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Differential Forms of the Kramers-Krönig
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Abstract—Differential forms of the Kramers-Krönig dis-
persion relations provide an alternative to the integral
Kramers-Krönig dispersion relations for comparison with
finite-bandwidth experimental data. The differential forms
of the Kramers-Krönig relations are developed in the con-
text of tempered distributions. Results are illustrated for
media with attenuation obeying an arbitrary frequency
power law (�(�) = �0 + �1

∣∣�∣∣y). Dispersion predictions
using the differential dispersion relations are compared to
the measured dispersion for a series of specimens (two poly-
mers, an egg yolk, and two liquids) exhibiting attenuation
obeying a frequency power law (1�00 � y � 1�99), with very
good agreement found. For this form of ultrasonic attenua-
tion, the differential Kramers-Krönig dispersion prediction
is found to be identical to the (integral) Kramers-Krönig
dispersion prediction.

I. Introduction

It has been demonstrated that (integral) Kramers-
Krönig (K-K) dispersion relations in the context of point

functions [1] and tempered distributions [2] are available
for media with attenuation obeying a frequency power law.
The development of the K-K dispersion relations for tem-
pered distributions was prompted in part by the work of
Szabo [3], [4], which overcame a weakness of the nearly lo-
cal approximation to the K-K dispersion relations [5], [6]
through the use of a form of tempered distributions.

The agreement of the K-K dispersion predictions with
measured dispersions hinges upon the appropriateness of
the chosen ultrasonic propagation model. Under typical ex-
perimental conditions, knowledge of the propagation prop-
erties of interest across the entire (i.e., infinite) frequency
spectrum are never available. Consequently, compromises
must be made regarding the K-K analysis of the experi-
mentally measured data. One compromise, which has been
successful for certain media with attenuation obeying a
frequency power law, is the extrapolation of the measured
ultrasonic parameters outside the experimentally available
bandwidth for use with integral K-K dispersion predictions
[1], [4], [7]. An alternative approach that recently was ex-
plored for the case of resonant suspensions of ultrasonic
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contrast agents is the truncation of the K-K integrals [8].
In contrast to these two approaches, we explore the de-
velopment of differential (sometimes referred to as nearly
local) forms of the K-K dispersion relations appropriate
for power law attenuation.

We begin with a review of derivative analyticity rela-
tions that originated in the particle scattering literature
[9]. We extend the mathematical formalism of the differ-
ential dispersion relation technique to the generalized K-K
dispersion relations, placing the nearly local approxima-
tion to the ultrasonic K-K dispersion relations developed
by O’Donnell et al. [5], [6] in the broader context of the
derivative analyticity relations. In Section III, we discuss
differential dispersion relations for the case of the ultra-
sonic complex wave number and consider the specific case
of the attenuation coefficient obeying a frequency power
law. We compare predictions of dispersion using the de-
veloped differential dispersion relations to experimentally
measured dispersions in Section IV. In Section V we dis-
cuss the equivalence of the differential dispersion relations
and the (integral) K-K relations for media with frequency
power law attenuations.

II. Review of Differential Dispersion Relations

The differential approximations of O’Donnell et al. [6]
provided a simple and useful approach to the study of me-
dia in which the derivative of the attenuation coefficient
and phase velocity did not vary rapidly over the frequency
bandwidth of interest. Subsequent to the introduction of
the differential approximations known as the nearly lo-
cal approximations to the K-K relations, a variety of re-
searchers have found them useful for measurements in bi-
ological media [10], [11], man-made composites [12], [13],
and polymeric materials [7], [14], namely, those media with
attenuation that increases approximately proportional to
frequency. The following mathematical development places
the nearly local approximations to the K-K relations in the
broader context of differential K-K dispersion relations.

A. Derivative Analyticity Relations
(or Differential Dispersion Relations)

The use of differential forms of dispersion relations, or
derivative analyticity relations, has not been restricted to
the field of ultrasonics. A mathematically equivalent ap-
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proach by Bronzan et al. [9] has been proposed for use
in high-energy particle scattering measurements, with a
similar restriction that the scattering amplitude not vary
rapidly over the (energy) domain of interest. Although the
relations have been found useful [15], [16], they have re-
ceived some criticism with regard to their mathematical
foundation [17], [18]. Nevertheless, derivative analyticity
relations have been extended to the study of scattering
amplitudes for which the smoothness restriction has been
relaxed [19]. More recently, differential or quasilocal dis-
persion relations, as derivative analyticity relations also
have been called, have been applied in high energy hadron
scattering measurements [20], [21].

The derivative analyticity relation originally proposed
by Bronzan et al. [9] that relates the real and imaginary
parts of a scattering amplitude is given by:

Ref(s, t) = sα tan
[
π

2

(
α − 1 +

d

d ln s

)]
Imf(s, t)

sα
,
(1)

where s is the energy, t is the four-momentum transfer,
and α is a free parameter. By convergence restrictions,
0 < α < 2 is required, with α typically near 1. The deriva-
tive analyticity relation (1) is conventionally utilized by
keeping only the first term of the tangent expanded in se-
ries form.

B. Differential Forms of the Generalized
Kramers-Krönig Dispersion Relations

We now develop differential forms of the generalized
K-K dispersion relations in order to extend the range of
applicability to media with attenuation obeying an arbi-
trary frequency power law. The mathematical steps of the
O’Donnell et al. [6] and the Bronzan et al. [9] approaches
are nearly identical. However, we follow the Bronzan et
al. [9] approach which avoids an approximation used by
O’Donnell et al. [6] and has a more elegant form. Further-
more, we consider the complex susceptibility of interest
(e.g., the complex wave number) as a tempered distribu-
tion [22], which is a type of generalized function (or func-
tional). Note, however, that it also is possible to develop
similar differential forms if one treats the complex suscep-
tibility as a (point) function and uses the method of sub-
tractions [23]. For point functions, the susceptibility must
converge to zero at arbitrarily large frequencies. In con-
trast, tempered distributions need only be bounded by a
power law. (See [2] for further details.) Consequently, tem-
pered distributions are ideal for the study of media with
attenuation obeying a frequency power law.

We begin with the generalized K-K dispersion relation
of order n (where n is an even integer):

ReG(ω)
(iω)n

=
2
π

P
∞∫
0

ω′ImG(ω′)
(iω′)n

dω′

ω′2 − ω2 , (2)

where P signifies the Cauchy principal value of the inte-
gral. Eq. (2) is equivalent to the generalized Hilbert trans-

form, having been modified such that the integral is explic-
itly over positive frequencies. (The inner product notation
of the generalized K-K dispersion relation is implicit here.
(See (8a) of [2] and (3.16) of [24] for further details.) Here,
n is chosen such that the generalized Hilbert transform is
convergent. We discuss the order n in more detail below.
The generalized Hilbert transform is operationally equiv-
alent to normalizing the complex susceptibility by some
power of frequency. It should be noted, however, that the
theory of generalized functions provides a well developed
formalism for such operations. In addition, the present use
of generalized functions follows that of the time-causal the-
ory of Szabo [3], [4]. (Szabo used the generalized functions
in the form of good and fairly good functions developed
by Lighthill [25], which is based on the development of
Schwartz [22].)

We assume G(ω) to be some susceptibility distribution
with the restriction that ReG(ω) has even symmetry and
ImG(ω) has odd symmetry. Upon using a simple variable
substitution (x′ = ln(ω′/ω)) and integration by parts, we
find:

ReG(ω) =
1
π

ωn−1

∞∫
−∞

dx′
[
ln coth

∣∣∣∣x
′

2

∣∣∣∣
]

d

dx′
ImG(ω′)
ω′n−1 .

(3)

Considering the term
ImG(ω′)
ω′n−1 as a uniformly convergent

Taylor series and expanding about x′ = 0 (or ω′ = ω), we
find:

ReG(ω) =
1
π

ωn−1

∞∫
−∞

dx′

[
ln coth

∣∣∣∣x
′

2

∣∣∣∣
]

d

dx′

∞∑
m=0

x′m

m!

(
dm

dx′m
ImG(ω′)
ω′n−1

∣∣∣∣
x′=0

)
. (4)

Subsequent to interchanging the order of summation and
integration, one can evaluate the integral (see [9]) such
that:

ReG(ω) = ωn−1
∞∑
l=0

(π

2

)2l+1 22l+2
(
22l+2 − 1

)
(2l + 2)!

Bl+1

d2l+1

dx′2l+1

ImG(ω′)
ω′n−1

∣∣∣∣ x′=0
(ω′=ω)

, (5)

where Bl represents Bernoulli’s numbers [26]. We also note
that the sum in (5) is a series expansion of the tangent
function. We can write the differential form of the gen-
eralized K-K dispersion relation (for n even) going from
ImG(ω) to ReG(ω) as:

ReG(ω) = ωn−1 tan
(

π

2
d

d lnω

)
ImG(ω)
ωn−1 . (6)

We may also consider the second of the pair of general-
ized K-K dispersion relations of order n (for n even):

ImG(ω)
(iω)n

= −2ω

π
P

∞∫
0

ReG(ω′)
(iω′)n

dω′

ω′2 − ω2 . (7)
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Performing the same steps that led to (6), we find the dif-
ferential form (for n even) going from ReG(ω) to ImG(ω)
to be:

ImG(ω) = −ωn tan
(

π

2
d

d lnω

)
ReG(ω)

ωn
. (8)

If instead we assume the order n of the generalized
Hilbert transform to be odd, which affects the symmetry
of the K-K kernel, we then find the differential forms of
the generalized K-K dispersion relations to be:

ReG(ω) = ωn tan
(

π

2
d

d lnω

)
ImG(ω)

ωn
, and (9)

ImG(ω) = −ωn−1 tan
(

π

2
d

d lnω

)
ReG(ω)
ωn−1 .

(10)

The order of n reflects the symmetry of the integrand of
the Hilbert transform. In addition, the value of n is chosen
such that the generalized Hilbert transform is convergent,
which, for the case of the ultrasonic wave number, depends
upon the growth properties of both the attenuation coeffi-
cient and phase velocity. It is sufficient to choose the lowest
value of n that satisfies the Hilbert transforms, although
one may in principle choose larger values of n [23]. For ex-
ample, one can use (8) to solve for the dispersion for the
case n = 2 and 1 < y < 3 but could also use (10) for the
case n = 3 and 1 < y < 3. Operationally, one may view the
use of the generalized Hilbert transform with tempered dis-
tributions as dividing the wave number by some power of
frequency. However, as previously mentioned, it is the the-
ory of distributions that provides a rigorous mathematical
foundation which permits one to do so. For the case n = 1,
the first order expansion of the derivative analyticity rela-
tion (1) with α = 1 or (9) can be shown to be equivalent
to the (original nearly local) differential approximation:

α(ω) − α(0) ≈ −π

2
ω2 d

dω

(
1

c(ω)

)
, (11)

as we shall see in Section III-B.
We now have available differential dispersion relations

for both even and odd orders of the generalized Hilbert
transform. However, we will specifically consider those dif-
ferential forms of the K-K relations for comparison with
experimental data, namely, (8) and (9) for which the low-
est order n is sufficient to satisfy the convergence of the
generalized Hilbert transforms. In Section V we briefly dis-
cuss the issue of a preferred directionality to the K-K dis-
persion relations (e.g., predicting dispersion from attenua-
tion or vice versa) for comparison with experimental data.
We remark also that the differential dispersion relations
are accurate to within a constant value. To avoid such an
ambiguity, this constant value is often accounted for by
subtracting the value of the susceptibility function at a
reference frequency.

III. Application of the Differential Forms of

the Kramers-Krönig Dispersion Relations

As mentioned above, the nearly local approximation
has been successfully applied in several types of ultrasonic
measurements. Despite this past success, it recently was
shown that the nearly local approximation (11) may not
be adequate for some media [3], [7]. Specifically, it appears
to break down for media with attenuation obeying a fre-
quency power law |ω|y where y ≥ 1.5 (roughly), as was
considered in [3] and [7]. This stems from the fact that the
Hilbert transform for point functions is not strictly conver-
gent for such attenuation coefficients. More generally, we
would expect that the nearly local approximation would
break down for |y − 1| > 0.5. Consequently, the nearly lo-
cal approximation becomes less accurate as the frequency
power law diverges from 1. We now, however, consider the
differential dispersion relations (which are not susceptible
to this approximation) applied to the particular case of me-
dia with attenuation obeying a frequency power law. We
first consider the general case of an arbitrary power law,
then restrict our attention to a specific range of power laws
(1 ≤ y < 3).

For all the subsequent cases considered, we investigate
the propagation term γ(ω) as given by:

γ(ω) = iK(ω) = −α(ω) + i
ω

c(ω)
, (12)

where K(ω) is the complex wave number and c(ω) is the
phase velocity. Furthermore, we assume the model for the
attenuation coefficient is:

α(ω) = α0 + α1
∣∣ω∣∣y. (13)

We will find, however, that a nonzero, frequency-
independent term α0 appears to be necessary only for the
polymers. Although this model has been used to fit the
ultrasonic measurements, we hesitate to attach any phys-
ical significance to the frequency-independent term α0,
which is far outside the experimental bandwidth. How-
ever, one could speculate that a viscoelastic material such
as a polymer could have a nonzero loss at very low fre-
quencies (i.e., those frequencies approaching direct cur-
rent values). Consequently, it might be more appropri-
ate to fit a model to the experimental data, such as
α(ω) = α(ωc) + α1(|ω|y − |ωc|y), that does not explic-
itly refer to values outside the experimentally available
bandwidth. Regardless of which form of the model we use,
the K-K relations will predict the same dispersion. Fur-
thermore, the predicted dispersion is independent of the
frequency-independent contribution of the attenuation co-
efficient.

The differential forms of the K-K relations are accu-
rate to within a constant, as mentioned previously. We
then consider relative changes in the propagation term,
γ(ω)−γ(ωref), where we conveniently assume the reference
frequency ωref = 0 (i.e., G(ω) = γ(ω) − γ(0)). Because
the differential forms of the K-K relations are formulated
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in the context of positive frequencies, it is not necessary
to carry the absolute value sense of the frequency. Where
it is possible, we evaluate the differential dispersion rela-
tions exactly. In the cases that this does not appear possi-
ble, we perform a first-order expansion of the differential
form of the K-K relations. It is this first-order expansion
that has been termed a nearly local approximation to the
K-K dispersion relation. We remark that naming this ap-
proximation nearly local was somewhat unfortunate. It is
still necessary to integrate over all frequencies to arrive at
the differential form of the K-K relations, as described in
Section II-B.

A. Differential Dispersion Relations of
Even Order n(n − 1 < y < n + 1)

We first consider the differential dispersion relation (8)
(n even) for an arbitrary frequency power law, in which the
power law y is a positive, real number that is not an odd
integer. That is, we will restrict the range of power laws
for a given order of the differential dispersion relations to
n − 1 < y < n + 1, for some given even integer n (e.g.,
n = 2 and 1 < y < 3). This ensures that the generalized
Hilbert transform will converge. The differential dispersion
relation that expresses the phase velocity in terms of the
attenuation coefficient (noted as α → c) is given by:

ω

c(ω)
= +ωn tan

(
π

2
d

d lnω

)
α(ω) − α(0)

ωn
. (14)

Assuming the attenuation coefficient is given by (13), this
differential form of the K-K relations can be evaluated ex-
actly. Using the relation:(

x
d

dx

)m

xp = pmxp, (15)

one can show:

tan
(

π

2
d

d lnω

)
ωy−n = tan

(π

2
y
)

ωy−n, (16)

where we have used the property tan
(π

2
(y − n)

)
ωy−n =

tan
(π

2
y
)

ωy−n for n an even integer. Considering the dis-
persion between the two frequencies ω and ω0 within the
experimentally useful bandwidth, we find the dispersion is
given by (14) and (16):

1
c(ω)

− 1
c(ω0)

= +α1 tan
(π

2
y
) (

ωy−1 − ωy−1
0

)
.

(17)

We note that the differential dispersion relation for even
order n (17) is equivalent to the integral K-K dispersion
relation of even order n. (See (6) and (10) of [1] for the
cases n = 0 and n = 2 and [27] for the more general case.)

B. Differential Dispersion Relations of
Odd Order n (y ≈ n)

We now consider the differential dispersion relations (n
odd) for an arbitrary frequency power law, where the ex-

ponent y is near an odd integer. We begin with the differ-
ential dispersion relation of odd order n (9) for which we
consider the attenuation coefficient in terms of the phase
velocity (c → α):

α(ω) − α(0) = −ωn tan
(

π

2
d

d lnω

)
ω

ωnc(ω)
.

(18)

Our goal is to develop a dispersion relation with the dis-
persion expressed in terms of the attenuation coefficient.
The simplest approach is to consider a first-order expan-
sion of the tangent differential operator. We expand the
tangent term in a series and retain only the first term:

α(ω) − α(0) ≈ −π

2
ωn+1 d

dω

1
ωn−1c(ω)

, (19)

noting that d/d lnω = ωd/dω. Although the approxima-
tion is useful, it is not clear what precise restrictions are
placed on the complex wave number. However, we can say
that the approximation implies that higher-order deriva-
tives of 1/ωn−1 are negligible.

For the case n = 1, (19) corresponds to the original
(nearly local) differential approximation (11), [5]. For the
case y = n, we find the dispersion given by:

1
ωn−1c(ω)

− 1
ωn−1

0 c(ω0)
≈ − 2

π
α1 ln

∣∣∣∣ ω

ω0

∣∣∣∣ , (20)

for integration over an experimentally available bandwidth
from ω0 to ω. For the case y = n = 1, the expected loga-
rithmic dispersion is given by:

1
c(ω)

− 1
c(ω0)

≈ − 2
π

α1 ln
∣∣∣∣ ω

ω0

∣∣∣∣ . (21)

The differential dispersion relations of (20) and (21) are
equivalent to the result from the (integral) K-K dispersion
relation. (See (13) of [1] for the case n = 1 and [27] for
the more general case.) Also note that one can arrive at
the odd order n = 1 dispersion relation (21) by taking the
limit of the even order n dispersion relation (17) as the
power law y → 1, such that no approximation is necessary.
This is done in (22) (see next page) using the Taylor series
expansion for ωε and tan(επ/2), and the substitution y =
1 + ε. We remark that the nearly local approximation to
the K-K dispersion relations appears to fail for some media
with attenuation obeying a frequency power-law for which
the power law is y > 1, as was discussed at the beginning
of Section III. However, in order to appropriately apply
the ‘nearly-local’ approximation one must insure that the
original form of the Hilbert transform (upon which the
approximation is based) is convergent.

The differential dispersion relations of odd and even or-
der are summarized in Table I. As noted above, the choice
of which dispersion relation to apply to experimental data
depends upon the growth property of the attenuation over
the available bandwidth, which determines the order n of
the differential dispersion relations.
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lim
y→1

tan
(
y
π

2

)(
ωy−1 − ωy−1

0

)
= − lim

ε→0

ωε − ωε
0

tan
(
επ

2

)
= − lim

ε→0

(1 + ε lnω + . . . ) − (1 + ε lnω0 + . . . )
επ

2 + . . .

= − 2
π

ln
ω

ω0

(22)

TABLE I
Differential Dispersion Relations of Odd and Even Order.

∗

Differential Kramers-Krönig
Order Power law Direction dispersion relations

n odd y = n c → α
1

ωn−1c(ω)
− 1

ωn−1
0 c(ω0)

≈ − 2
π

α0 ln
∣∣∣ ω

ω0

∣∣∣
n even n − 1 < y < n + 1 α → c

1
c(ω)

− 1
c(ω0)

= +α0 tan
(

π

2
y

)(
ωy−1 − ωy−1

0

)
∗Summary of the differential dispersion relations for different power law attenuations that have been found
to empirically agree with experimental measurement. The order and direction of application of the dispersion
relation also is noted.

IV. Experimental Results

A series of five specimens are considered: two polymers,
an egg yolk, and two liquids. These specimens offer a range
of power laws (1.00 ≤ y ≤ 1.99) to test the dispersion
predictions of the differential K-K relations.

A. Polymer Specimens

The first set of measurements we consider are of a clear
polystyrene and a polymethyl methacrylate (LuciteTM,
Lucite International, Southampton, England). The mea-
surements were performed in an immersion through-
transmission setup. Analyses were implemented in both
Igor Pro (Wavemetrics, Inc., Lake Oswego, OR) and Math-
ematica (Wolfram Research, Inc., Champaign, IL) using a
C MathLink module (see Waters et al. [1] for further de-
tails). Both polymer specimens were 7 mm in thickness.
To compensate for the transmission losses, we used the
densities ρcs = 1040 kg/m3 and ρL = 1180 kg/m3 for the
clear polystyrene and Lucite, respectively, and the mea-
sured phase velocities at 5 MHz. The temperature of the
water bath was 24.1◦C.

Figs. 1 and 2 show the experimental measurements of
the attenuation coefficient and phase velocity with stan-
dard deviations for the Lucite and clear polystyrene poly-
mers, respectively. In addition, the prediction for phase
velocity of the clear polystyrene using the differential dis-
persion relation of order 2 (17) is provided. The prediction
of the phase velocity of the Lucite polymer used the dif-
ferential dispersion relation of order 1 (21). Predictions
for phase velocity were determined by fitting the attenu-
ation model (13) to the experimentally measured attenu-

Fig. 1. (a) Attenuation coefficient and (b) phase velocity measure-
ments with standard deviation bars for polymethyl methacrylate
(LuciteTM) polymer. The phase velocity predicted using the differ-
ential Kramers-Krönig relations of order 1 (21) also is shown.
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Fig. 2. (a) Attenuation coefficient and (b) phase velocity measure-
ments with standard deviation bars for a clear styrene polymer. The
phase velocity predicted using the differential Kramers-Krönig rela-
tions of order 2 (16) also is shown.

ation coefficients. We find very good agreement between
the measured and predicted dispersions.

B. Egg Yolk Specimen

The attenuation coefficient of (white leghorn) egg yolk
was measured by Akashi et al. [10] over a frequency band-
width of 25 to 400 MHz at 23.9◦C. They also reported
phase velocity measurements from 100 to 350 MHz at
50-MHz intervals over a temperature range of 23.4◦C to
23.7◦C. Fig. 3 reproduces the measurements (which we
have digitized from the published paper) of the attenu-
ation coefficient and phase velocity of [10]. The authors
found that the attenuation data grew as a power law of
y = 1.65 over most of the spectrum (<300 MHz), but in-
creased somewhat slower (y ∼= 1.5) near the high end of
the spectrum (400 MHz). For our purposes, we fit a single
power law (y = 1.54) over the bandwidth (100 to 350 MHz)
for which both attenuation coefficient and phase velocity
measurements were performed. This power law (y = 1.54)
falls between those often found in liquids (y > 1.6) and
polymers (y < 1.3), and thus represents an interesting
test. In Fig. 3(b) the dispersion predictions are compared
to the measurements. We find good agreement between the
measured and predicted phase velocities.

Fig. 3. (a) Attenuation coefficient and (b) phase velocity measure-
ments for white leghorn egg yolk as measured by Akashi et al. [10].
The phase velocity predicted using the differential Kramers-Krönig
relation of order 2 (17) also is shown.

C. Liquid Specimens

Previously we reported on ultrasonic measurements of
liquid specimens that exhibited attenuation obeying a fre-
quency power law over the experimentally available band-
width [1]. The experimental details and data reduction
techniques are similar to the measurements of the polymer
specimens described in Section IV-A. We found excellent
agreement between measured dispersions and dispersions
predicted using the integral K-K relations for (point) func-
tions and the method of subtractions (order 2), or equiv-
alently, the generalized K-K relations of order 2. Further
details regarding the liquid specimens and the experimen-
tal techniques can be found in [1].

Figs. 4 and 5 show experimental measurements of the
attenuation coefficient and phase velocity with standard
deviations for castor oil and a silicone fluid (DC 705, Dow
Corning, Midland, MI), respectively. In addition, predic-
tions for phase velocity using the differential dispersion
relation of order 2 (17) are provided. The prediction for
phase velocity was determined by using a fit of the attenu-
ation model (13) to the experimentally measured attenua-
tion coefficient. As expected, we find very good agreement
between the measured and predicted dispersions for these
liquids that exhibit attenuation coefficients with a power-
law frequency dependence (1.76 ≤ y ≤ 1.99).
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Fig. 4. (a) Attenuation coefficient and (b) phase velocity measure-
ments with standard deviation bars for castor oil. (These measure-
ments were originally reported in Waters et al.[1].) The phase velocity
predicted using the differential Kramers-Krönig relations of order 2
(17) also is shown.

V. Discussion

Use of the differential forms of the K-K rela-
tions requires explicit evaluation only over a limited
experimentally-available bandwidth. This is in contrast
to the application of integral K-K dispersion relations in
which one must explicitly extrapolate the behavior of the
attenuation coefficient over the entire frequency spectrum
from measurements over a limited bandwidth for evalua-
tion of the integrals. However, we must remark that this
evaluation over all frequencies is implicit in the differen-
tial dispersion relations. Through use of the approach of
Bronzan et al. [9], we were able to demonstrate that the
integral and differential dispersion relations are equivalent
for media with frequency power-law attenuation. For the
case of differential relations of odd order n (20), we found
that an approximation (i.e., a first-order expansion) was
necessary, whereas for the case of differential relations of
even order n (17), no approximation was necessary.

The differential dispersion relations are accurate for
media with attenuation obeying a frequency power law,
but it does not appear that this may necessarily be the
case for other forms of attenuation (e.g., a resonant loss).
This may be due, in part, to the power-law attenuation
(α(ω) = α0 + α1|ω|y) being a special case in which a

Fig. 5. (a) Attenuation coefficient and (b) phase velocity measure-
ments with standard deviation bars for a silicone fluid (DC 705).
(These measurements were originally reported in Waters et al. [1].)
The phase velocity predicted using the differential approximation to
the Kramers-Krönig relations order 2 (17) also is shown.

closed-form solution is available (i.e., the power law may
be considered an eigenfunction of the differential operator
d/d lnω). For other forms of attenuation, it is not clear
that accurate differential dispersion relations are available.
In principal, one could attempt a power series fit to a given
attenuation measurement in order to predict dispersion.
One would then find that only the odd integral powers of
the series would contribute to the predicted dispersions, as
all even powers of attenuation lead to predictions of zero
dispersion. At present, however, we have not been success-
ful in applying this approach.

We close with a brief discussion of the apparent pre-
ferred directionality of the K-K dispersion relations. One
goal of this research has been to provide simple relations
for the prediction of dispersion from the measured atten-
uation coefficient that compares well with experimental
data. For the case 1 < y ≤ 2, we used an even-ordered
(n = 2) differential dispersion relation (14) to predict dis-
persion directly from the attenuation (α → c). In contrast,
for the case y = 1 of the odd-ordered (n = 1) differential
dispersion relations, we used (19), which provides the at-
tenuation in terms of a derivative of the phase velocity
(c → α) that could then be integrated to predict disper-
sion. If for the case y = 1 we instead try to use the disper-
sion relation that predicts dispersion directly from the at-
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tenuation (α → c), we find that we predict a dispersionless
system that does not agree with the standard logarithmic
dispersion found for such a system. At present, the issue
of preferred directionality (α → c or c → α) to the K-K
dispersion relations is not completely understood and is a
subject of continuing research.

VI. Conclusions

We have developed differential forms of the generalized
Kramers-Krönig relations that accurately predict the dis-
persion in media with attenuation obeying a frequency
power (1.00 ≤ y ≤ 1.99). Although these relations are
differential in form and may imply a need to know only
a small range (i.e., nearly local) of frequencies, they may
be applicable only for those materials with an attenuation
coefficient that has the same functional form over a wide
spectrum. For the case of media with attenuation obeying
a frequency power law, the prediction of dispersion using
the differential Kramers-Krönig relations has been shown
to provide identical predictions of dispersion using the (in-
tegral) Kramers-Krönig relations.
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