomorphic high electron mobility
transistor (PHEMT) amplifiers. In these examples, note
that the amplifier with the highest NF of 6.5 dB has the
lowest 1/f noise, almost 7 to 10 dB lower than the others.
Contrary to popular belief, it is impossible to predict the
1/f PM noise level of an amplifier based on its NF.

IV. Conclusions

We have extensively and carefully measured the phase
noise L(f) of different low-noise amplifiers under differ-
ent input signal conditions. It has been observed that the
NF of an amplifier is a function of both carrier power and
nonlinear intermodulation distortion. As the linearity of an
amplifier increases, NF is less dependent on carrier power.
We find that the NF obtained from a PM noise measure-
ment is often higher by 1 to 5 dB than the NF obtained in
a conventional manner. Another advantage of a PM noise
measurement is that it yields information about the flicker,
1/f noise of an amplifier, but a NF measurement does not
because NF is only meaningful at Fourier frequencies f
where phase noise is white. We conclude that PM noise
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measurements are substantially more useful in character-
izing an amplifier rather than attempting to guess PM
noise from NF measurements. It also has been verified ex-
perimentally that, in the presence of a carrier, PM noise
floor of an amplifier due to thermal noise is −177 dBc/Hz
(referenced to 0 dBm) not −174 dBc/Hz as in some liter-
ature.
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