STORAGE RING / BOOSTER RF COUPLER INSTALLATION APPROVAL SHEET

Serial No	
*Fabricated and inspected per Coupler Production Travele	er. YesNo
Comments	
Responsible Mechanical Engineer	Date
*Cleaned and baked for ultra high vacuum environment.	YesNo
Comments	
Responsible Vacuum Engineer	Date
*RF Conditioned YesNo	
Comments	
Responsible RF Engineer	Date
Group Leader (ASD/ME)	Date
Comments	
Group Leader(ASD/RF)	Date
Comments	

STORAGE RING / BOOSTER RF COUPLER PRODUCTION TRAVELER

Serial No	
Responsible Engineer	
Parts Machined by	
*Visual Inspection	
Inspect component parts for nicks, de	ents and scratches to electropolished surfaces and
knile-edges on vacuum hanges.	
Comments	
*Send parts to ANL Inspection Depart	ment for inspection of critical dimensions.
Inspected by	Date
Inspection Results	

PRE-ASSEMBLY CLEANING PROCEDURE

Clean all component parts, except for the ceramic window assembly, in 2% citronox solution, using ultrasonics for 20 minutes. Rinse in de-ionized water, and then dry with hot nitrogen. Wrap parts in aluminum foil.

*Note: Care should be taken to minimize nicks and scratches to electropolished surfaces of components and to knife-edges on vacuum flanges.

Cleaned by_____

Date_____

to

CERAMIC WINDOW ASSEMBLY (Drawing #31040101-230200)

Assembly Serial No	
--------------------	--

Manufactured by_____

CLEANING PROCEDURE

Clean ceramic window in 2% citronox solution using flow process only. Rinse in deionized water, then dry with hot nitrogen. Bake at 150 °C for 8 hours. Wrap in aluminum foil. ***NOTE: Do not use ultrasonics during cleaning. This process can cause pitting in the surfaces of the ceramic.**

Cleaned and Baked by	Date	
Bake Temperature VACUUM LEAK TESTING	Time Held	
Leak test done by	_ Date	
Sensitivity		
Test Results		
CERAMIC COATING		

Coat the inside surfaces only, of ceramic window with titanium to a thickness of 30-50 Angstroms.

Coated by	Date
Samples for measurement:	YES NO
Thickness measured on sample	8
Comments	

CENTER-CONDUCTOR ASSEMBLY (31040101-230300)

* Note: The center-conductor is made of copper with electropolished-finished surfaces. Care must be taken during the brazing, welding and hydrostatic pressure testing processes to prevent nicks, dents and scratches to these surfaces. Wear gloves at all times. Assemble and test in environments free from oils, grease and other contaminants incompatible with ultra high vacuum conditions.

Braze component parts per drawing #31040101-230310		
Brazed by	Date	
*Visually inspect brazed jo	pints.	
Comments		
WELD PROCESS Weld component parts per d	rawing #31040101-230300	
Welding done by	Date	
HYDROSTATIC PRESSU Hydrostatically test water jo	J RE TEST PROCEDURE ints at 250 psi for 30 minutes.	
Tested by	Date	
Test Pressure		
Test Results		
Visually inspect assembly b	for nicks, dents and scratches.	

Comments_____

COUPLER BODY ASSEMBLY

Component parts are cleaned for an ultra high vacuum environment. Wear gloves at all times. Assemble and test in environments free from oil, grease and other contaminants incompatible with ultra high vacuum conditions.

FIRST BRAZING PROCEDURE

Braze component parts per drawing #31040101-230120

Brazed by	Date	
COUPLER BODY WELDI	NG	
Weld component parts per dra	awing #31040101-230110	
Weld by	Date	
HYDROSTATIC PRESSU	RE TEST PROCEDURE	
Hydrostatically test all brazed	l and welds joints at 250 psi for 30 minutes.	
Tested by	Date	
Test Pressure		
Test Results		
SECOND BRAZING PROC Braze component parts per dr	<u>CEDURE</u> rawing #31040101-230100	
Brazed by	Date	
Visually inspect condition o	f brazed joints	
Comments		
VACUUM LEAK TESTIN	<u>G</u> to per drawing #21040101 220100	
vacuum teak test orazed john	is per drawing #31040101-250100	
Leak test done by	Date	
Sensitivity		
Test Results		

CERAMIC WINDOW, BODY AND CENTER CONDUCTOR ASSEMBLY

Assemble component parts per drawing #31040101- 230500.

*Note: Component parts are cleaned for ultra high vacuum environment. Wear gloves at all times. Assemble and test in environments free form oil, grease and other contaminants incompatible with ultra high vacuum conditions.

Assembly preparation for electron beam welding

(Preferably performed by M/E RF support Technician or Engineer)

- Install threaded insert (31040101-230302) into center conductor.
- Secure the coupler body assembly to a storage vessel using a copper gasket and ~4 bolts.
- Insert the ceramic window into the coupler body assembly. If necessary, **<u>gently</u>** tap the ceramic into the body ring with a small soft mallet and vacuum wipe, to ensure proper seating.
- Align the mini-conflat on the center conductor with the loop on the body assembly before pressing the center conductor all of the way into the ceramic window. Use the fixturing devices attached to the center conductor head and the body assembly waveguide flange for proper alignment. The waveguide flange- screws of the fixtures may need to be used to pull the three sections together. Turn the screws one at a time, no more than ¹/₄ turn until the center conductor is seated.
- Inspect the unit for proper seating. Use a depth gauge to measure from the top of the center conductor to the waveguide flange, in several places. ~5.695±.005
- Remove the unit from the storage vessel with the fixturing still in place, and install the Glidcop screw and washer.
- Inspect the unit for center conductor concentricity. Measure from the center conductor O.D. to the copper cylinder I.D. in several places. ~1.136±.005
- Send the assembled coupler with fixturing for welding. Remove the fixturing once transport is complete.

Assembled by	Date
Comments	
WELD PROCESS Electron-beam weld per drawing #31040101-	230500
*Note: Shield ceramic window from damag	ge during electron beam welding process.
Welding done by	Date
*Visually inspect ceramic window for dam	ages.
Comments	

VACUUM LEAK TESTING Vacuum leak test weld joints per drawing #31040101-230500

Leak test done by	Date
Sensitivity	-
Test Results	
RF ENGINEER INSPECTION	
Inspected by	Date
Comments	

*Send assembly to Vacuum Group for cleaning and final assembly.

GENERAL ASSEMBLY

Assemble component parts per drawing #31040101- 230000.

*Note: Component parts are cleaned for ultra high vacuum environment. Wear gloves at all times. Assemble and test in environments free form oil, grease and other contaminants incompatible with ultra high vacuum conditions.

*Disassemble glidcop screw and washer from loop and center conductor and clean separately for re-assembly after cleaning and baking.

Screw and washer removed prior to cleaning: YES_____ NO_____ Initials______

*Visual Inspection

Inspect final assembly for nicks, dents and scratches to surfaces surrounding the loop and to knife-edges on vacuum flanges.

Comments_____

POST-ASSEMBLY CLEANING PROCEDURE AND STORAGE

Clean assembled couplers in 2% citronox solution, using the flow process only. Rinse in deionized water, then dry with hot nitrogen. Bake in oven at 200 °C for 16.0 hours.

Cleaned and baked by_____ Date_____

ASSEMBLE THE FOLLOWING:

*(These steps to be performed by Mechanical RF support personnel)

1. Center-conductor and loop using glidcop screw (31040101-230003) with curved spring washer:

YES____NO____INITIAL____

2. Tighten screw (Snug only – Do not over-tighten)

YES_____NO____INITIAL_____

3. Assemble electron probe detector (31040101-230320). Serial No_____

YES_____NO____INITIAL_____

4. Place coupler in storage canister and leak check.

VACUUM LEAK TESTING

Leak test done by	Date
Sensitivity	_

Test Results_____

ELECTRON PROBE DETECTOR (31040101-230320)

Assembly Serial No	
--------------------	--

FIRST ASSEMBLY PROCEDURE:

Assemble and machine component parts per drawing (31040101-230360).

VACUUM LEAK TESTING

Vacuum leak test weld joints per drawing #31040101-230360

 Leak test done by
 Date

Sensitivity_____

Test Results_____

FINAL ASSEMBLY PROCEDURE:

Assemble component parts per drawing (31040101-230320).

CLEANING PROCEDURE

Clean assembly in 2% citronox solution using ultrasonics, for 20 minutes. Rinse in deionized water, then dry with hot nitrogen. Bake in oven at 150 °C for 8.0 hours. Leak check and wrap in aluminum foil.

VACUUM LEAK TESTING

Vacuum leak test weld joints per drawing #31040101-230320

Leak test done by	Date	
Sensitivity		
Test Results		