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Introduction to the Special Issue on
the Dick Effect

During the course of development of frequency stan-
dards based on confined ions, a new question con-

cerning their stability was uncovered: does the noise of the
local oscillator influence the long-term performance of the
atomic standard. This question came about since trapped
ions provided the first opportunity to extend the interac-
tion time of the atoms with the local oscillator derived
microwave field to several seconds, or longer. Because the
local oscillator in these instruments is tied to the transi-
tion in the atom via a frequency locked loop, the influence
of noise in the local oscillator on the long-term stability of
the atomic standard, during the few seconds that it free
runs, remained a question. This concern was prompted by
the well-known ideas in the sampling theory which predict
aliasing of the noise at high frequencies to frequencies close
to the signal, based on the sampling rate.

In 1989, John Dick at JPL investigated the influence of
the noise of the local oscillator on the frequency of the mer-
cury ion standard and developed a heuristic picture that
was shown to faithfully reproduce the experimental obser-
vation. Shortly after this, the advent of laser cooled atomic
clocks as realized in the Paris Observatory in France pre-
sented the investigators with the reality that the noise of
the local oscillator is a concern for all high performance
atomic standards. These standards have intrinsically lower
noise at short averaging intervals than the available local
oscillators they control. Because of this, several investiga-
tions were aimed at the further understanding of this phe-
nomenon, which by now had become known as the Dick
effect.

In the following four papers the Dick effect is studied
from different, and complimentary, perspectives. In the pa-
per by Santarelli et al., the influence of the oscillator noise
on the stability of the atomic oscillator is studied by an-
alyzing the quantum mechanical response of a two level
atom undergoing a single (Rabi scheme) or multiple (Ram-
sey scheme) interaction with the applied electromagnetic
fields. Audoin et al. analyze the frequency control loop of
the atomic standard and study various issues, including
the influence of the Dick effect on the stability of the stan-
dard. Presti et al. approach the problem by developing a

model of the phase sampling process with the local oscil-
lator noise as its input, and the response of the standard
as its output. Finally, Greenhall’s paper presents a careful
mathematical derivation of the original formula obtained
by Dick, based on the time domain analysis of a local os-
cillator control loop.

These four papers in essence validate each other’s find-
ings, but more importantly, complement each other’s ap-
proach. They represent a comprehensive and satisfying pic-
ture of a problem of major importance to high stability
atomic standards currently under development. Their re-
sults will be invaluable to the practitioners of the field.
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Properties of an Oscillator Slaved to a
Periodically Interrogated

Atomic Resonator
Claude Audoin, Giorgio Santarelli, Ala’a Makdissi, and André Clairon

Abstract—In advanced atomic resonators, such as those
using a fountain of cold cesium atoms or an ensemble of
stored ions, the atomic medium is interrogated periodically,
and the control signal of the slaved oscillator is updated at
equally spaced time intervals. We analyze the properties
of the output frequency of these frequency standards. We
establish the equations that describe the time behavior of
this frequency. We give the stability condition and the tran-
sient response of the frequency feedback loop, the response
to systematic frequency changes of the free running oscilla-
tor, the frequency stability for given free-running oscillator
noise and given optical detection noise, and the limitation of
the frequency stability by down-conversion of the intrinsic
oscillator frequency noise (Dick effect). We point out that
a second integration in the feedback loop may not improve
significantly the rejection of slow perturbations, unless a
condition relative to the timing of the atom-field interac-
tion is verified.

I. Introduction

Advanced atomic resonators have been developed
recently. They are based on microwave transitions ob-

served in mercury or ytterbium ions stored in a radiofre-
quency trap [1], [2] or in cold cesium atoms launched either
in an Earth-bound atomic fountain or in a configuration
designed for space operation [3], [4]. They have shown a
fractional frequency stability of the order of 1 ·10−13τ−1/2,
or better, and an accuracy of 2 · 10−15 in the case of the
cesium fountain.

These devices operate sequentially. This is mandatory
to observe the atomic transition in the dark, after the
atoms or ions have been prepared by optical pumping.
Furthermore, the cooling process, when applied, requires
a time of atom accumulation before they are launched.
Thus, the atoms are not interrogated continuously, as in
more traditional atomic resonators, but periodically with
dead-time between each atom-field interaction. Further-
more, because the atomic response is available at the end
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of each interrogation process only, the control voltage of
the oscillator slaved to the atomic resonance cannot be
refreshed otherwise than periodically, at discrete times.

The purpose of this paper is to present a simple but effi-
cient analysis of the salient properties of the frequency con-
trol loop of the oscillator that is slaved to such an atomic
resonator. This analysis will be applied to the servo-loop
associated with the LPTF cesium fountain. We will give
briefly indications on the properties of other possible de-
signs. Starting from a time domain description of the dy-
namical behavior of the feedback loop, we will give the
stability condition of the loop and describe the transient
response to a step-like perturbation of the oscillator fre-
quency. We will point out possible drawbacks of the consid-
ered frequency loop with respect to slow frequency changes
of the free running oscillator. We will relate the frequency
stability of the slaved oscillator: to the frequency noise
that it would display if it were free-running and to the op-
tical detection noise. Finally, we will show how the model
accounts for the limitation of the frequency stability of
the slaved oscillator by down-conversion of the oscillator
intrinsic frequency noise [5], [6].

II. Time Domain Description of the Frequency

Variation of the Slaved Oscillator

A. Sampling of the Microwave Field by the Atoms

For our purpose, we will assume that a cycle of oper-
ation, of duration Tc, begins at time tk and ends at time
tk+1, when a correction is applied to the slaved oscillator.
Thanks to the periodicity, the index k can be varied by
integer values. As shown in Fig. 1, the interrogation of the
atoms starts at t′k, such that t′k−tk = Tp and lasts the time
interval Ti. We define ∆ω the difference between the an-
gular frequency, ω, of the microwave field and that, ωo, of
the atomic transition. Here, ω is the frequency irrespective
of the modulation that is necessary to probe the atomic
resonance.

At the discrete times tk and tk+1, when the control volt-
age of the slaved oscillator is updated, the relative fre-
quency offset is denoted ∆ωs(tk) and ∆ωs(tk+1), respec-
tively. Although the voltage is held constant between these
two instants, the frequency of the oscillator can vary under
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Fig. 1. Frequency change of the microwave field and mean value,
∆ωi(tk) of this frequency during the interrogation.

the effect of its intrinsic noise or of environmental pertur-
bations. Therefore, for tk ≤ t < tk+1, the frequency offset
∆ωs(t) of the microwave field is given by:

∆ωs(t) = ∆ωs(tk) + ∆ωf (t)−∆ωf (tk), (1)

where ∆ωf (t) represents the time variation of ∆ω when
the oscillator is free-running.

The response of the atomic resonator depends on the
instantaneous values of ∆ω(t) during the atom-microwave
interaction. However, we can define an effective frequency
offset of the microwave interrogation field during the in-
teraction, ∆ωi(tk), which is constant and provides the
same atomic resonator response as ∆ω(t). The definition
of ∆ωi(tk) involves the frequency sensitivity function g(t),
first introduced by Dick [5] and Dick et al. [6] and consid-
ered in more detail in a companion paper [7]. Here, it is
sufficient to know that g(t) is a periodic function of time,
with period 2Tc. This function is equal to zero during the
dead times when the atom-field interaction does not occur.
We have:

∆ωi(tk) = ∆ωs(tk) + δωf (tk), (2)

with:

δωf (tk) =
1

g0Tc

tk+1∫
tk

g(t− tk)[∆ωf (t)−∆ωf (tk)] dt.
(3)

In this equation, go is the mean value of g(t) during the
cycle considered. The quantity δωf (tk) thus represents the
average value of the increment of ∆ωf (t) during a cycle,
but weighted by g(t).

B. Error Signal

Actually, the microwave field is square-wave frequency
modulated, with period 2Tc. The modulation depth is ωm.
During a period of modulation, we denote:

ω0 + ∆ωs(tk−2) + δωf (tk−2)− (−1)kωm

and

ω0 + ∆ωs(tk−1) + δωf (tk−1) + (−1)kωm

the effective frequency of the microwave field from tk−2 to
tk−1 and tk−1 to tk, respectively.

At time tk, the difference DN(tk) between the detection
signals available at times tk and tk−1 is given by:

DN(tk) = (−1)k
∂h

∂ω
No[∆ωs(tk−2) + δωf (tk−2)

+ ∆ωs(tk−1) + δωf (tk−1)]− δN(tk−1) + δN(tk). (4)

In this equation, No and h(ω − ωo)—an even function of
(ω − ωo)—represent the peak to valley height of the reso-
nance pattern and its shape, respectively. The derivative is
taken at the frequency which was actually applied between
tk−1 and tk. It has been assumed that the frequency off-
sets ∆ωs and δωf are very small compared to the atomic
line-width. The quantities δN(tk−1) and δN(tk) are the
independent fluctuations of the atomic response, i.e., the
detection noise, at the discrete times tk−1 and tk, respec-
tively. The series of values of δN(tk), {δN(tk)}, is a se-
quence of independent random variables. We assume that
it has the properties of a white noise process, having mean
zero and variance σ2

δN .
In the LPTF cesium fountain, the oscillator frequency is

corrected at each tk. To suppress the change of sign occur-
ring between two successive values of DN(tk), this quan-
tity is multiplied by (−1)k and the error signal ∆E(tk) is
obtained. We have:

∆E(tk) =
∂h

∂ω
No[∆ωs(tk−2) + δωf (tk−2)

+ ∆ωs(tk−1) + δωf (tk−1)] + δÑ(tk−1) + δÑ(tk), (5)

where we have set:

δÑ(tk) = (−1)kδN(tk). (6)

Because {δN(tk)} has been assumed a white noise pro-
cess, the δÑ(tk) have the same autocovariance coefficients
as the δN(tk). Thus, {δÑ(tk)} is also a white noise pro-
cess with the same variance and power spectral density as
{δN(tk)}.

C. Equation of the Frequency Control Loop

We will consider two different processings of the error
signal (others may be contemplated). They mimic the pro-
cessings accomplished in analog first and second order fre-
quency control loops, respectively.

1. Case A: The error signal is added at time tk to its
previously accumulated value ∆E′(tk−1). We thus have:

∆E′(tk) = ∆E′(tk−1) + ∆E(tk). (7)

This equation is that of a numerical integrator. The signal
obtained is applied at time tk to the varactor of the oscil-
lator. The frequency offset of the slaved oscillator is thus
given by:

∆ωs(tk) = ∆ωf (tk) +K∆E′(tk), (8)

where K is a constant.



audoin et al.: oscillator slaved to an atomic resonator 879

The equation that describes the dynamical behavior of
the frequency control loop is easily obtained from (5), (7),
(8). We have:

∆ωs(tk)− (1− β)∆ωs(tk−1) + β∆ωs(tk−2)
= ∆ωf (tk)−∆ωf(tk−1)− β[δωf (tk−1) + δωf (tk−2)]

+K[δÑ(tk) + δÑ(tk−1)], (9)

with:

β = −KNo∂h/∂ω. (10)

The latter quantity characterizes the open loop gain.
2. Case B: One may wish to improve the filtering of

the error signal before it is applied to the control input of
the oscillator. The expectation is to improve the long-term
behavior of the oscillator when it is perturbed by slow sys-
tematic frequency changes. For that purpose, let us con-
sider the additional recursive filter whose input is ∆E′(tk)
considered previously and whose output is defined by:

∆E′′(tk) = ∆E′′(tk−1) +
Tc
τ2

∆E′(tk)

+
τ1
τ2

[∆E′(tk)−∆E′(tk−1)]. (11)

The parameters τ1 and τ2 are time constants. For a low
enough Fourier frequency, f , its frequency response is (1+
2πjfτ1)/2πjfτ2.

Inserting ∆E′′ instead of ∆E′ in (8), the equation for
the frequency loop becomes:

∆ωs(tk)− (2− β1 − β2)∆ωs(tk−1)
+ (1 + β2)∆ωs(tk−2)− β1∆ωs(tk−3)

= ∆ωf (tk)− 2∆ωf (tk−1) + ∆ωf (tk−2)
− (β1 + β2)δωf (tk−1)− β2δωf (tk−2) + β1δωf (tk−3)

+ (K1 +K2)δÑ(tk) +K2δÑ(tk−1)−K1δÑ(tk−2), (12)

with:

β1 = βτ1/τ2, β2 = βTc/τ2 (13)
K1 = Kτ1/τ2, K2 = KTc/τ2. (14)

For a given frequency sensitivity function g(t), (9) or
(12) contain all that is known about the properties of the
frequency of the slaved oscillator—which is proportional
to that of the microwave field—when sampled at times tk.
They are the equations of numerical linear recursive filters
of order 2 and 3, respectively. Some of their coefficients are
not constants because the quantities δωf (tk) depend on
the spectral content of the free-running oscillator, through
the filtering process described by (3). It should be noted
that the complete description of the behavior of the output
frequency of the standard requires (1) in addition to (9) or
(12). The first equation gives the instantaneous frequency
change between the sampling times tk and tk+1.

Fig. 2. Stability domain in Case B. It is limited by the curve and the
horizontal axis.

Fig. 3. Response of the frequency feedback loop to a step-function,
in Cases A and B.

III. Stability Condition

Standard techniques of digital filter analysis make it
possible to determine the stability condition of the servo-
loop (see Appendix A). In Case A, it is given by: 0 ≤
β < 1. The transient behavior is of the damped type for
0 < β ≤ 0.172 and of the oscillatory damped type for
0.172 < β < 1. In Case B, the stability condition is the
following:

0 < β2 < 2β1(1− β1)/(1 + β1). (15)

Fig. 2 shows the shape of the stability domain in Case B.
The transient response is oscillatory damped for most of
the allowed values of β1 and β2.

Fig. 3 shows examples of the transient response to a
step function applied to the oscillator frequency at the
time origin for Cases A and B.



880 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 4, july 1998

Fig. 4. Time constant (solid line) and pseudo-angular frequency
(dashed line) of the transient behavior of the feedback loop in Case A.

Fig. 5. Time constant and pseudo-angular frequency of the transient
behavior of the feedback loop in Case B.

The time constant and the oscillatory pseudo-frequency
of the transient response can be defined as shown in Ap-
pendix A. Figs. 4 and 5 depict the variation of these pa-
rameters versus several values of the loop gains for Cases A
and B, respectively.

IV. Response to Slow Systematic Perturbations

A. Response to a Frequency Ramp

The oscillator may show a frequency ramp due to ag-
ing of the quartz resonator, for instance. It can be repre-
sented by:

∆ωf (t) = ωort, (16)

where r is the slope of the ramp. Then, δωf (tk) is a con-
stant that does not depend on tk and we set:

δωf (tk) = ωorT1. (17)

The time interval T1 has a specific meaning as we will
show immediately. The quantity g(t)/go being periodic,
with period Tc, we have from (3), (16), and (17):

T1 =
1

goTc

Tc∫
0

θg(θ) dθ, (18)

with θ = t − tk. Assuming that the frequency sensitivity
function would be represented by an even function if the
time origin would be set at the middle point between the
beginning and the finishing of an atom interrogation pro-
cess (e.g., at point P in Fig. 1), it can be shown that we
have (see Appendix B):

T1 = Tp + Ti/2, (19)

where Tp and Ti have been defined in Section 2,A and are
shown in Fig. 1. The value of T1 is thus equal to the time
spent from the beginning of the cycle to the middle of the
atom-interrogation time interval.

The assumption made holds in the Cs fountain. In the
PHARAO experiment [4], it implies that the atom motion
is uniform along the axis of the TE01n resonant cavity.
This will be the case in space.

Coming back to the loop response, we are interested in
the steady state error related to the frequency ramp. We
have, from (9), (12), and (17):

∆ωs(tk)
ωo

= r

(
Tc
2β
− T1

)
in Case A (20)

∆ωs(tk)
ωo

= −rT1 in Case B. (21)

Because the frequency of the oscillator varies linearly be-
tween the frequency corrections, applied at discrete times,
the frequency change is rTc over the duration of a cycle.
Fig. 6 shows the saw-tooth shaped instantaneous frequency
of the controlled oscillator.
B. Response to a Slow Sinusoidal Frequency Change

The oscillator will likely be perturbed by slow periodic
changes of its environmental conditions. This may occur
to an orbiting clock, for instance. Let us set:

∆ωf (t)
ωo

= Co sin(2πft). (22)

We assume:

2πfTc � 1, (23)

which means that the period of this sinusoidal variation
is larger that Tc. Then, between times tk and tk+1, the
frequency offset ∆ωs(t) given by (1) can be written as:

∆ωs(t) = ∆ωs(tk) +D(tk)(t− tk), (24)
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Fig. 6. Top: Response of the feedback loop to a ramp at the input.
Bottom: Response to a slow sine-wave at the input. The solid line
and the dashed line represent the instantaneous frequency and the
mean frequency, respectively.

where D(tk) is the derivative of ∆ωf (t) at time tk.
According to the approximation made, ∆ωs(t) varies

linearly between tk and tk+1, with a slope which changes
very slowly. The results of Section IV, A can thus be ap-
plied and we find, to first order with respect to 2πfTc:

∆ωs(tk)
ωo

= 2πfTc

(
1

2β
− T1

Tc

)
Co cos(2πftk)in Case A

(25)
∆ωs(tk)
ωo

= −2πfT1Co cos(2πftk) in Case B.

(26)

The presence of the term T1/Tc has been verified experi-
mentally in case A [8].

Besides the residual sampled sinusoidal variation,
∆ωs(tk), of the frequency of the controlled oscillator, a
linear frequency change, of amplitude 2πfTc cos(2πftk),
occurs during a cycle. Fig. 6 illustrates the variation of
the instantaneous frequency of the controlled oscillator.

C. Practical Consequences

The fast frequency modulation which reflects the fre-
quency change of the oscillator between two corrections
has, in fact, a very small amplitude. It will likely be blurred
by the random frequency fluctuations due to the optical
detection noise.

This does not mean that the effect of this fast modu-
lation can be neglected. Any characterization of the fre-
quency or time stability of the atomic frequency standard
involves an averaging of the instantaneous frequency of the

controlled oscillator over a time interval τ. In this paper,
we will mainly consider the long-term frequency stability,
such that the condition τ � Tc is fulfilled. Consequently,
we have to deal with the mean value of the instantaneous
frequency. In that case, a term proportional to Tc/2, due
to the averaging of the saw-tooth-like variation must be
added to the right-hand side of (20), (21) and (25), (26).
The measurable relative frequency offset, y, is thus the
following:

For a ramp at the input:

y = r

(
Tc
2β
− T1 +

Tc
2

)
in Case A (27)

y = r

(
−T1 +

Tc
2

)
in Case B. (28)

For a sine-wave at the input:

y = 2πf
(
Tc
2β
− T1 +

Tc
2

)
Co cos(2πft)in Case A (29)

y = 2πf
(
−T1 +

Tc
2

)
Co cos(2πft) in Case B.(30)

This frequency offset depends on the loop gain in Case A
and, in both cases, on the detail and the duration of the
atom-field interaction (through Ti) and its timing (through
Tp). The rejection factor of a slow sine-wave applied at the
input can be easily derived by comparing (25) and (26)
to (22).

It is of interest to note that, in Case B, the steady state
error due to a frequency ramp is not equal to zero and the
rejection factor of a sine-wave is not of the second order
with respect to 2πfTc. This is a weakness compared to
the more traditional situation where the interrogation is
performed continuously.

However, this drawback disappears if the following con-
dition is fulfilled:

T1 = Tc/2. (31)

It practically means that the atom-field interaction must
be centered on the cycle of duration Tc. Then, one re-
trieves the familiar properties of continuous time analog
frequency control loops. The steady state error and the
rejection factor, respectively, given by (27) and (29) are
inversely proportional to the open loop gain in Case A.
In Case B, the steady state error is equal to zero and the
rejection factor is proportional to f2, as it will be shown
in Section V.

V. Frequency Instability Related to

Oscillator Noise

In this section, we consider the noise spectral compo-
nents of the free-running oscillator at Fourier frequencies
much smaller than 1/Tc. If Sfy (f) is the power spectral den-
sity of this noise, then the power spectral density, Sy(f), of
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H ′s,f

(
f � 1

Tc

)
=

exp(2πifTc)[exp(2πifTc)− 1]− β
(
gc

go
− 1 + i g

s

go

)
[1 + exp(2πifTc)]

exp(4πifTc)− (1 + β) exp(2πifTc) + β
, (33)

the relative frequency fluctuations of the slaved oscillator
is given by:

Sy(f) = |Hs,f |2Sfy (f). (32)

The transfer function Hs,f is composed of two parts.
The first one is the frequency response H ′s,f of the sam-
pled feedback loop. The second one is associated with the
averaging of the frequency change of the free-running os-
cillator occuring between two successive sampling times.

1. Case A: We obtain, from (9):

See Equation (33) at top of page.

with:

(
gs

gc

)
=

1
Tc

Tc∫
0

g(θ)
(

sin(2πfθ)
cos(2πfθ)

)
dθ. (34)

The coefficients gs and gc depend on the input frequency f .
Under assumption (23), we have, to first order:

H ′s,f = 2πifTc

(
1

2β
− T1

Tc

)
, (35)

where T1 is given by (18).
As stated previously, the long-term stability involves

the mean value, m(tk), of the fast frequency modulation
occurring between times tk and tk+1. We have:

m(tk) =
1
Tc

tk+1∫
tk

[∆ωf (t)−∆ωf (tk)] dt. (36)

The associated frequency response, Hm, expanded to sec-
ond order is:

Hm = πifTc −
2
3

(πfTc)2. (37)

At low Fourier frequencies, the effective frequency response
is Hs,f = H ′s,f +Hm. To first order it is given by:

Hs,f = 2πifTc

(
1

2β
+

1
2
− T1

Tc

)
. (38)

This result is, of course, in agreement with (29).
Assuming condition (23), the flicker noise of frequency

of the free-running oscillator is converted into flicker noise
of phase, whose Allan variance varies as τ−2. In practice,
the rejection of the flicker noise of frequency by the fre-
quency control loop is sufficient, for 2πfTc � 1, when
good oscillators, including state of the art VCXO are used.

2. Case B: Following the same lines as previously, the
second order expanded frequency response is given in that
case by:

Hs,f = 2πifTc

(
1
2
− T1

Tc

)
− (2πfTc)2

(
1

2β2
+

1
6
− 1

2
T 2

2

T 2
c

)
, (39)

where T2 is related to the second moment of g(θ) by:

T 2
2 =

1
g0Tc

Tc∫
0

θ2g(θ)dθ. (40)

When condition (31) is satisfied, the attenuation of the low
frequency noise of the oscillator is much improved, as well
as its slow systematic frequency changes.

VI. Frequency Instability Related to

Detection Noise

Actually, the low frequency noise of the free-running os-
cillator can be neglected, for 2πfTc � 1. Then, the slaved
oscillator is perturbed by the detection noise δÑ occur-
ring at discrete times tk and tk+1, defined by (6). Because
the time series {δÑ(tk)} represents a white noise process
with variance σ2

δN , as stated in Section II,B, the one-sided
power spectral density of the detection noise is given by:

SδÑ (f) = 2Tcσ2
δN , for 0 ≤ f ≤ 1/2Tc. (41)

It is equal to zero for f > 1/2Tc.
The one-sided power spectral density of the relative fre-

quency fluctuations of the controlled oscillator, due to de-
tection noise, is given by:

Sy(f) =
1
ω2
o

|Hs,n|2SδÑ (f), (42)

whereHs,n is the frequency response to the input noise δÑ .
1. Case A: We have, from (9)

|Hs,n|2
K2 =

(1 + cos(2πfTc))
1− β + β2 − (1− β2) cos(2πfTc) + β cos(4πfTc)

. (43)

Fig. 7 shows the variation of β2|Hs,n|2/K2 versus fTc ≤
1/2, for several values of β. For low enough Fourier fre-
quencies, verifying (23), the power transfer function tends
to a limit given by:

|Hs,n(f → 0)|2 = K2/β2. (44)
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Fig. 7. Power transfer function of the feedback loop relative to the
detection noise in Case A.

With (10), (41), and (42), we obtain:

Sy(f → 0) =
2Tc

ω2
o(∂h/∂ω)2

σ2
δN

N2
o

. (45)

In the special case where the atom-field interaction
takes place according to the Ramsey method [9], we have:

h(ω − ωo) = [1 + cos(ω − ωo)T ]/2, (46)

where it is assumed that the transit time T between the
two oscillatory fields is much larger than the time spent
in each of them. Usually, the modulation depth is equal to
the half-width at half-maximum. We thus have |∂h/∂ω| =
T/2. Then, the quality factor Qat of the atomic resonance
being equal to ωoT/π, (45) becomes:

Sy(f → 0) =
8Tc
π2Q2

at

σ2
δN

N2
o

. (47)

The related Allan variance is the following, for τ � Tc:

σ2
y(τ) =

4
π2Q2

at

σ2
δN

N2
o

Tc
τ
. (48)

In the servo-loop, the quantity:

∇N(tk) = δN(tk)− δN(tk−1), (49)

available after the atomic line has been probed on both
sides, is more easily accessible to measurement than
δN(tk). It is thus useful to express the result of interest
using σ2

∇N instead σ2
δN . We have, obviously:

σ2
∇N = 2σ2

δN , (50)

and the Allan variance becomes:

σ2
y(τ) =

2
π2Q2

at

σ2
∇N
N2
o

Tc
τ
. (51)

Strictly speaking, the measurement of the mean relative
frequency averaged over the sampling time τ , y, which is
implied in the definition of the Allan variance, should start
at a time tk and last τ = `Tc, where ` is an integer. How-
ever, because we can neglect the oscillator intrinsic noise,

Fig. 8. Illustration of the stroboscopic effect: when the input fre-
quency is equal to a multiple of 1/Tc, the averaged value δωf (tk) is
the same during each cycle.

the output frequency is a constant during any time inter-
val [tk, tk+1]. Therefore, for τ large enough compared to Tc,
the error made in relaxing the aforementioned constraints
can be neglected.

Assuming, for instance, Qat = 1010, Tc = 1 s, and
σ∇N/No = 2.2× 10−3, we have σy(τ) = 1.0× 10−13τ−1/2.

2. Case B: From (10) and assuming fTc � 1, we have:

|Hs,n(f → 0)|2 = K2
2/β

2
2 = K2/β2. (52)

This power transfer function is identical to that obtained
in Case A. Therefore, the equation for the detection noise
limited long-term frequency stability of the controlled os-
cillator is the same as in Case A. More generally, it can
be shown that (45) does not depend on the details of the
processing of the error signal.

It should be noted that (48) or (51), which has been
derived rigorously, differs by a numerical factor from other
ones previously published [3], [10].

VII. Frequency Stability Limitation by Down

Conversion of the Oscillator Noise

A. Physical Origin of the Effect

Spectral components of the frequency noise of the free-
running oscillator whose frequencies are larger than the
feedback-loop cut-off frequency are not filtered out. This
is the case, in particular, for the noise components whose
frequencies are equal to 1/Tc or to a multiple of this
value. Fig. 8 shows an example of the related change of
∆ωf (t)−∆ωf(tk), assuming a pure sine-wave. In that case
the atom-field interaction occurring periodically, during
the time interval Ti, is synchronized with the perturbation
under consideration. Therefore, the atoms experience the
same frequency departure δωf (tk), given by (3), from cy-
cle to cycle. We thus have the equivalent of a stroboscopic
effect. This frequency departure causes a permanent fre-
quency offset of the slaved oscillator, which is specified in
the following.

Actually, the disturbing signal occupies a finite band-
width. Consequently, the value of ∆ωf(tk) and of δωf (tk)
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fluctuates randomly, but slowly, from one cycle to the fol-
lowing one. This is the origin of the additional low fre-
quency noise of the slaved oscillator, which has been first
pointed out and calculated by Dick [5] and Dick et al. [6].
Here, we will derive differently the related spurious fre-
quency instability.

B. Frequency Stability Limitation

We will consider the limitation of the long-term fre-
quency stability, i.e., for observation times τ much larger
than Tc. The frequency measurement process filters the
noise observed and its Fourier frequencies larger than 1/τ
are much attenuated. It is thus justified to assume that
the bandwidth, ∆f , of the down-converted noise is of the
order of 1/τ and, consequently, much smaller than 1/Tc.

The low frequency noise in the bandwidth ∆f comes
from spectral components of the oscillator noise around
Fourier frequencies m/Tc. Then, it suffices to consider that
part of the oscillator noise that is filtered in a set of spectral
windows centered around frequencies m/Tc and having a
noise bandwidth 2∆f . The Rice representation [11] of this
narrow band limited noise is the following:

∆ωFf (t) =
∞∑
m=1

[
pm(t) sin

(
2πm

t− tk
Tc

)
+ qm(t) cos

(
2πm

t− tk
Tc

)]
, (53)

where pm(t) and qm(t) are slowly variable random ampli-
tudes. The constant phase, −2πmtk/Tc, is introduced for
convenience and it does not change the final result. The
one-sided power spectral density of pm(t) and qm(t) is re-
lated to that of ∆ωf around m/Tc by:

Spm(f ≤ ∆f) = Sqm(f ≤ ∆f) = 2S∆ωf (f = m/Tc).
(54)

The frequency offset δωf (tk) is calculated by substitut-
ing ∆ωFf (t) for ∆ωf (t) in (3). According to the assump-
tions made, pm(t) and qm(t) vary very little during the
time interval Tc and we can take their value at tk. We
obtain:

δωf (tk) = −∆ωFf (tk) +
1
go

∞∑
m=1

[gsmpm(tk) + gcmqm(tk)],
(55)

with:

1
go

(
gsm
gcm

)
=

1
Tc

Tc∫
0

g(θ)
go

(
sin(2πmθ/Tc)
cos(2πmθ/Tc)

)
dθ,

(56)

where g(θ)/go is defined during the time interval [0, Tc].
Here, the values of gsm/go and gcm/go depend on their rank
m ≥ 1, besides the shape of g(θ)/go.

Because δωFf (tk) and δωf (tk) are slowly varying terms,
(9) or (12) shows that the slow change of ∆ωs(tk) is
given by:

∆ωs(tk) = −δωf (tk). (57)

The frequency fluctuation of the microwave field, which is
proportional to that of the controlled oscillator, is given by
(1). Because we are looking for frequency changes whose
spectrum is included in the bandwidth [0,∆f ], the term
∆ωFf (t) is irrelevant. We thus have, with (57):

∆ω(tk) = −δωf (tk)−∆ωFf (tk). (58)

The frequency of the oscillator being hold from one fre-
quency correction to the other and its changes being very
small from one cycle to the following one, we can smooth
its fluctuations and write from (55) and (58):

∆ω(t) = − 1
go

∞∑
m=1

[gsmpm(t) + gcmqm(t)], (59)

where pm(t) and qm(t) is white noise in the narrow band-
width considered.

The power spectral density of the relative frequency
fluctuations of the controlled oscillator is easily derived
from (54) and (59). The related Allan variance is given by:

σ2
y,lim(τ) =

1
τ

∞∑
m=1

[(
gcm
go

)2

+
(
gsm
go

)2
]
Sfy

(
m

To

)
,
(60)

where Sfy (m/Tc) = Sf∆ωf (m/Tc)/ω2
o is the one-sided power

spectral density, at frequencies m/Tc, of the relative fre-
quency fluctuations of the free-running oscillator. This
equation specifies, in agreement with results derived in
[5], [6], [12], [13], the annoying frequency instability re-
sulting from the down-conversion of the oscillator noise
spectral components around frequencies m/Tc, where m is
an integer. The size of the effect depends on two factors.
The first one is the power spectral density of the oscilla-
tor frequency noise at frequencies m/Tc. The second one is
related to the details of the atom-field interaction, which
determines the frequency sensitivity function g(t). These
two properties have been verified experimentally [7]. The
level of the frequency stability limitation does not depend
on the particular processing of the error signal.

VIII. Conclusion

From simple calculations guided by physical insight, we
have established the main properties of an oscillator con-
trolled by an atomic resonator operated sequentially. We
have given the stability condition of the feedback loop. We
have established the condition to be satisfied to improve
significantly the rejection of systematic frequency changes
of the oscillator when a second numerical integration is
included in the control algorithm. We have derived rigor-
ously the expression for the Allan variance of the relative
frequency fluctuations associated with the detection noise.
Finally, we have confirmed, by a different approach, the
equation giving the frequency limitation originating in the
down-conversion of the oscillator frequency noise.
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The results given apply specifically to the signal pro-
cessing implemented in the LPTF cesium fountain, where
a frequency correction is applied at the end of each
atom interrogation cycle and where the error signal is de-
rived from the difference, N(tk) − N(tk−1) between the
last two atomic responses. However, other signal process-
ings can be considered. For instance, the oscillator fre-
quency can be corrected every two cycles. A still different
method is used in mercury ion frequency standards, where
the error signal is obtained from the following grouping:
N(tk)−2N(tk−1)+N(tk−2) [14], [15]. In all the cases that
we have considered, the condition (31) must be satisfied
to reject efficiently the slow frequency perturbations of the
oscillator.

Appendix A

A. Stability Condition

The feedback loop is stable if the modulus of the roots
of its characteristic equation is smaller than unity. This
equation is:

Z2 − (1− β)Z + β = 0
(A-1)

Z3 − (2− β1 − β2)Z2 + (1 + β2)Z − β1 = 0,
(A-2)

in Cases A and B respectively. We have set Z =
exp(2πift). The stability condition can be obtained by ap-
plying the Jury criterion, for instance [16].

B. Time Constant and Oscillatory Pseudo-frequency
of the Transient Response

We define these parameters by comparing the damped
or the oscillatory damped transient response of the servo-
loop to that of an analog circuit.

First, assuming a real root, ρ, the response contains a
term such as:

R(tk) = Cρtk/Tc , (A-3)

where C is a constant. If the transient response were a
continuous time exponentially damped motion, with time
constant T , we would have:

R(tk) = C exp(−t/T ). (A-4)

We extend the definition of a time constant to the discon-
tinuous motion described by (A-3) by setting:

T = −Tc/`n(|ρ|). (A-5)

Second, for a complex root whose real and imaginary
parts are a and b, respectively, we have:

R(tk) = C[ρ exp(iθ)]tk/Tc , (A-6)

with:

ρ = (a2 + b2)1/2 and tan θ = b/a.
(A-7)

By analogy with a continuous time oscillatory damped mo-
tion, represented by exp[iΩ−T −1]t, we introduce the time
constant and the pseudo-oscillatory angular frequency of
the actual response by:

T = −Tc/`n(ρ) and TcΩ = arctan(b/a).
(A-8)

The quantities T and Ω provide an approximate but
useful characterization of the loop transient response. (A-
1) and (A-2) having two or three roots, respectively, we
have retained the largest value of the related time con-
stants.

Appendix B

Let us consider that part of the frequency sensitivity
function which is defined over the time interval [tk, tk+1],
where we set θ = t − tk. We translate the time origin
to point P shown in Fig. 1, such that θ = Tp + Ti/2, and
introduce the new variable θ′ = θ−Tp−Ti/2. Because g(θ′)
is equal to zero except for −Ti/2 ≤ θ′ ≤ Ti/2, we have:

1
goTc

Tc∫
0

θg(θ)dθ =
1

g0Tc

(Tp + Ti/2)

Ti/2∫
−Ti/2

g(θ′)dθ′

+

Ti/2∫
−Ti/2

θ′g(θ′)dθ′

 . (B-1)

In the right-hand side of (B-1), the first integral is equal
to goTc. If g(θ′) is an even function of θ′, then θ′g(θ′) is
an odd function and the second integral is equal to zero.
It follows that the first moment of g(θ) is such that:

1
g0Tc

Tc∫
0

θg(θ)dθ = Tp + Ti/2. (B-2)
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Frequency Stability Degradation of an
Oscillator Slaved to a Periodically

Interrogated Atomic Resonator
Giorgio Santarelli, Claude Audoin, Ala’a Makdissi, Philippe Laurent, G. John Dick, and André Clairon

Abstract—Atomic frequency standards using trapped
ions or cold atoms work intrinsically in a pulsed mode.
Theoretically and experimentally, this mode of operation
has been shown to lead to a degradation of the frequency
stability due to the frequency noise of the interrogation os-
cillator.

In this paper a physical analysis of this effect has been
made by evaluating the response of a two-level atom to the
interrogation oscillator phase noise in Ramsey and multi-
Rabi interrogation schemes using a standard quantum me-
chanical approach. This response is then used to calculate
the degradation of the frequency stability of a pulsed atomic
frequency standard such as an atomic fountain or an ion
trap standard. Comparison is made to an experimental eval-
uation of this effect in the LPTF Cs fountain frequency
standard, showing excellent agreement.

I. Introduction

The development of new passive frequency standards
using trapped ions or cold atoms has produced devices

with a potential fractional frequency stability of the order
of 10−13τ−1/2 or better. In these new types of standards,
the internal interrogation process is discontinuous and pe-
riodic, and the control of the interrogation oscillator also
is periodic. The frequency of this oscillator is compared to
that of the atomic resonance during a part of duration Ti
of the operating cycle only, and its frequency is controlled
at the end of each cycle.

In the late 1980s, Dick [1], at the Jet Propulsion Lab-
oratory, derived the atomic response to the oscillator fre-
quency fluctuations using a geometrical approach. Further-
more, it was shown that the oscillator frequency noise at
Fourier frequencies, which are close to multiples of 1/Tc, is
down-converted, leading to a degradation of the frequency
stability.
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In this paper, we evaluate the atomic response to a vari-
ation of the frequency of the interrogation oscillator for dif-
ferent interrogation schemes. This response is used in two
companion papers to derive the equation for the frequency
stability limitation of the standard [2], [3]. The resulting
model is experimentally verified using an atomic fountain
standard [4].

II. Time Dependence of the Sensitivity to

Oscillator Frequency Fluctuations

Let δP be the change of the probability that a transition
occurred at the outcome of the atomic interaction with the
noisy microwave field of the interrogation oscillator. This
change is related to a fluctuation, δω(t), of the frequency
of the interrogating oscillator during the interaction in the
following way:

δP =
1
2

∫
int.

g(t)δω(t)dt. (1)

This equation defines g(t), the sensitivity function to fre-
quency fluctuations of the interrogating field δω(t). This
equation assumes that all the atoms are subjected to the
same phase perturbation. The interrogation occurs dur-
ing an interaction time Ti. The physical meaning of this
function can be obtained by calculating the effect of an
infinitesimally small phase step ∆φ at time t in the oscil-
lator signal, which can be expressed as a frequency varia-
tion δω(t) = ∆φδ(t−t′). This produces a change δP (t,∆φ)
in the probability that a transition occurred, and g(t) is
given by:

g(t) = 2 lim
∆φ→0

δP (t,∆φ)/∆φ. (2)

In control system terminology, g(t) is the response of the
atomic system to a phase step of the interrogation oscil-
lator, or the impulse response with respect to a frequency
change occurring at time t.

A. A Simple Example of g(t)

We consider a Ramsey interrogation scheme where the
atoms have a resonance frequency ω0 and experience suc-
cessively two microwave fields of frequency ω and Rabi
frequency b, each for a duration τp, separated by a time T .

0885–3010/98$10.00 c© 1998 IEEE
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Assuming T � τp and Ω0 = (ω−ω0)� b, the probability
that the atomic transition occurred can be written as:

P ∼=
1
2

sin2 bτp[1 + cos(Ω0T + ∆φ)], (3)

where ∆φ is a phase step that can take place at any time
between the two microwave interactions.

It is worth noting that the interrogating field is stepwise
frequency modulated with frequency 1/2Tc, where Tc is the
time for one cycle of operation, to generate the servo error
signal required to lock the interrogation oscillator on the
atomic transition. Its (angular) frequency is ω0 +∆ω+ωm
or ω0+∆ω−ωm according to the half period of modulation
considered, where ∆ω � b is the difference between the
oscillator frequency and the resonance frequency ω0 and
ωm is the modulation depth. If we consider a small phase
step ∆φ � 1, applying (3) to the generic k-th cycle, we
obtain:

Pk ∼=
1
2

sin2 bτp[1 + (cos((∆ω + (−1)kωm)T )

− sin((∆ω − (−1)kωm)T )∆φ)]. (4)

When the interrogation oscillator is locked to the reso-
nance, ∆ω ≈ 0. Then the variation of the signal due to
∆φ becomes:

δPk ∼=
(−1)k

2
sin2 bτp sin(ωmT )∆φ (5)

and using the relation (2) we obtain

g(t) =

{
(−1)k sin2 bτp sinωmT 0 ≤ t ≤ T,
0 T ≤ t ≤ Tc.

(6)

This function is periodic, with period 2Tc. As explained
later and in two companion papers [2], [3], a meaningful
quantity in this process is g(t)/g0 where g0 is the mean
value of g(t) over the cycle time Tc:

g0 =
1
Tc

Tc∫
0

g(t)dt ≈ (−1)k
T

Tc
sin2 bτp sinωmT. (7)

We thus have:

g(t)/g0 =

{
Tc
T 0 ≤ t ≤ T,
0 T ≤ t ≤ Tc.

(8)

The ratio g(t)/g0 is thus periodic with period Tc; and,
under the validity of the previous assumption, its value is
independent of experimental parameters such as the Rabi
frequency and the modulation depth. It depends only on
the ratio between the cycle time Tc and the interrogation
time T . In a modern atomic frequency standard, such as an
ion trap or an atomic fountain, the cycle duration is the
sum of an unavoidable dead time plus the interrogation
time; therefore the function g(t) it not a constant during
each cycle. As explained in the following and in companion
papers [2], [3], this causes degradation of the frequency
stability of the locked oscillator. Clearly, this very simple
model neglects the response of the atoms to the field during
the microwave interactions of duration τp.

Fig. 1. The function g(t), assumed centered in the cycle period, for
the case of a Ramsey interrogation scheme with bτp = π/2 (solid line)
and bτp = 3π/2 (dashed line), with T = 0.5 s, Tc = 1 s, τp = 15ms,
and Ω0 = −ωm.

B. The Sensitivity Function for the Ramsey Interrogation

A more general approach to the calculation of g(t) can
be performed using the density matrix formalism for a two-
level atom (see the Appendix). The function g(t) can be
calculated analytically for the Rabi or Ramsey interroga-
tion scheme, if the Rabi frequency b is constant during the
microwave pulses. We limit ourselves to the Ramsey case,
which is commonly used. Under the conditions T � τp
and Ω0 � b we have:

g(t) =


a sin bt 0 ≤ t ≤ τp
a sin bτp τp ≤ t ≤ T + τp

a sin b(T + 2τp − t) T + τp ≤ t ≤ T + 2τp
0 T + 2τp ≤ t ≤ Tc

(9)

where a = − sin Ω0T sin bτ and Ω0 = ±ωm according to
the half period of modulation considered. Fig. 1 shows the
variation of g(t) for bτp = π/2 and bτp = 3π/2. Unlike
the simple model of (6) the shape of g(t) is strongly de-
pendent on the microwave power applied during the mi-
crowave pulses.

Another case that is relevant is the atom-field interac-
tion in a multi-λ cylindrical cavity, resonating in the TE01n
mode [5], which is used in the PHARAO prototype [6]. In
this device, balls of cold cesium atoms will be launched
along the axis of a cavity exited in such a mode. During
their interrogation, the atoms experience a microwave field
whose amplitude is proportional to sin(nπt/Ti), where Ti
is the total interaction time. In this case, g(t) must be cal-
culated numerically (see the Appendix). Fig. 2 shows the
variation of g(t) for n = 3. Here, the operating parameters
are chosen to provide the maximum slope of the resonance
curve. This is achieved for bcTi/n = 3.66 and ωmTi = 2.31,
where bc is the Rabi frequency at an anti-node of the mi-
crowave field.

It is clear that the shape of g(t) depends on the type of
interrogation scheme and on the details of the interaction
such as field power and frequency detuning.



santarelli et al.: periodically interrogated atomic resonator 889

Fig. 2. The function g(t), assumed centered in the cycle period, for
the case of a multi-λ interrogation scheme in a TE013 cavity, with
Ti = 0.53 s, Tc = 1 s, bcTi/3 = 3.66, ωmTi = 2.31, and Ω0 = −ωm.

III. Limitation of the Frequency Stability Due

To Sampling

The control loop being closed, frequency corrections are
applied to the interrogation oscillator at discrete times tk,
at the end of each cycle. It is possible to show that the
spectral components of the interrogation oscillator phase
noise around frequencies m/Tc are translated to frequen-
cies below 1/Tc [2], [3]. This spectrum folding is at the
origin of the frequency stability degradation of the atomic
frequency standard. For very low Fourier frequencies, the
down-converted noise spectrum can be assumed white.

The Allan variance of the locked interrogation oscillator
is related to the frequency noise spectral density of the
free running oscillator and to the harmonic content of the
function g(t) [2], [3] in the following way:

σ2
y lim(τ) =

1
τ

∞∑
m=1

(
gc2m
g2

0
+
gs2m
g2

0

)
Sfy (m/Tc)

(10)

where σ2
y lim(τ) is a lower limit to the achievable stability.

Here Sfy (m/Tc) is the one-sided power spectral density of
the relative frequency fluctuations of the free running in-
terrogation oscillator at Fourier frequencies m/Tc, and the
parameters g0, gsm, and gcm are defined by:

(
gsm
gcm

)
=

1
Tc

Tc∫
0

g(ξ)
(

sin 2πmξ/Tc
cos 2πmξ/Tc

)
dξ,

g0 =
1
Tc

Tc∫
0

g(ξ)dξ. (11)

It is possible without loss of generality to simplify (10)
by applying a time translation to the function g(t) in or-
der to obtain a cosine series. Fig. 3 shows the coefficients
(gm/g0)2 = ((gs2m+gc2m )/g2

0) versus the rank m for the func-
tion g(t) in the Ramsey interrogation scheme for the two
cases bτp = π/2, which provides the optimal interrogation

Fig. 3. Calculated spectrum of the function g(t)/g0 for the case of
Ramsey interrogation: (a) bτp = π/2 (b) bτp = 3π/2, with T = 0.5 s,
Tc = 1 s, and τp = 15 ms.

condition, and bτp = 3π/2, which is used in the fountain
frequency standard to evaluate the power dependent shifts.
It is assumed that τp = 0.015s, T = 0.5s, and Tc = 1s.
Fig. 4 shows the coefficients (gm/g0)2 versus the rank m
for the function g(t) assuming interrogation in a multi-λ
TE013 cavity, with bcTi/3 = 3.66 and ωmTi = 2.31. It is
worth noting that, for m larger than about 10, (gm/g0)2

decreases as m−6 in this case. This property provides very
good immunity against the white phase noise of the oscil-
lator.

IV. Experimental Evaluation of the Frequency

Stability Degradation

In order to verify the model and provide evidence of
the down-conversion effect, we have made various mea-
surements with the interrogation oscillator used with the
LPTFs Cs atomic fountain. We have purposely degraded
its spectrum with different types of frequency noise. Fig. 5
is a schematic of the experimental set-up. We have used
three different sources of noise: a white noise signal in the
range of 0.1 Hz to 1600 Hz (f0) with which various low-
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Fig. 4. Calculated spectrum of the function g(t)/g0 for the case of
multi-λ interrogation in a TE013 cavity, with Ti = 0.53 s, Tc = 1 s,
bcTi/3 = 3.66, and ωmTi = 2.31.

Fig. 5. Schematic of the atomic fountain frequency lock loop.

pass filters can be used; a flicker noise generator (f−1) in
the range of 0.5 to 100 Hz; and a generator with spectral
density proportional to f−3, for Fourier frequencies from
0.5 to 100 Hz. Fig. 6 shows the corresponding phase noise
power spectral densities. We use the noise generators to
drive the phase modulation input of an offset synthesizer.
The phase noise added to the synthesizer is transferred to
the interrogation oscillator spectrum at 9.192 GHz.

It is worth noting that, in our measurement set-up, the
interrogating oscillator is obtained by phase-locking a fre-
quency multiplication chain to the reference H-maser, as
shown in Fig. 5. The frequency-locking of the interrogation
oscillator to the atomic resonance is obtained by control-
ling the central frequency of the offset synthesizer used to
generate the difference between the 92nd harmonic of the
100 MHz H-maser signal and the hyperfine frequency of
the cesium atom.

The frequency stability of the atomic fountain measured
against the hydrogen maser is then obtained by calculating
the Allan standard deviation on the frequency corrections

Fig. 6. Measured phase noise spectral density of the degraded inter-
rogation oscillator for the three types of noise used in the experiment.

Fig. 7. Fractional frequency stability of the free running and of the
locked interrogation oscillator.

applied to the offset synthesizer. As a consequence, the in-
terrogating oscillator has to be degraded only for frequen-
cies larger than or equal to the cycle frequency. For low
frequencies (i.e., for times long compared to the cycle pe-
riod), the noise sources are high pass filtered. This avoids
the long-term degradation and is particularly effective for
the flicker frequency noise which gives a flat Allan variance.
As shown in Fig. 7, the fractional frequency stability of the
free running oscillator behaves as τ−1, whereas the stabil-
ity of the locked oscillator is proportional to τ−1/2. This
clearly shows that the frequency stability of the locked os-
cillator is dominated by the aliasing noise for integration
times longer than 10 to 20s. We measured the stability for
two conditions: bτp = π/2 and bτp = 3π/2. Tables I and II
report the calculated values using (10) and the measured
data for the flicker phase and flicker frequency noises. For
these colored noises, (10) shows that the frequency stabil-
ity is mainly limited by the first term of the series, which
depends only on the ratio between the interrogation time
Ti and the cycle time Tc. In order to verify precisely the
model, we need a measurement that is more sensitive to
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TABLE I
bτp = π/2

Type of noise σy meas.(1s) σy calc.(1s)

Frequency flicker 2.4 10−12 2.3 10−12

Phase flicker 3.0 10−12 2.9 10−12

TABLE II
bτp = 3π/2

Type of noise σy meas.(1s) σy calc.(1s)

Frequency flicker 2.8 10−12 2.4 10−12

Phase flicker 4.8 10−12 4.6 10−12

the shape of g(t). In the case of white phase noise, the fre-
quency noise spectrum behaves as f2 and consequently the
down-conversion is strongly dependent on the harmonic
content of g(t)/g0. Changing the white phase noise spec-
trum by low-pass filtering the noise source with different
cut-off frequencies improves the sensitivity of the measure-
ments. Fig. 8 reports the calculated and measured results,
which agree within the limits of the measurement errors,
estimated to be about 20%. Measurements performed with
the filtered white phase noise confirm the validity of the
model, even for different interrogation oscillator levels, i.e.,
for bτp = π/2 and 3π/2. It is interesting to note that, for
large filter cut-off frequency, the degradation ratio is equal
to 3. For the colored noises the degradation does not de-
pend on the microwave power.

V. Discussion

As shown before, the degradation depends on the har-
monic content of g(t). A constant value of the sensitivity
function over the cycle would eliminate this effect. Unfor-
tunately, the operation of the fountain frequency standard
requires unavoidable dead times.

Fig. 8. Measured and calculated frequency stability versus the cut-off
frequency of the white phase noise for bτp = π/2 (circles, squares)
and bτp = 3π/2 (diamonds, triangles).

The level of the effect would obviously be reduced with
an oscillator, showing a much improved spectral purity,
such as a cryogenic sapphire oscillator [7], [8]. A reduction
of this “intermodulation” noise has already been obtained
in a Rb cell standard [9] and in a thermal Cs beams clock
[10] by filtering at 1/Tc the frequency noise of the inter-
rogation oscillator. In a cesium fountain, in the PHARAO
set-up or in a trapped ion frequency standard, it will not
be feasible to use notch filters to reject the oscillator noise
at such low Fourier frequencies (≤1 Hz).

If we consider the state of the art of quartz oscillators,
the phase noise below a few Hertz is mainly limited by
flicker frequency noise. In this case it is easy to obtain an
approximate relationship between the flicker floor of the
interrogation oscillator σLOy and the frequency stability of
the standard σy lim(τ) versus the duty cycle, defined as
d = T/Tc. In the case of the Ramsey interrogation with
T � τp and 0.4 < d < 0.7 we have:

σy lim(τ) ∼=
σLOy√
2 ln(2)

∣∣∣∣g1

g0

∣∣∣∣
√
Tc
τ

=
σLOy√
2 ln(2)

∣∣∣∣ sin(πd)
πd

∣∣∣∣
√
Tc
τ
.

(12)

Apparently the only way to reduce this detrimental ef-
fect is to increase the duty cycle. For a given duty cycle, the
degradation is proportional to

√
Tc. This result is most sig-

nificant for trapped ions standards and for the PHARAO
clock, where Tc ∼ 3–10s.

To illustrate the beneficial effect of the increase of the
interrogation duty cycle d, or of the release of several balls
during each cycle in the case of the PHARAO clock in
space, we have made some numerical calculations, in which
the quartz oscillator is assumed to show a frequency noise
spectral density given by:

Sfy (f) = 3.2 10−29f2 + 1.0 10−27f + 3.2 10−26/f.
(13)

In the case of the Ramsey method of interrogation, the
total interrogation time is Ti = T + 2τp. Fig. 9 shows the
variation of σy lim versus Ti/Tc for three sets of parameter
values, and Fig. 10 shows the variation of σy lim versus the
number of balls. It is assumed that the interrogation oc-
curs in a TE013 cavity and that the time interval between
two successive ball releases is Ti/6. Again, three sets of
parameter values are considered.

Thus it is possible, in an atomic resonator based on
the interrogation of atoms launched sequentially, to re-
duce the limiting effect we have considered. This may be
accomplished by a proper design of the resonator leading
to as large as possible duty cycle and/or by launching sev-
eral clouds of atoms during one cycle. For the case of ion
traps, the use two parallel traps has been proposed [11].

One may also note that, in the two examples given,
σy lim is smallest for 1/Tc = 1 Hz. This value is the
close to the Fourier frequency, fQ, for which Sfy (f) of the
VCXO shows a minimum. With the data of (11), we have
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Fig. 9. Frequency stability versus the interrogation duty cycle for the
Ramsey interrogation for different cycle lengths. With Ti = 0.5Tc
and τp = 0.015Tc.

Fig. 10. Calculated frequency stability versus the number of launched
atomic balls for the multi-λ case. The atomic balls are separated by
Ti/6 and Ti = 0.53Tc, bcTi/3 = 3.66, and ωmTi = 2.31.

fQ = 5 Hz. This suggests that, whenever possible, the
characteristics of the atomic resonator and of the VCXO
should be matched. This is achieved when the condition
fQ ≈ 1/Tc is fulfilled.

VI. Conclusions

In this paper we have developed a quantum mechani-
cal calculation of the atomic response to the phase noise
of the interrogation oscillator in a two level atom. This
model has been used in the calculation of the frequency
stability degradation in a pulsed atomic frequency stan-
dard due to the down-conversion of the frequency noise of
the interrogating oscillator. We also have compared results
of calculations based on this model with experimental val-
ues obtained by using the LPTF Cs atomic fountain with
a purposely degraded oscillator. The theory and the ex-
periments agree within the limits of measurement errors.
For a state-of-the-art 5 or 10 MHz BVA quartz oscillator,
the excess noise due to the sampling process limits the fre-
quency stability of an atomic fountain to about 10−13τ−1/2

for a cycle time of 1 s. Better results could be achieved us-
ing cryogenic sapphire oscillators. The model shows that
the limitation comes primarily from the flicker frequency
noise of the oscillator and that the characteristic white
phase floor does not affect the results.

There do not seem to be any obvious signal process-
ing techniques that could be applied to reduce the conse-
quences of this detrimental effect.

Appendix

As shown in [12], the change of the quantum state of the
atoms interacting with a quasi-resonant field b cos(ωt+∆φ)
can be represented in a matrix form. We have, in general,a1(t)

a2(t)
a3(t)

 = R[b,∆φ,Ω0, t]

a1(0)
a2(0)
a3(0)

 ,
(A-1)

where a1(t) and a2(t) denote the atomic coherence and
a3(t) the relative population difference of the two levels
involved in the transition. The column matrices at the
right and at the left represent the atom properties at the
beginning and at the end of an interaction of duration t,
respectively.R[b,∆φ,Ω0, t] is a 3x3 matrix whose elements
depend on t, the Rabi frequency b, the phase φ, and the
detuning from the atomic resonance. We have [see (A-2)
top of next page]:

Therefore, the population difference of atoms submit-
ted to various amplitude and phase conditions during their
interaction with the magnetic microwave field can be cal-
culated from matrix products. The variation of the proba-
bility that a transition took place is related to the matrix
elements in the following way:

P (t,∆φ) =
1
2

(
1− a3(t,∆φ)

a3(0)

)
. (A-3)

According to (1) the sensitivity function g(t) is:

g(t) = 2 lim
∆φ→0

δP (t,∆φ)/∆φ

=
∂a3(t,∆φ)
∂∆φ

∣∣∣∣
∆φ=0

1
a3(0)

.
(A-4)

The effect of the small phase step ∆φ occurring at a given
time during the interaction can be expressed easily. In the
case of a Ramsey interrogation where the Rabi frequency
b is constant, we can write:

a(t, T, τp,∆φ, b,Ω0)1 = R[b,∆φ,Ω0, τp]R[0,∆φ,Ω0, T ]
×R[b,∆φ,Ω0, τp − t]R[b, 0,Ω0, t]a(0)

if the phase step takes place during the first microwave
interaction;

a(t, T, τp,∆φ, b,Ω0)2 = R[b,∆φ,Ω0, τp]R[0, 0,Ω0, T ]
×R[b, 0,Ω0, τp]a(0)
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R[b,∆φ,Ω0, t] =

(
cos Ωt+

b2 cos2 ∆φ
Ω2 (1− cos Ωt)

) (
−Ω0

Ω sin Ωt+
− b

2 cos ∆φ sin ∆φ
Ω2 (1− cos Ωt)

) (
− b cos ∆φΩ0

Ω2 (1− cos Ωt)
+ b sin ∆φ

Ω sin Ωt

)
(

Ω0
Ω sin Ωt+

− b
2 cos ∆φ sin ∆φ

Ω2 (1− cos Ωt)

) (
cos Ωt+

b2 sin2 ∆φ
Ω2 (1− cos Ωt)

) (
b cos ∆φ

Ω sin Ωt+
bΩ0 sin ∆φ

Ω2 (1− cos Ωt)

)
(
− b cos ∆φΩ0

Ω2 (1− cos Ωt)
− b sin ∆φ

Ω sin Ωt

) (
− b cos ∆φ

Ω sin Ωt
+ b sin ∆φΩ0

Ω2 (1− cos Ωt)

) (
1− b2

Ω2 (1− cos Ωt)
)


,

Ω =
√
b2 + Ω2

0. (A-2)

if the phase step takes place during the period T ; and

a(t, T, τp,∆φ, b,Ω0)3 = R[b,∆φ,Ω0, τp − t]R[b, 0,Ω0, t]
×R[0, 0,Ω0, T ]R[b, 0,Ω0, τp]a(0)

if the phase step takes place during the last microwave in-
teraction. We suppose that the atomic population is pre-
pared in a single quantum state at the beginning of the
interaction, i.e., a1(0) = a2(0) = 0, a3(0) = −1. At the
end of the interaction we measure the relative population
difference a3(t). The function g(t) can be easily obtained
by expanding a3(t) to first order to respect to ∆φ. We
thus have:

g(t) =



∂
∂φa3(t,T,τp,∆φ,b,Ω0)1

∣∣∣
∆φ=0

0≤t≤τp

∂
∂φa3(t,T,τp,∆φ,b,Ω0)2

∣∣∣
∆φ=0

τp≤t≤T+τp

∂
∂φa3(t,T,τp,∆φ,b,Ω0)3

∣∣∣
∆φ=0

T+τp≤t≤T+2τp

0 T+2τp≤t≤Tc.

(A-5)

It is worth noting that, after the end of the interaction,
and up to the end of the interrogation cycle Tc the value
of the function is null. With the conditions T � τp and
Ω0 � b we obtain:

g(t) =


a sin bt 0 ≤ t ≤ τp
a sin bτp τp ≤ t ≤ T + τp

a sin b(T + 2τp − t) T + τp ≤ t ≤ T + 2τp
0 T + 2τp ≤ t ≤ Tc,

(A-6)

where the constant a has the same meaning as in (9).
When the microwave amplitude is not a constant during
the interaction, two different methods can be implemented.
One may divide the interaction time into elementary inter-
vals during which the amplitude is assumed a constant, or
the differential equations describing the evolution of a1(t′),
a2(t′), and a3(t′) can be integrated numerically. In the case
of atoms traveling along the axis of a TE01n microwave
cavity, and, assuming that the phase step ∆φ is very small

[12], these equations take the form:

∂a1(ξ)
∂ξ

+
Ω0Ti
n

a2(ξ)− bc∆φ
Ti
n
a3(ξ) sin(πξ) = 0

∂a2(ξ)
∂ξ

− Ω0Ti
n

a1(ξ)− bc∆φ
Ti
n
a3(ξ) sin(πξ) = 0

∂a3(ξ)
∂ξ

+
bcTi
n

(a1(ξ)∆φ+ a2(ξ)) sin(πξ) = 0,

(A-7)

with:

ξ =
nt′

Ti
. (A-8)

In these equations, Ti is the time of flight across the cav-
ity and bc is the Rabi frequency at an antinode point of
the microwave field. The value of the frequency sensitiv-
ity function g(t), at the time t is computed by integrating
the differential system with ∆φ = 0 for 0 < ξ < nt/Ti
and ∆φ 6= 0 for nt/Ti < ξ < n. The change of the popu-
lation difference is then calculated at the outcome of the
atom-field interaction and g(t) is obtained from (A-4).

In the case of multi-ball operation, the total sensitivity
function gmb(t) is obtained in the following way:

gmb(t) =
nb∑
j=1

g(t− j∆t), (A-9)

where nb is the number of released atomic balls and ∆t is
the time interval between two successive balls.
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A Derivation of the Long-Term Degradation of
a Pulsed Atomic Frequency Standard from a

Control-Loop Model
Charles A. Greenhall, Member, IEEE

Abstract—The phase of a frequency standard that uses
periodic interrogation and control of a local oscillator (LO)
is degraded by a long-term random-walk component in-
duced by downconversion of LO noise into the loop pass-
band. The Dick formula for the noise level of this degrada-
tion is derived from an explicit solution of an LO control-
loop model.

I. Introduction

In 1987, following a suggestion of L. Cutler, Dick [1] de-
scribed a source of long-term instability for a class of

passive frequency standards that includes ion traps and
atomic fountains. In these standards, the frequency of a lo-
cal oscillator (LO) is controlled by a feedback loop whose
detection and control operations are periodic with some
period Tc. For each cycle, the output of the detector is a
weighted average of the LO frequency error over the cy-
cle. The weighting function g(t), derived from quantum-
mechanical calculations not addressed here, depends on
the method by which the atoms are interrogated by the
radio-frequency field generated by upconversion of the LO
signal to the atomic transition frequency [1]–[4]. In gen-
eral, g(t) can be zero over a considerable portion of the
cycle. The level of the LO control signal over a cycle is a
function of the detector outputs from previous cycles.

A frequency-control loop works by attenuating the fre-
quency fluctuations of the LO inside the loop passband
(long-term fluctuations), while tolerating them outside the
passband (short-term fluctuations). As Dick saw, though,
the periodic interrogation causes out-of-band LO noise
power, near the cycle frequency fc = 1/Tc and its har-
monics, to be downconverted into the loop passband, thus
injecting random false information about the current av-
erage LO frequency into the control signal. This random
false frequency correction causes a component of white fre-
quency modulation (FM), or random walk of phase, to per-
sist in the output of the locked LO (LLO) over the long
term. Dick gave the formula

Sy (0) = 2
∞∑
k=1

g2
k

g2
0
SLO
y (kfc) (1)
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for the white-FM noise level contributed by this effect.
Here, SLO

y (f) is the spectral density of the normalized
frequency departure of the free-running LO, and gk is the
Fourier coefficient

gk =
1
Tc

∫ Tc

0
g (t) cos (2πkfct) dt, (2)

where g (t) is assumed to be symmetric about Tc/2. This
level of white FM near Fourier frequency zero contributes
an asymptotic component of Allan variance given by

σ2
y(τ) ∼ Sy (0)

2τ
(fcτ →∞).

The purpose of the present paper is to supplement pre-
vious derivations [1]–[3], [5] of the Dick formula (1) by
an approach that uses an explicit time-domain solution of
a simple LO control loop model with a general detection
weighting function g(t). Careful interpretation of this solu-
tion yields a formula for the LLO frequency spectrum, and
conditions for the validity of the Dick formula. The model
treated below is not intended as a realistic representation
of an actual frequency standard; the goal is to improve un-
derstanding of the Dick effect by exhibiting its presence in
a model with minimal features. Similar models have been
treated by Audoin et al. [6], who use an equivalent time-
domain solution method, and by Lo Presti et al. [5], [7],
who use a Fourier transform method. The Lo Presti model
also has been treated by the time-domain method [8].

II. Control-Loop Model

Fig. 1 shows the chosen model for an LO control loop,
containing both analog and digital elements. All signals are
scaled as normalized frequency departure from the ideal
frequency determined by the atomic transition. The fre-
quency noise contributed by the free-running local oscilla-
tor is yLO(t). The output LLO frequency is y(t). The error
signal

1
Tcg0

∫ Tc

0
g (u) y ((n− 1)Tc + u) du (3)

from the interrogation of y(t) during the nth cycle
(n− 1)Tc < t < nTc is implemented in Fig. 1 by a linear
time-invariant filter G with the normalized time-reversed

0885–3010/98$10.00 c© 1998 IEEE
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Fig. 1. A feedback-loop model for a local oscillator with periodic
interrogation and control. The impulse response of the filter G is
a normalized, time-reversed version of the interrogation sensitivity
function g (t).

impulse-response function

g−1 (t) =
g(Tc − t)
Tcg0

, 0 < t < Tc

= 0 otherwise

and transfer function

G (f) =
∫ Tc

0
g−1 (t) e−i2πft dt.

The symmetry assumption about g (t) has been dropped.
The filter output

Gy (t) =
∫ Tc

0
g−1 (u) y (t− u) du,

sampled at time t = nTc, is exactly (3). The detection
noise term vn can represent photon-count fluctuations in
frequency standards with optical detection, for example.
The cumulative sum of the error signals, multiplied by a
gain factor λ, is the frequency correction yn, which is ap-
plied to the LO during the next cycle nTc < t < (n+ 1)Tc.
Except for initial conditions, the following two equations
define the closed-loop model completely:

yn = yn−1 + λ (Gy (nTc) + vn) , (4)
y (t) = yLO (t)− yn−1, (n− 1)Tc < t < nTc,

(5)

in which it is convenient to suppose that n runs through
all integers. This system has two inputs, yLO (t) and vn,
and one output, y (t).

III. The LLO Frequency

The mixed analog-digital system (4), (5) can be solved
by eliminating y (t) to get an equation in yn alone. From
(5) we have Gy (nTc) = GyLO (nTc)− yn−1, which, substi-
tuted into (4), gives the first-order difference equation:

yn = (1− λ) yn−1 + λwn, (6)

where

wn = GyLO (nTc) + vn. (7)

Assume 0 < λ < 1. Then the general solution of (6) is

yn =
∞∑
j=0

λ (1− λ)j wn−j + C (1− λ)n . (8)

From now on we shall ignore the transient part of this
solution by setting C = 0.

Let us express yn directly as a function of the inputs
yLO(t) and vn. Define the discrete-time lowpass filter Hd

with weights

hj = λ (1− λ)j , j ≥ 0,

which sum to 1, and transfer function

Hd (z) =
∞∑
j=0

hjz
−j =

λ

1− (1− λ) z−1 , (9)

where, from now on, z = ei2πfTc . Substituting (7) into (8)
gives

yn =
∫ ∞

0
hc (t) yLO (nTc − t) dt+Hdvn,

= HcyLO (nTc) +Hdvn,

(10)

in which we have introduced a causal continuous-time filter
Hc with impulse response

hc (t) =
∞∑
j=0

hjg
−
1 (t− jTc)

consisting of repetitions of g−1 (t) with exponentially de-
creasing amplitudes. Notice that

∫∞
0 hc (t) dt = 1. Its

transfer function

Hc (f) =
∫ ∞

0
hc (t) e−i2πftdt

satisfies

Hc (f) = Hd (z)G (f) . (11)

Substituting (10) into (5) gives an explicit piecewise solu-
tion for the LLO frequency:

y (t) = yLO (t)−HcyLO ((n− 1)Tc)−Hdvn−1,

(n− 1)Tc < t < nTc. (12)
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IV. The LLO Frequency Spectrum

Although (12) gives an explicit formula for the out-
put frequency, its interpretation requires careful handling.
Under reasonable assumptions (see below) on yLO (t) and
vn as random processes, we cannot expect the piecewise-
defined process y (t) to be stationary, or even to have sta-
tionary nth increments for some n. Thus, the author does
not know how to assign a spectral density to it. To get
around this problem, it is convenient to study the samples
x (nTc) of the LLO time residual x (t) =

∫
y (t) dt. The

properties of these samples are determined in turn by the
properties of the average LLO frequencies

Ay (nTc) =
1
Tc

∫ nTc

(n−1)Tc
y (t) dt

=
x (nTc)− x ((n− 1)Tc)

Tc

where A is the moving-average filter whose action on a
signal ξ (t) is

Aξ (t) =
1
Tc

∫ Tc

0
ξ (t− u) du.

Its transfer function is

A (f) =
1− z−1

i2πfTc
.

Applying A to (12) gives

Ay (nTc) = AyLO (nTc)
−HcyLO ((n− 1)Tc)−Hdvn−1. (13)

We are now going to derive the spectrum of the discrete-
time process Ay (nTc) defined by (13). To this end, con-
sider the auxiliary process defined by

Y (t) = AyLO (t)−HcyLO (t− Tc) ,

which is obtained from yLO (t) by a linear time-invariant
filter B with transfer function

B (f) = A (f)− z−1Hd (f)G (f) . (14)

Assume that yLO (t) is a mean-continuous random process
with stationary first increments and a two-sided (even)
spectral density SLO

y (f), which necessarily satisfies∫ fc

0
SLO
y (f) f2df <∞,

∫ ∞
fc

SLO
y (f) df <∞

(15)

[9]. The first condition in (15) allows any power law spec-
trum |f |α for α > −3; linear combinations of such spectra
constitute the spectra that are customarily attributed to
oscillators. For α ≥ −1, the second condition in (15) re-
quires a high-frequency rolloff of the |f |α behavior.

The assumption (15) makes the process Y (t) station-
ary: because A (f), Hd (z), and G (f) are all 1 + O (f) as

f → 0, we see from (14) that B (f) = O (f). Thus |B (f)|2
attenuates any low-frequency divergence of SLO

y (f) al-
lowed by (15), leaving an integrable two-sided spectral
density

SY (f) =
∣∣A (f)− z−1Hd (z)G (f)

∣∣2 SLO
y (f) .

(16)

The first two terms of the right side of (13) are just the
samples Y (nTc), which constitute a discrete-time station-
ary process whose two-sided spectral density is

∞∑
k=−∞

SY (f + kfc) , |f | ≤ fc/2.

The terms with k 6= 0 account for the Dick effect. Let the
detection noise process vn be independent of yLO (t) and
stationary, with two-sided spectral density Sv (f). Then
the process Ay (nTc) given by (13) is a stationary discrete-
time process with two-sided spectral density

SAy (f) = S0
Ay (f) + S1

Ay (f) , |f | ≤ fc/2,

where

S0
Ay (f) =

∣∣A (f)− z−1Hd (z)G (f)
∣∣2 SLO

y (f)

+ |Hd (z)|2 Sv (f) , (17)

the main part, so to speak, and

S1
Ay (f) =

∑
k 6=0

∣∣∣∣ 1− z−1

i2π (fTc + k)
− z−1Hd (z)G (f + kfc)

∣∣∣∣2
× SLO

y (f + kfc) , (18)

the aliased part, where the sum includes both positive and
negative k.

An example of these frequency spectra is shown in
Fig. 2, in which Tc = 1 s, SLO

y (f) = |f |−1 (flicker FM)1,
g (t) = 1 for Tc/2 < t < Tc and 0 otherwise, and λ = 1/10.
Detection noise is omitted. The spectra are plotted up to
frequency fc/2. Harmonics through order 5 are used to
approximate the series in (18). Despite the attenuation of
the main part of the LLO spectrum from the LO spectrum
below the loop bandwidth, the white-FM contribution of
the aliased part is dominant only for frequencies below
10−4fc. The bandwidth of the aliased white-FM noise is
approximately the same as the loop bandwidth.

V. The Dick Formula

In general, the aliased part (18) of the LLO frequency
spectrum introduces a long-term white-FM spectral com-
ponent if (18) is continuous and positive at f = 0. Rea-
sonable mathematical conditions on the weighting function
and LO frequency spectrum will guarantee the continuity

1Violation of the second condition in (15) does not really matter.
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Fig. 2. Frequency spectra for a simple example with flicker-FM local-
oscillator noise and a 1-second cycle. The aliased spectrum at low
frequencies is responsible for the Dick effect.

of the aliased spectrum. For example, if g (t) is square-
integrable for 0 < t < Tc, and SLO

y (f) is continuous and
bounded for |f | ≥ fc/2, then it can be proved that the
right side of (18) is a uniformly convergent series of con-
tinuous functions on |f | ≤ fc/2. Consequently, the sum of
the series is a continuous function. Letting f = 0 in (18)
gives

S1
Ay (0) = 2

∞∑
k=1

∣∣∣G (kfc)
2
∣∣∣SLO

y (kfc) . (19)

For the example of Fig. 2, S1
Ay (0) =

(
8/π2

)∑∞
j=0(2j +

1)−3 = 0.853. The formula (19) holds for one-sided spec-
tral densities also. Finally, if g (t) is symmetric about Tc/2,
then G (kfc) = gk/g0. Thus (19) reduces to the Dick for-
mula (1).

VI. Remarks

The Dick effect can be hidden by the main part (17)
of the LLO spectrum. If the detection noise vn is white,
then the term |Hd (z)|2 Sv (f) competes directly with the
Dick effect as another white-FM noise at low frequen-
cies. The basic action of the control loop operates on
the LO frequency by a filter with frequency response

∣∣A (f)− z−1Hc (z)
∣∣2 , which, as we observed, is O

(
f2
)

as
f → 0. Thus, the filter adds 2 to the exponent of any
low-frequency power law that SLO

y (f) obeys. If SLO
y (f) is

more divergent than f−2 (random walk FM), then S0
Ay (f)

is unbounded near f = 0, hence masks the Dick effect.
Random walk FM in the LO is transformed to another
white FM component in the LLO. Anything less divergent,
like flicker FM, is transformed to an LLO spectral density
that tends to zero at low frequencies. In this case, the
Dick effect and the detection noise predominate in the long
term.

References

[1] G. J. Dick, “Local oscillator induced instabilities in trapped ion
frequency standards,” in Proc. 19th Precise Time and Time
Interval (PTTI) Applications and Planning Meeting, Redondo
Beach, CA, 1987, pp. 133–147.

[2] G. J. Dick, J. D. Prestage, C. A. Greenhall, and L. Maleki,
“Local oscillator induced degradation of medium-term stability
in passive atomic frequency standards,” in Proc. 22nd PTTI
Meeting, Vienna, VA, 1990, pp. 487–508.

[3] G. Santarelli, P. Laurent, A. Clairon, G. J. Dick, C. A. Green-
hall, and C. Audoin, “Theoretical description and experimental
evaluation of the effect of the interrogation oscillator frequency
noise on the stability of a pulsed atomic frequency standard,”
in Proc. 10th European Frequency and Time Forum, Brighton,
UK, 1996, pp. 66–71.

[4] G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick,
and A. Clairon, “Frequency stability degradation of an oscillator
slaved to a periodically interrogated atomic resonator,” IEEE
Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp. 887–894,
1998.
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A Simple Analysis of the Dick Effect in Terms
of Phase Noise Spectral Densities
Letizia Lo Presti, Daniele Rovera, Member, IEEE, and Andrea De Marchi

Abstract—In cold-atom frequency standards based on
the Ramsey double interaction method, the phase noise of
the interrogating signal appears as a random “end-to-end
phase difference,” thereby introducing frequency noise in
the loop. This phenomenon is analyzed in this paper in the
Fourier frequency domain, using phase noise power spectral
densities S�(f). In continuously operated standards, the ex-
cess noise thus introduced is servoed out in the long term
to become eventually smaller than the atomic shot noise,
whereas in standards with pulsed operation the phase noise
around even harmonics of the pulse rate is down-converted
by aliasing to base band. This latter mechanism is referred
to in the literature as Dick effect.

In this paper, a model of the frequency control servo
system is proposed, in which the input signal is the (known)
local oscillator (LO) phase noise S�(f) and the output signal
is the (unknown) phase noise S0�(f) of the standard in closed
loop operation. The level of excess white frequency noise
added by aliasing on the stabilized LO through the Dick
effect can be related analytically to the characteristics of
the free LO phase noise. From this, the stability limitation
(with slope ��1=2) typical of the Dick effect can then be
obtained by the usual conversion formulas based on the
power law model.

I. Introduction

The mechanism by which phase/frequency instabili-
ties of the rf source induce an excess white frequency

noise in pulse-operated Ramsey type atomic frequency
standards has been recently given much attention and re-
ferred to as Dick effect, after it was first pointed out by
Dick [1] and later studied more in depth in [2], [3]. This
name is accepted here, as it seems appropriate and conve-
niently short.

In this paper it is shown that the Dick effect is intro-
duced by the sampling of the rf phase that occurs in these
devices. A contribution to clarity is offered as to how much
of the Dick effect is due to the physics of the interaction be-
tween atoms and rf field, and how much can be thoroughly
explained as a simple aliasing phenomenon in a sampling
process. In fact, atomic physics is needed to analyze the
details of how the phase is sampled within each interaction
of the atoms with the rf field, particularly when the Rabi
to Ramsey interaction time ratio is not negligible or the
standard is operated at a power level other than optimum
[4]. Such an analysis can be expected to improve the ac-
curacy in the evaluation of the Dick effect, but the effect
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itself is brought in by the phase sampling process and can
be described with existing signal theory tools.

In order to analyze these effects, a model of the fre-
quency control servo system is proposed, in which the in-
put signal is the (known) LO phase noise Sφ(f) and the
output signal is the (unknown) phase noise S′φ(f) of the
standard in closed loop operation. This approach makes
the substance of the Dick effect extremely easy to grasp.
Approximations guided by numerical simulation are used
in the analysis in order to simplify results. With the help of
these, simple formulas can be written, valid in most prac-
tical cases, by which the size of the effect can be evaluated
with easy back-of-an-envelope calculations.

In the process of doing so, a short discussion is also
offered in this paper on the meaning of the Power spectral
densities in the case of nonstationary processes. Because
phase noise is, in most cases, nonstationary in high quality
frequency sources, this discussion is, in principle, necessary
when spectral modifications are involved. In fact, in these
cases, the power spectrum cannot be obtained from the
Fourier transform of the autocorrelation.

II. Physical Model

In order to analyze the effects of LO phase noise on the
stability of Ramsey type atomic frequency standards, the
simplified Ramsey formula used in this paper is:

signal ∝ 1
2

(1 + cos(φ2 − φ1)). (1)

In cold-atoms frequency standards (e.g., trapped ions
or fountains), because of the narrow velocity distribution
and the usually small Rabi to Ramsey interaction time
ratio, this is a particularly good approximation of the ac-
tual transition probability, at least for the central Ramsey
fringe. Appearing in (1) is the difference φ2 − φ1 between
the phases of the microwave field as experienced by the
atoms in the second and in the first interaction.

When using square wave frequency modulation of depth
±∆ν around a frequency offset by an error δν from the
atomic resonance, the latter can be written as:

φ2 − φ1 = ±2π∆νT + 2πδνT + ϕ(t)− ϕ(t− T )
(2)

for either half of the modulation cycle. This is an accept-
able approximation when the power is about optimum
and the Rabi interaction time Tp is much shorter than

0885–3010/98$10.00 c© 1998 IEEE



900 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 4, july 1998

the Ramsey drift time T , so that the instantaneous phase
value can be considered, instead of some kind of average
over Tp. In (2) ϕ(t) is a random process, which summarizes
the phase instabilities of the microwave signal.

Because cos(x± π
2 ) = ∓ sinx, if the modulation depth

∆ν is equal to half linewidth, which is a typical case, the
detector signal can be calculated from (1) and (2), and
linearized as

signal±∆ν ∝
1
2

[1∓ (2πδνT + ϕ(t)− ϕ(t− T ))]
(3)

for δνT and ϕ(t) small (much less than 1 rad).
The raw error signal is obtained from (3) in different

ways in the two cases of continuously operated (V cε ) and
pulse-mode standards (V pε ). It makes sense considering
both in this context because, although trapped ion stan-
dards can be operated only in the pulsed mode, a continu-
ously operated fountain of monokinetic neutral atoms can
instead be conceived [5], [6].

In the continuous case the signal of (3) is synchronously
detected in a lock-in amplifier, and V cε (t) is a modified
version of (3) with the DC term removed and the sign
changed each half period of the modulation cycle. It is
then just:

V cε (t) = 2πδνT + ϕ(t)− ϕ(t− T )

= 2πT
[
δν +

1
2π

ϕ(t)− ϕ(t− T )
T

] (4)

at all times except right after the switching instants, when
atoms that have seen one frequency in the first interaction
and the other in the second contribute to the signal. These
transient signals are usually rejected by blanking. Over-
looking this problem, which does introduce some aliasing,
but really makes a minor difference if the duty cycle is good
enough, it can be seen in (4) that V cε (t) is proportional,
as it should, to the frequency error δν plus the frequency
noise averaged over T . The latter, in fact, is given by the
end-points phase slope divided by 2π.

The servo control loop forces δν to vanish, and the
raw error signal then becomes proportional to the sole fre-
quency noise. The closed loop frequency fluctuations are
then given, within the control loop bandwidth, by the open
loop fluctuations divided by the loop gain, until the atomic
shot noise limit is reached.

In the pulsed case the signal of (3) does not physically
exist in the apparatus, because the sampling process is in-
herent to the way the standard is realized. However, it is
convenient to consider it anyway in order to make signal
analysis easy by ideally separating different functional op-
erations even if in the actual apparatus it is not possible
to separate them.

The error signal V pε in a pulse-mode operated standard
is ideally obtained from (3) by first taking the difference
between Ramsey signals obtained at successive instants, Tc
apart in time, with opposite frequency modulation, and
then sampling the resulting continuous signal with rate

Fig. 1. Block diagram of the model used in this paper. The H1(f)
dashed box represents the Ramsey interrogation. The VCO acts as
an ideal integrator with phase noise added at the output.

Ts = 2Tc. The fictitious signal before sampling, indicated
as Vα, is:

Vα(t) ∝ 4πδνT + ϕ(t)− ϕ(t− T )
+ ϕ(t− Tc)− ϕ(t− Tc − T ). (5)

Again, the servo system will force δν to vanish.
The model shown in the block diagram of Fig. 1 is then

obtained for the system in operation. Here the Ramsey
interaction is contained in the dashed box marked H1(f),
and the sampling is represented by the block marked S/H.

A basic tailoring of the loop gain is used here, because a
more sophisticated approach would have an influence only
on loop stability and not on the Dick effect, which is the
focus here. A deeper discussion of the control loop can be
found in [7].

The location where the atomic shot noise can be con-
sidered injected into the system may vary from where it
is shown back to right in front of block H3. At any rate,
the influence of the atomic noise will be given no further
consideration in this paper, as the aim here is to find the
stability limitation introduced by LO fluctuations.

The fact that the interaction between atoms (ions) and
microwaves is not an instantaneous sampling of the phase,
but has a duration Tp, introduces some kind of time av-
eraging. In this paper a simple low pass filter, H3, with
cutoff at 1/(2πTp), is used to summarize this effect. This
filter will not affect the loop stability because the cutoff
frequency is orders of magnitude higher than the attack
frequency of the loop, but will modify the effective type
of phase noise at higher Fourier frequencies that is down-
converted by the sampling process. This block will not be
included in further developments carried on in this paper.

Furthermore, nonoptimized rf field intensity, or one that
varies during the interaction (as in sinewave shaped field
profiles or multiwavelength Rabi cavities) may certainly
affect the way the phase is sampled by the atoms and,
therefore, the level of the Dick effect. An analysis of these
details requires quantum mechanical calculations [3], [4],
and is beyond the scope of this paper.

III. Mathematical Model

The main interest here is to calculate the Power spectral
density of the controlled LO. Input/output relationships
of functional blocks will then be described in the Fourier
domain whenever possible. An analysis in the time domain
can be found in [8]. The analysis of the loop can be done
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with reference to Fig. 1. As already pointed out, functional
blocks of Fig. 1 do not necessarily represent identifiable
physical subsystems, but rather equations between signals.

Block H1 is an LTI (linear time invariant) system rep-
resenting (5), which can be represented in the frequency
domain by means of its transfer function |H1(f)|ejψ, with

|H1(f)| = 2
√

1− cos(2πfT )
√

1 + cos(2πfTc) (6)

and ψ = π/2− πf(T + Tc).
The relationship between the output signal V pε (t) and

the input Vα(t) of the sample-and-hold (S/H) circuit can
be written as:

V pε (t) =

[
Vα(t)

+∞∑
l=−∞

δ(t− lTs)
]
∗ h(t) (7)

where δ(t) is the continuous delta function and h(t) is
the impulse response of an LTI system representing the
hold operation of the SH circuit. The symbol ∗ stands
for convolution. In our application h(t) is a rectangular
impulse equal to 1 for t ∈ [0, Ts]. By performing the con-
volution, (7) becomes V pε (t) =

∑+∞
l=−∞ Vα(lTs)h(t − lTs).

The sampling function (Vα(lTs)) and the holding function
(h(t− lTs)), which contribute to the process V pε (t), can be
clearly recognized in (7).

The SH block is linear but is not time-invariant; there-
fore, it cannot be represented in the frequency domain by
means of a transfer function. However, Fourier analysis is
still feasible, as shown in Section IV.

Block H2 is the loop integrator. Its transfer function is
H2(f) = c

jf .

IV. Closed Loop Phase Noise

The scheme of Fig. 1 allows closed loop phase noise
analysis by common signal theory techniques. However, it
is important to point out that classical spectral analysis,
developed for stationary processes, cannot be used. In fact,
the signals of this loop cannot be modeled by stationary
processes. The main reason for this is the presence of the
SH block, which produces a nonstationary process at its
output, even when the signal at the input is stationary1.

Because of this, the different approach illustrated in
Appendix A will be followed, and the spectral analysis
of phase noise will not be done by the Fourier transform
of the autocorrelation, but rather by operating on deter-
ministic signals. In fact, the proposed model easily can be
analyzed in the frequency domain when signals are deter-
ministic.

In this way, it is possible to show that the relationship
between the Fourier transforms of ϕ(t) and ϕ′(t), which

1It is known from signal theory [9] that an SH block turns a sta-
tionary process into a cyclo-stationary process. A suitable random
sampling operation can be introduced to overcome this problem, but
this method is not applicable if the SH is inserted in a closed loop.
The proof of this is somewhat involved, and will not be reported here
because it is beyond the scope of this paper.

will be indicated by Φ(f) and Φ′(f), respectively, is2:

Φ′(f) = Φ(f) +He(f)Γ(f) (8)

Here He(f) represents the linear part of the loop gain,
with the exception of H1(f), and includes the loop integra-
tor H2(f), the VCO transfer function A

jf , and the holding
function of the SH, while Γ(f) is a periodic function of f ,
with period fs = 1/Ts, given by:

Γ(f) =
∑+∞
l=−∞Φ(f − lfs)H1(f − lfs)

1−
∑+∞
l=−∞He(f − lfs)H1(f − lfs)

(9)

which contains the effect of aliasing. These equations make
it possible to find the Fourier transform of ϕ′(t) from the
Fourier transform of ϕ(t).

In order to obtain the power spectrum Sϕ′(f) of the
random process ϕ′(t) from the Fourier transform of a “de-
terministic” ϕ′(t), which is nothing else than one of its
realizations, the average indicated in (22) in Appendix A
must be performed.

V. The Dick Effect

Because the Dick effect intervenes at very low Fourier
frequencies (well below the loop attack frequency), an ap-
proximation valid for f � fs can be used in analyzing the
meaning of (8) and (9).

An obvious one easily can be identified for the denomi-
nator of (9), where the term for l = 0 in the sum is clearly
much greater than all the other terms, as it contains the
low frequency loop gain. By reducing the denominator to
that term, and isolating the similar term in the sum at the
numerator, (8) can be rewritten as

Φ′(f) = −
∑
l 6=0 Φ(f − lfs)H1(f − lfs)

H1(f)
(10)

The evaluation of the closed loop spectrum according to
Appendix B involves the calculation of the expected value
of the square modulus of (10), which can be written in
a simple form only if the cross terms are considered neg-
ligible. Such an assumption is certainly acceptable if the
phases of the (phase) noise around two different harmonics
of fs are uncorrelated, which seems realistic.

We can therefore write, for f � fs,

Sφ′(f) ≈ 2
∞∑
l=1

|H1(lfs)|2
|H1(f)|2 Sφ(lfs). (11)

It is worth noting that this equation is similar in the
form to the equation used in the literature to describe the
Dick effect, with the “g function” substituted by H1(f).
The meaning of |H1(f)| here is rigorously defined by (6),

2Notice that the Fourier transform of a random process does not
exist in general. Here ϕ(t) and ϕ′(t) are considered as deterministic
signals (for example, each of them could be a single realization of the
corresponding process in a finite time interval).
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and for f � fs it can be seen to be H1(f) ≈ 4πfT .
This latter approximation shows that the phase noise in-
troduced by the Dick effect is white frequency noise, be-
cause Sφ′(f) ∝ f−2. A simpler formula, still valid for any
kind of phase noise process Sφ, can be derived from (11)
by carrying also H1(lfs) through a few easy passages, valid
in the approximation f � fs. It is then found that:

Sφ′(f) ≈ 2
f2

∞∑
n=1

(
sinnπT/Tc
nπT/Tc

)2

(2nfs)2Sφ(2nfs)
(12)

where the summing index l in (11) was substituted with
n = l/2, because only terms with even l are left, as an odd l
makes H1(lfs) vanish. If expressed in terms of power spec-
tral densities of fractional frequency fluctuations Sy(f),
(12) becomes even simpler:

Sy′(f) ≈ 2
∞∑
n=1

(
sinnπT/Tc
nπT/Tc

)2

Sy(2nfs). (13)

Because the Dick effect instability contribution always
turns out to be white frequency noise, the corresponding
Allan variance is easily obtained from (13) by using the
well-known formula

σ2
y′(τ) =

Sy′(f)
2τ

. (14)

For noise processes of the power law type, with Sy(f) =
hαf

α, (13) can be put in the form:

Sy′(f) = 2hα(2fs)αFα

(
T

Tc

)
(15)

where the function Fα(T/Tc) is given by:

Fα

(
T

Tc

)
=
∞∑
n=1

nα
(

sinnπT/Tc
nπT/Tc

)2

(16)

and summarizes the dependence of the Dick effect on the
duty cycle T/Tc and on the spectral slope α. For α ≥ 1 the
series in (16) diverges. However, an effective value of Fα
still can be calculated for any given band limitation that
may exist in the system, by truncating the series at the
appropriate term. Curves of Fα versus T/Tc are shown
in Fig. 2 for different values of α, including the first 30
(broken lines) or 3000 terms of the series (solid lines).

It is interesting to point out that, whatever the nature of
the LO instability may be, the effect vanishes for T = Tc,
which means that there is no dead time between interro-
gations, while at the limit for vanishing T is simply given
by the infinite sum of the Power spectral densities of LO
relative frequency fluctuations at the even harmonics of fs:

Sy′ ≈ 2
∞∑
n=1

Sy(2nfs). (17)

In this latter case, band limitation is needed for (17) not
to diverge for frequency noise processes with α ≥ −1, that

Fig. 2. Dependance of the Dick effect on the duty cycle T/Tc for
different values of the spectral slope α. The only band limitation is
given here by the finite number of terms summed up in the series (30
for the broken lines and 3000 for the solid lines). For Tc = 1s this is
equivalent to a bandwidth of 30 Hz and 3 kHz, respectively.

is not only for white frequency noise, but even for flicker of
frequency. This is obviously an extreme case, unrealistic for
frequency standards because T is the Ramsey drift time,
which is always greater than zero in Ramsey schemes.

In between these extremes, the Dick effect assumes a
finite value that depends on T/Tc and, for α ≥ 1, also on
the bandwidth of the system. In Fig. 2 a band limitation
is introduced by the finite number of terms summed up in
the series (30 or 3000). For Tc = 1s this is equivalent to a
bandwidth of 30 Hz and 3 kHz, respectively. Incidentally,
it may be worth pointing out here that the chosen 30 Hz
bandwidth is compatible with existing devices [2], [4].

It also should be remembered at this point that block
H3 in Fig. 1 does exist in actual devices, though overlooked
in this analysis, which is based on a simplified model. Block
H3 represents the effects of the phase averaging due to the
finite Rabi interaction time Tp, which intrinsically intro-
duces a band limitation. For details on the way this band
limitation is introduced, quantum mechanical calculations
are needed, which are beyond the scope of this paper and
are treated in [4].

VI. Loop Stability

For loop stability, what is really of interest here is that
Sy′(f) be smaller than Sy(f) at low Fourier frequencies,
because otherwise it would mean that the servo loop is ac-
tually worsening the stability of the LO beyond the attack
time, which is not what one would expect of a stabilization
servo. With this criterion, which can be written:

Sy(f)� 2
∞∑
n=1

(
sinnπT/Tc
nπT/Tc

)2

Sy(2nfs), (18)
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conclusions can be made about the conditions of operation
of the servo loop with different types of LO noise.

A general formula can be obtained, which is more strin-
gent than (18), by substituting 1 for the sine function in
all terms of the series, and supposing that the free LO fre-
quency noise spectrum be a pure power law noise process.
The condition is found:

Sy(f)� 2
2αSy(fs)
(πT/Tc)2 ζ(2− α) (19)

where ζ(2−α) =
∑∞
n=1 n

α−2 is Riemann’s Zeta function of
the indicated integer argument [10]. This formula is valid
for α ≤ 0. Because Sy(f) = (f/fs)αSy(fs), a condition
can be found from (19) that does not contain the absolute
level of frequency instability Sy(fs), but only its slope α.
This is: (

T

Tc

)2

� 2
2α

π2 ζ(2− α)
(
f

fs

)−α
(20)

which shows that, for frequency noise in the LO with α <
0, the loop is always operating correctly at sufficiently low
Fourier frequencies, no matter what the duty cycle may
be.

For α = 0, or white frequency noise, it is ζ(2) = π2/6.
The condition for useful loop operation (20) then becomes:

T

Tc
� 1√

3
≈ 0.6. (21)

This illustrates that it is not so much a low pass filter
that is needed to ensure a properly operating loop in the
presence of white frequency noise, as rather a duty cycle
sufficiently close to 1.

VII. Comparison with Numerical Results

Numerical simulations of the loop of Fig. 1 in operation
were made by using (8) and computing power spectra as
spelled out in detail in Appendix B. The results of such
simulations are reported in [11] and [12]. In particular in
[11] results are given as a function of T/Tc for the Dick
effect level in a system dominated by flicker of frequency
noise.

The same numerical results are reported here for con-
venience in Fig. 3, where they are compared with the the-
oretical curve calculated from (14) and (15). For ease of
comparison, the function Fα is used here instead of the
parameter A of [11]. The relationship between the two is
Fα(T/Tc) = A2/2.

VIII. Conclusions

In the analysis reported in this paper, a number of ap-
proximations were made. Although no deep discussions
were carried out to justify them, they are strongly sup-
ported by the agreement between the derived formulas and
the results of numerical simulations.

Fig. 3. Comparison of results obtained by numerical simulation of
the loop operation with the theoretical curve obtained for the Dick
effect as a function of the duty cycle T/Tc. The spectral slope for
this run of data points was −1 (flicker of frequency noise).

The only possible parameters capable of affecting the
level of the Dick effect appear to be the following:

• The level of phase/frequency stability of the local os-
cillator.
• The dead time between cycles, or T/Tc, as already

pointed out in Section V.
• The sampling frequency (because of the increasing LO

instabilities at low Fourier frequencies, a greater fs
means less noise).
• In some cases the band limitation (e.g., for white phase

noise, or α = 2).

Following the philosophy that the local oscillator cannot
be readily improved, that is assuming that the best avail-
able oscillator is used and the problem still exists, only the
handles offered by the last three parameters can be used
to try and decrease the Dick effect.

For an analysis of band limitation in the white phase
noise case, see [4]. As for acting on the other two parame-
ters, a number of proposals exist.

In one proposal, two atomic pulsed operated resonators
would be excited alternatively [2], in an effort to make the
dead time vanish. In another one, the next shot would be
prepared in a fountain while one is undergoing its parabolic
flight [13] (the light shift problem would be taken care of,
in this case, by blocking the light access to the drift region
with a shutter that opens only to let the atoms through).
In yet another proposal [14], there would be many shots
in flight through the apparatus at all times.

Operation of a fountain with a continuous beam [5], [6]
could, in principle, obliterate the Dick effect, though it
may cause problems with the light shift. However, it must
be pointed out that the modulation frequency of square
wave frequency modulation must be very slow in this case,
so that the blanking intervals that are necessary at the
switching transients would not reintroduce aliasing and as
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a consequence the Dick effect. As a result, the loop can
start controlling only at extremely low frequencies (very
long times), and the requirements of the LO are made more
severe rather than relaxed, as oscillator instabilities tend
to increase at lower Fourier frequencies. It is quite possible
instead that this problem may be solved by the use of
sinewave modulation, but in this case the intermodulation
effect studied by Audoin et al. will show up [16].

Appendix A

Frequency Analysis of a Nonstationary Process

The spectral analysis of a stationary process X(t) is
based on its Power spectrum SX(f), defined as the Fourier
transform of its autocorrelation RX(τ) = E{X∗(t)X(t +
τ)}, where E{·} stands for expectation. If the process X(t)
is not stationary, the autocorrelation is a function of two
variables (t, and τ), and this definition of power spectrum
cannot be applied.

Several alternative definitions have been proposed [15]
to introduce a function of frequency suitable to adequately
describe a nonstationary process in the frequency domain.
The method used here is based on the Power spectrum
SX(f), defined as the Fourier transform of the time aver-
age of the autocorrelation, that is the Fourier transform of:

RX(τ) = lim
T→∞

1
2T

∫ +T

−T
RX(t+ τ, t)dt

where RX(t+ τ, t) = E{X∗(t)X(t+ τ)}.
It can be shown [15] that SX(f) also can be ex-

pressed as:

SX(f) = E

 lim
T→∞

1
2T

∣∣∣∣∣
∫ +T

−T
X(t)e−j2πftdt

∣∣∣∣∣
2
 .

(22)

In our application this is a fundamental equation. In
fact it is shown in Section IV that the Fourier transform
contained in (22) (that is the integral

∫ +T
−T X(t)e−j2πftdt)

can be evaluated for both ϕ(t) and ϕ′(t), but the same is
not possible for their power spectra.

Accordingly, power spectra used in the following are to
be understood as defined like in (22). However, the simpler
notation S(f), without the overline, is always used in the
text for simplicity.

Appendix B

Estimate of Sϕ′(f)

In numerical simulations, the spectrum Sϕ′(f) is com-
puted for all frequencies fi of a regularly spaced grid, and
each value Sϕ′(fi) is obtained in three steps.

Step One
A number of realizations of the input phase noise

are generated as numerical sequences by tayloring White
Gaussian noise with numerical filters. This is done in a

way to ensure that their Fourier transform be consistent
with the desired shape of the power spectrum Sϕ(f). Each
realization is indexed by k, with k = 1, 2, . . . ,M . For each
frequency fi and each realization k a complex spectrum
sample Φk(fi) is obtained.

Step Two
Equation (8) is used to compute a spectrum sample

Φ′k(fi) for each frequency fi and each realization.
Step Three
Φ′k(fi) is averaged over k, according to (22), yielding an

estimate of Sϕ′(fi).
It is important to point out that the described method

is based on the existing analytical relationship between
Φ(fi) and Φ′(fi). The simulation is used only to gener-
ate the spectrum samples Φk(fi). Therefore, we can say
that the nature of the phenomenon under examination is
completely described by (8).
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