Galactic Abundance Gradients From IIR Fine Structure Lines in Compact, H II Regions

A. Afllerbach \& E. Churchwell
Department of Astronomy, 475 N. Charter St., University of Wisconsin, Madison, W] 53706
M. W. Werner
California institute of Techuology, Jet Propulsion Laboratory, Pasadena, CA91109

Abstract

ABSTIACT

We present new observations of the [S III] 19pm, [0 111] 52 and $88 \mu \mathrm{~m}$, and [h' 111] 57 pm lines toward 18 compact and ultracompact (UC) H 11 regions. These data were combined with data from the literature and high-resolution radio continuum maps to construct detailed statistical equilibrium and ionization equilibrium models of 34 compact H11 regions located at galactocentric distances $\left(D_{G}\right) \mathrm{O}-12 \mathrm{kpc}$. Our models simultaneously fit the observedIR fine-structure lines and hig\}l-resolution radio continuum maps. Abundance gradients are found of the form $[\mathrm{S} / \mathrm{H}]=(-4.45 \pm 0.04)-(0.063 \pm 0.006) D_{G}(\mathrm{kpc}),[\mathrm{N} / \mathrm{H}]=(-3.58 \pm 0.04)-(0.072$ $\pm 0.006) D_{G}(\mathrm{kpc})$, and $[0 / \mathrm{H}]=(-2.85 \pm 0.06)-(0.064 \pm 0.009) D_{G}(\mathrm{kpc})$, and we derive $T_{e}=(4560 \pm 220)+(390 \pm 40) D_{G}(\mathrm{kpc})$. The T_{e} gradient is consistent with the T_{e} gradient determined independently via radio recombination lines (Afflerbach et al. (1996). We observe no dependence of $\mathrm{S} / \mathrm{O}, \mathrm{N} / \mathrm{O}$, or $T_{\text {eff }}$ on D_{G}. Gradients in $\mathrm{N}^{++} / 0^{++}$and $\mathrm{O}^{++} / \mathrm{S}^{+^{+}}$are observed in the sense of increasing ionization with increasing DC;. This is entirely consistent wit h the decreased line blanketing with increasing D_{G} required by the above abundance giadients. All three gradients are best fit by a linear dependence on I_{G}. The abundances are consistent with production of sulfur, nitrogen, and oxygen by primary nuclcosynthesis. Comparison with abundances in other galaxies implies a Hubble type between Sab and Sb for our galaxyand an unbarred or mixed galactic structure (Vila-Costas \& Edmunds 1992). Our derived $T_{\epsilon f f}$ is 2000 K to 10000 K lower than $T_{\text {eff }}$ expected from ZAMS stars of the same Iymancontinuum flux (Panagia 1973; Vacca $\boldsymbol{c t}$ al. 1996), probably due to uncertainties in the UV flux of stellar models for $\boldsymbol{E} \geq 35$. I eV, uncertainties in the luminosity-l ${ }_{\text {efj }}$ calibration, and/or ionization of H 11 regions by multiple stars in some sources.

1. INTROIJUCTION

The distribution of galactic element abundances is a key to the chemical evolution of the galaxy. The present distribution of chemical abundances, or metallicities, in the galactic plane is a function of many variables: the historical star formation rate, the initial mass function, the relative yicld of elements, homogeneity of the interstellar medium, infall of material from the halo, and radial inflows or outflows Of gas. Each of these processes may be functions of position and/or time. By determining the distribution] of motallicities in our galaxy, we should be able to provide important constraints on models of galactic evolution. Additionally, by comparing the distribution of galactic abundances to those in other galaxies, we can infer the morphology and other properties of our galaxy.

The form of the galactic abundance gradients is controversial. Shaver ctal. (1983), Mezgeret al. (1979), Churchwell \& Walmsley (1975), and others find a decrease in metallicity with increasing galactocentric
stella evolution. Until now, UC H11 regions have not been observed in surveys of galactic abundances. Because they appear to be more homogeneous than other candidate sources and are bright enough to be obscrvedthroughout the galaxy, they are a pomising means of determining galactic abundances.

We selected sources for IR line observations based on the availability of high resolution radio continumn images, compactness, and excitation as high as permitted by source availability. Compact nebulacfit entirely within the KAO beam, so no correction for missing flux should be necessary. Highexcitation nebulae (ionized by a Lyman continuum photon flux greater than $10^{48.2}$) should have most O, N, and S in the doubly ionized state, so only small ionization corrections should be necessary to obtain atomic abundances.

Section 2 presents the FIR line and continuum observations and discusses data reduction;Section 3 presents detailed models of each source; Section 4 discusses derived properties of the nebulae; Section 5 discusses galactic abundances and compares the results to other models; and Section6summarizes the conclusions and recommends future work.

2. OBSERVATIONS

WC selected a sample of UCH II regions to have 1) radio continuum fluxes $\geq 0.5 \mathrm{Jy}$ to ensure that lines areobservable; 2) high excitation (ionizing photon flux $\geq 10^{48.2} \mathrm{~s}^{1}$) so that the majority of the oxygen and nitrogen is probably doubly ionized; 3) compact nebulae, so that all the nebular flux is within the KA() beann; and 4) as wide a distribution as possible in galactocentric distance. To minimize confusion from nearby sources within the $45^{\prime \prime}$ beam of the KA O, it was preferable to observe spatial] y isolated sources, instead of UCHII regions in knownclusters ox complexes.

Observations were carried out on the nights of 9 and 13 June 1994 and the nights of 5,9, and II August 1995 with the 91 cm telescope of the KAO using the facility Cryogenic Grating Spectrograph (CGS) developed by Erickson ctal. (1984a, b, and 1985). Flights originated from the Ames ResearchCenter at Moffett Field, CA in 1994 and Hickham Field in Honolulu, HI in 1995. The coordinates, observational parameters, and characteristics from the literature for each source are in Table 1. Guiding andboresight errors were $\pm 5^{\prime}$. Sources were acquired from the offsets from stars in the HST Guide Star Catalog (Lasket ctal. IWO; Jenkneret al. 1990). The chopper throw was 4'. Sequences of four integrations of tenseconds each were taken with the source placed alternately in the right and left beam.

For the [S 111) $19 \mu \mathrm{~m}$ observations, an array of thirteen Ge:Be detectors was used. For the other wavelengths, we used an array of thirteen $\mathrm{Ge}: \mathrm{Sb}$ detectors. The spectral resolution $(\lambda / \Delta \lambda)$ for the 88 , 57,52 , and 19 pm lines was $3920,3505,4470$, and 4034 , respectively. The profiles were unresolved by the spectrograph. A 5 mm aperture was used, providing FWHM aperture sizes of $36.4^{\prime \prime}, 39.6^{\prime \prime}, 40.1^{\prime \prime}$, and 43.2 ", respectively. Observations took place at altitudes from 35,000 to 41,000 feet, where observed lines are not strongly affected by telluric absorption. The $\mathrm{H}_{2} \mathrm{O}$ vapor column was derived from observations of the 85.4 pm line toward Saturn; the $\mathrm{H}_{2} \mathrm{O}$ vapor column ranged from 7 to 8 pm . Wavelength, atmospheric, and diffraction corrections have been applied to all spectra; each correction was typically $<10 \%$.

The absolute flux calibration was obtained by dividing each spectrum by a calibration spectrum of Saturı observed on the same flight. The expected emission of the disk of Saturn (Hanel ct al. 1983; Bezard; Gautier \& Marten 1986) was combined with the ring spectrum (Haaset al. 1982) using the technique of Matthews \& Erickson (1977) to produce the calibration spectrum.
and 50000 K .
The input parameters for the models are the abundances of He, $\mathrm{O}, \mathrm{N}, \mathrm{S}$, and Ne^{f} relative to hydrogen; $T_{e f f}$, the temperature of the ionizing radiation field; N_{c}^{*}, the number of ionizing photons; $n_{\epsilon}(r)$, the electron density with position in the nebula; and f, the fraction of volume filled with gas. We iteratively determine the best-fitting parameters, constrainedby our FIR line fluxes (Table 2) and radio continuum observations in the literature (Table 3).

I'ion] the continuum observations, we derive quantities useful for detailed modeling of the HIregions (Iable 3). S_{ν} is determined from radio continumm images, generally of resolution $\sim 5^{\prime \prime}$ to ensure that we are observing flux on all spatial scales. S_{ν} is measured at a frequency where the emission is thought to be optically thin; for most H 11 regions, this is true for $\nu \geq 8$ GHz (Afllerbach ct al.1996; Kurtzet al. 1994; Wood \& Churchwell 1989). We determine the Lyman continuum photon flux emitted by the star, N_{c}^{*}, from Rubin(1968) and Kurtzet al. (1994),

$$
\begin{equation*}
N_{c}^{*}=\frac{S_{\nu}}{\left.\left(1.320^{-49}\right) \xi a \nu^{-0.3} T_{e}^{0.5}\right)^{-2}} \tag{1}
\end{equation*}
$$

 absorbed bygas, a is a constant approximately equal to one (Mezger \& Henderson 1967), v is the frequency of the radio continummobservationin $\mathrm{GH} z, T_{e}$ is the electron temperature of the HIl region, and I) is the distance from the Sun in kpe (l'able 1). For our initial models, we assume $\xi=1, a=1$ and $T_{e}=8000 \mathrm{~K}$.

We correct theIRline fluxes for extinction using the method of Simpson et al. (1995). We assume the extinction is proportional to the $9.7 \mu \mathrm{~m}$ optical depth in Table 3; for the ratio $\tau_{\lambda} / \tau_{9.7}$ we usc 0.395 at 18.7 $\mu \mathrm{m}, 0.054$ at $51.8 \mu \mathrm{~m}, 0.044$ at $57.3 \mu \mathrm{~m}$, and 0.019 at $88.4 \mu \mathrm{~m}$ (Simpson $\&$ Rubin 1990). All subsequent calculations andtables are corrected for extinction. For sources where we derive 7_{9} directly from the 10 $\mu \mathrm{m}$ and $18 \mu \mathrm{~m}$ silicate features in the IRASIISS spectra (Volk\& Cohen 1989), we apply an approximation (Simpson 1994)based on the method of Simpson \& Rubin (1990).

The core properties were determined from radio continuum images of spatial resolution -- 1 ". These images are insensitive to ftux on scale sizes >10 ", therefore the spatial filtering of the large scale ftux prod uces an image of the dense core component only. $S_{\nu}^{C O K E}$ was determinedfromimages of frequency \geq 15 GH , where the continuum is generally optically tharoj os the mean FWHM determined from the same images a s ${ }^{C} S_{v}^{C N F} R_{\text {sph }}$ is the radius in arc-seconds of the core, determined from $\theta_{p \text { roj }}$, deconvolved fr on the beam, with the source modeled as a sphere (Meager \& Henderson 1967; Panagia \& Walmsley 1978). We calculate from Mezger \& Henderson (1967) an rms density < $n_{e}>$ such that a sphere of this density generates the observed $S_{\nu}^{C O R E} . \boldsymbol{n}_{e}$ is derived from $<\boldsymbol{n}_{e}>$ assuming $f=0.1$ (Aflerbach et al. 1994; Danks \& Meaburn 197]) from the equation

$$
\begin{equation*}
n_{e}=\sqrt{\frac{\leq n_{e}^{2}>}{f}} \tag{2}
\end{equation*}
$$

(Osterbrock \& Flather 1959).

3.2. One-Component Models

A summary of the modeling process is shown in Figure 1. We begin our iterations in Step 1 using N_{c}^{*} from Table 3. Weassume $f=0.1 . \boldsymbol{n}_{e}$ in the region of IR line emission is estimated from the ratio of
atmosphere that best reproduces the observed line fluxes; the error is dominated by the 40% uncertainty in $\mathrm{O}^{-1}+/ \mathrm{O}$; it is $<1000 \mathrm{~K}$ for $T_{\text {eff }} \leq 35000 \mathrm{~K}$, more for higher $T_{\text {eff }}$ (Figure 2). The uncertainty is $\ddagger 26 \%$ in N / H and $\pm 28 \%$ in S / H, plus the measurement uncertainty in the relevant line ($[\mathrm{N} 111] 57 \mu \mathrm{~m}$ or [S 111] $19 \mu \mathrm{~m})$ added inquadrature. The error is clue to the uncertainties in the modeling process, including the uncertainty in S_{ν}, the ionization correction, N_{c}^{*}, the density distribution, the filling factor, $T_{\epsilon f f}$, and extinction. Fxtinction can be as large as 2 magnitudes for the [S 111] $19 \mu \mathrm{~m}$ line. The uncertainty inO/ H is $\ddagger 45 \%$, plus the measurement uncertainty added in quadrature. It is higher than the uncertainty for the S / H and N / H abundances due to the larger ionization correction factor for $\mathrm{O} / \mathrm{H} . T_{\mathrm{t}}$ is the mean temperature derived for the nebula; its uncertainty is $=10 \%$, due primarily to the uncertainty in O / Hl. Our analysis does not include possible errors in abundances due to the omission of dust, stellar winds, uncertainties in the stellar atmospheres, or uncertainties in atomic parameters.

Some sources in Table 1 could not be satisfactorily modeled. We were unable to fit a model to observations of $\mathrm{G} 359.98+0.03$ due to the poor quality of the radio continuum information. For G34.26, the geometry of the source (a dense cometary nebula and a separate, diffuse region with its own ionizing source) was incompatible with our spherically-symmetric, single-star models. G7.47, G12.21, and G11.95 were not observed in all the FIR lines necessary for a successful model. Abundances were derived for the sources G30.76, G30.78, and G291.61, and G291.63 from the data of Simpson et al. (1995) and presented in Table 4; however, $T_{\text {eff }}$ for these sources is uncertain, because the source is not fully contained within the beam. Our models assume an ionization-bounded nebula fully contained within the beam; Simpson et al. (1995) find that this assumption may lead to an overestimate of $T_{\text {eff }}$.

4. DISCUSSION

4.1. Ionization

Because O^{+1} and S^{+1} have widely different ionization potentials, $T_{\text {eff }}$ of the ionizing stellan atmosphere in our models is constrained by the observed ratio of the [0 111] $52 \mu \mathrm{~m}$ line to the [S 111] $19 \mu \mathrm{~m}$ line. Although we begincach detailed model by assuming the Kurucz (1991) stellar atmosphere $T_{\text {eff }}$ corresponding to lymancontinump photon flux $\left(N_{c}^{*}\right)$ for ZAMS stars inPanagia (1973), our models indicate a much lower $T_{e f f}$ than the ZAMS models would assign to that Lyman flux (Figure 3). In this analysis we assume that the nebula is ionization bounded and that the gas absorbs all ionizing phot ons. If dust absorbs a significant fraction of ionizing photons, the discrepancies in Figure 3 between the models(Panagia 973 and Vacca ctal. 1995) and the observed fluxes would be greater. This is a well-knowneffect noted by several other groups, including Herter, Helfer \& Pipher (19 S 3).

We find an increase in $T_{e f f}$ with N_{c}^{*}, with a shallower slope than Vacca ct al. (1996) and Panagia (1973) and an offet in $T_{e f f}$ ranging from 1000 to 2000 K at $N_{c}^{*}=48.2$ to $\sim 10000 \mathrm{~K}$ at $N_{c}^{*}=49.9$. For $48 \leq \log N_{c}^{*} \leq 49$, the observed $T_{e f f}$ are consistent with model O stars of spectra] class III. For $49.5 \leq \log$ $N_{c}^{*}<49.8$, the observed $T_{\text {eff }}$ are consistent with spectral class Ia(Vaccaet al. 1996). Although we can be certain that compact 1 ll 11 regions are not ionized by evolved stars, the correlation of our derived $J_{\text {eff }}$ with models of spectral class 111 and la may imply that the ionizing stars are more luminous than predicted by Pauagia (1973) and Vacca ct al. (1996).

Uncertainties in the stellar atmospheres in the UV may lead to a systematic uncertainty in $T_{\text {eff }}$ in our models. The $\mathrm{O}^{++} / \mathrm{O}$ ratio depends extremely sensitively on the distribution of photons with $E \geq$ 35.1 eV , the ionization potential of $\mathrm{O}^{+\dagger}$. Massive stars are expected to have winds which produce significant.
dropas quickly with distance from the center asinthe cooler stat. The region of doubly ionized oxygen coincides with the HIl region.

Themetal ions have a significant effect cm the nebular radiationfield. The result of bound-fiee interactions with ions can be seen whine J_{I} increases slightly at eachionization edge. The increase is strongest for O^{\dagger} due to the high abundance of oxygen. Photoionization of ions is a significant source of opacity. The opacity is so large, that, in many cases, increasing the abundancesin the models leads to a decrease inthe [0111] and \mathbb{N} 111] line fluxes, because the average jonization of the nebulahas decreased. This effect has also been pointed out by Rubin $(1983,1985)$. In a two-component, core-halo model, the oxygen equilibrium is also affected by the size and density of the core, since the [O 111] If line fluxes depend strongly on the extent of the O^{++}jonization zone into the diffuse halo component.

The feature between 19 and 22 eV in Figure 4 is due to the recombinationline of helium fromthe $2^{3} \mathrm{~S}$ level. This line is highly forbiddenand is considered by the code to be in the diffuse radiation field. The emission of the line was modeled to give the accurate emissivity of the line and the correct distribution of the energy released. This change in the modeling of the line for ease of computatoin does not affect the ionization equilibrium or statistical equilibrium.

We note that most of the spectra inFigure 4 do not show evidence of hardening, because the opacity of meutralhydrogen is very low. Therefore the change in the radiation field withincreasing radial distance is due primarily to geometric dilution.

Figure 5 shows the derivedionization correction factors as a function of $T_{e f f}$ of the ionizing star. We see satisfactory agreement with the theoretical ionization correction factors in Figu re 2. Jhe ionization fraction $\mathrm{O}^{++} /$Oincreases with $T_{e f /}$ with a large scatter due to differences in density structure and I,yman continuum photon ftux ($\mathrm{A}^{\prime} ;$) of the nebulae, The ratio $\mathrm{N}^{++} / \mathrm{h}>0.7$ in all but 5 cases (where $T_{\text {eff }} \leq$ 3400() $\mathrm{K})$, and it generally stays near unity. The ratio $\mathrm{S}^{++} / \mathrm{S}$ is also near unity, though there is evidence of anincreasing fraction of S^{+3} for $T_{e f f} \geq 38500 \mathrm{~K}$.

5. GALACTIC PHOPERTIES

5.1. Abundances

From the derived $\mathrm{N} / \mathrm{H}, \mathrm{S} / \mathrm{H}$, and O / H in Table 4 we canobtainthe distribution of abundances as a function of galactocentric distance I_{G}. The data arc displayed in Figures 6a, 6b, and 6c. Linear least squares fits to the data, displayed as solid lines, are:

$$
\left.\begin{array}{l}
{[\mathrm{N} / \mathrm{n}]=\left(\begin{array}{lll}
-3.583 & 0.04
\end{array}\right)-\left(\begin{array}{lll}
0.072 \mathrm{~A} & 0.006
\end{array}\right) D_{G}(\mathrm{kpc})(r=-0.76}
\end{array}\right),
$$

and

$$
[\mathrm{O} / \mathrm{H}]=\left(\begin{array}{lll}
-2.854 & 0.06) & -(0.0644 . \tag{5}
\end{array} 0.009\right) D_{G}(\mathrm{kpc})(\mathrm{r}=-0.66)
$$

where r is the correlation coeff icicnt. Thus $\mathrm{N} / \mathrm{H}, \mathrm{S} / \mathrm{H}$, and O / H decrease with increasing I_{G}. A constant slope is statistically superior toatwo-step distribution of abundances. We observe greater scatter in the abundances among sources with $D_{G}>6 \mathrm{kpc}$ than those with $D_{G}<6 \mathrm{kpc}$. I ueto the ionization correction, O / H has more scatter than N / H or S / H.

5.1.2. The S / H Gradient

Wederive S / Habundances equivalent to those of Simpsonet al. (1995) and Simpson\& Rubin (1990). Forthe sources where we used line fluxes from Simpson ctal. (1995), our derived S / Hgenerallyagree with those of Simpsonct al. (1995) within the errors. Our gradient is also consistent with results of Maciel \&Köppen (1993) for all types of planetary nebulae except those with low-mass progenitors, which are thought to be oldeı than 6 Gyr. Shaver et al.(1983) did not find a S / ll gradient with I_{G} fion their data. However, there were only a few sources ([4) for which they had sulfur line data, and for which the sulfur abundances were derived. An S / H gradient may not have been detected by Shaver ct al. (1983) because of the weakness of the [S 111] $\lambda 6312 \AA$ line, the small number of sources distributed over a small fraction of the galactic disk, and an uncertain ionization correction for sources which were only observed in [S II] lines.

5.1.3. The O / H Gradient

The O / H abundances we derive are consistent with the results found by Shaver et a/. (1983) for diffuse HI II regions and with those inferred by Aflerbachet al. (1996) for UCH II regions. Our gradient is consistent withthe results of Maciel \& Köppen (1994) for all types Of planetary nebulac except for the youngest nebulae, which have a shallower slope and a large dispersion in O / H abundances. Ourgradient is shallower than that found by Peimbert (1978), who observed a slope in $[0 / \mathrm{HI}]$ with D_{G} of $-0.13 \pm() .() 4$, for five H II regions in the range $6.5-11.8 \mathrm{kpc}$.

Our results are inconsistent with those of Kaufer ct al. (1994), who findno dependence of $0 /$ Hand N / H o: $\mathrm{I} D_{G}$ in the range $6.0-17.0 \mathrm{kpc}$ in 3 stars in the galactic plane. It maybe significant that the abundances derived by Kaufer ct al. (1994) appear to scatter by $\sim \pm 0.3$ dex aroundthe mean value. If this scatter is in fact the result of uncertainties in the determination of individual abundances, it is possible that a gradient with the slope we observe could be hidden in the noise. This is especially true for $I_{G}>6.0$ kpc , where we observe somewhat more scatter in our abundances and possibly a shallower gradient than in the inner galaxy.

5.1.4. Scatter of Abundances

To distinguish the intrinsic scat ter of the abundances at a given I_{G} from the random errors due to measurement uncertainties and model errors, we apply a procedure described by Savage et al. (1990). We estimate the intrinsic scatter in the abundances using a parameter o_{i} added in quadrature to the uncertainties we determined for each point. If we adjust σ_{i} to make the reduced χ^{2} equal to unity, wederive an intrinsic scatter $\sigma_{\mathbf{i}}=0.16,() .10$, and 0.16 for $\log (\mathrm{N} / \mathrm{H}), \log (\mathrm{S} / \mathrm{H})$, and $\log (\mathrm{O} / \mathrm{H})$, respectively. The agreement of o_{i} for the three elements demonstrates the consistency of our modeling process and our derived errors. We infer a systematic intrinsic scatter of $\leq 25-45 \%$ in the abundances for a particular D_{G}. The intrinsic scatter of abundances may result from incomplete mixing of the ISM or non-radial variations in abundances due to spiral structure. However, we caution that some of this scatter may bedue to unknown systematic errors in our modeling process due to the omission of dust and stellar winds, the assumption of a one or two-component density distribution, or uncertainty in the model stellar atmospheres or atomic coefficients.
determined from the same class of regions via radio recombination lines. The fact that the $T_{e}-D_{G}$ gradient found from modeling our IR line observations is essentially the same as that found from modeling RRL line observations of the same class of nebulae provides strong support for the conclusion of Afllerbachetal. (1996) that the $T_{e}-D_{G}$ distribution is primarily determined by the distribution of the abundances of nebulan coolants aud secondarily by the effects of collisionalquenching of coolant lines. In addition, we findfrom ounanalysis that $\mathrm{S} / \mathrm{H}, \mathrm{h} / \mathrm{H}$, and O / H have approximately the same gradientsin the galactic plane from 0-11.4 kpe.

5.3. Abundances and ionization Gradients FromIon Ratios

By considering the ion ratios $\mathrm{O}^{++} / \mathrm{S}^{++}$and $\mathrm{N}^{+-+} / 0^{+}$and $T_{\text {eff }}$ as a function of I_{G}, we can investigate the variation of ion abundance ratios with element abundance variations within the galaxy. Figures 8 a and 8 b show the $\mathrm{N}^{++} / \mathrm{O}^{++}$and $\mathrm{O}^{++} / \mathrm{S}^{+}$ratios as a function of D_{G}. Although there is substantial scatter due to variations in density structure and N_{c}^{*} among the sources, it is clear that $\mathrm{O}^{++/}$ $\mathrm{S}^{++\mathrm{is}}$ greater at $D_{G}>5 \mathrm{kpc}$ than at $D_{G}<5 \mathrm{kpc}$, and that $\mathrm{N}^{++} / \mathrm{O}^{++}$is lower at $D_{G}>5 \mathrm{kpc}$ than at $J_{G}<5 \mathrm{kpc}$. This correlation is in the sense of increasing ionization with increasing D_{G}, inagreement with FIR observations by Simpson ctal. (1995) and He recombination line observations by Churchwellet al. (1976). However, the modeled $T_{\text {eff }}$ dots not show an increase with J_{G} in our sample, as would be the case if the ionizing stars increased in excitation with D_{G}. We therefore conclude that the increasedionization with I_{G} is not due to a systematic increase in $T_{e f f}$ with I_{G}, but rather to the change in abundances with I_{G}, as discussed below.

In Figure 9a, our ionization equlibrium models show that $\mathrm{O}^{+\dagger} / \mathrm{S}^{+}+$clearly increases with $T_{e f f}$, but that there is also an additional effect which causes the ratio to increase with I_{C}, independent of $T_{e / f}$. From models of H II regions over the observed range of abundances ($[\mathrm{Z} / \mathrm{H}]=-0.4$ Orion to 0.8 Orion), we see that this variation in $\mathrm{O}^{++} / \mathrm{S}++$ is expected from the observed range of metallicities, and that it is likely that the observed increase in ionization with D_{G} is due to a decrease in opacity duetodecreasedline blanketing (Searle 1971; Shields 1974). A fully sc]f-consistent treatment would include the sameabundances in the model atmospheres as in the nebula. This is beyond the scope of thispaperbutshouldbedone in future analyses. Including the change in line blanketing due to the change in abundances with $I_{\text {(}}$ in the stellar atmospheremodels would impact the inferred stellar effective temperature $T_{e f f}$. A change in $T_{e f f}$ would have the strongest impact on the derived O / H but should have a significantly smaller effect onN/ H and S / H.

When we include the additional scatter in the theoretical determinations of $\log \left(\mathrm{O}^{++} / \mathrm{S}^{++}\right)$of \pm 45% due to the variation of t_{ϵ} and N_{c}^{*} within our sample, We find that all but four sources have values of $\log \left(\mathrm{O}^{++} / \mathrm{S}^{++}\right)$that fat] within the range of the models. G298.22 has a low $0^{+}+/ \mathrm{S}^{+}$for its observed $T_{e f f}:=40000 \mathrm{~K}$, because it is ionized by multiple sources, and also because the source is not fully contained within the beam, both resulting in an overestimate of $T_{\text {eff }}$.

A similar analysis applies for the ratio $\mathrm{N}^{++} / \mathrm{O}^{+\dagger}$. The decrease in the ratio with D_{G}, to a large extent, is due to an increase in ionization with J_{G}, which is consistent with the observed decrease in abundances with increasing D_{G}. In this case the scatter in D_{G} due to the range of n_{e} and N_{c}^{*} is ± 1570, much smaller than for $0^{++} / \mathrm{S}^{++}$. All but four sources fall within the range of our models. our $\mathrm{O}^{++} /$ S^{++}and $\mathrm{N}^{++} / \mathrm{O}^{++}$gradients are consistent with the ionization gradient duc to decreasing metallicity with increasing D_{G}.
(1 aıson 1976; Matteucci\& Francois 1989; andothers) and / or a thick disk (Pardictal.1995) which takes place at galactocentric distances which increaselinearly with time.

The distribution of relative abundances in the galactic plane is thought to be primarily duetothe history of stellar nucleosynthesis. The production of anelement in primary nucleosynthesis is independent of the initial composition of the stare that produce it and is likely to be the result of α-process nucleosynthesis (Vila-Costas \& Edmunds 1993). Insecondary nucleosynthesis, the yield of an element is a function of the initial abundance of seed elements. If the majority ${ }^{4}$ of is produced via secondary nucleosynthesis in the CNO process, the ratio of N to primary elements can be expected toincrease with the abundance of the primary elements (Vila-Costas \& Edmunds 1993; Fdmunds \& Yagel 1978) and, therefore, decrease with increasing I_{G}.

We observe a gradient of N / H decreasing with increasing I_{G} which has the same slope as the gradient fon the primary element sulfur. N / O is not found to be a strong function of J_{G}. The implication is that the majority of nitrogen is produced through primary nucleosynthesis. This production of nitrogen may take place in the third dredge-up from the CO core during the AGB phase (Renzini \& Voli 1981; Iben \& Renzini 1983) or in stars of low metallicity of mass $>30 \mathrm{M}_{\odot}$ (Woosley ct al.1993). Alternately, nitrogen may be produced mostly try secondary mucleosynthesis, but the h' / O gradient may have been flattened due to pollution of unprocessed material by supernovac in other regions of the galaxy (Wilmes \& Köppen 1995).

The observed decrease of S / H with I_{G}, along with the lack of a clear dependence of S / O on J_{G} is consistent with primary nucleosynthesis of S and O. This resolves the problem of the apparently flat distribution of S / H with D_{G} observed by Shaver ct al. (1983) which could not be explained by mucleosynthesis models without postulating a difference in the timescale of S and O production] (Matteucci \& Francois 1989; Matteucci 1991).

For S / H and N / H a single gradient with D_{G} is statistically more significant than a stepfunction for $J_{G}<11.4 \mathrm{kpc}$, although the increased scatter of abundances at $J_{G}>6 \mathrm{kpc}$ may allow for flattening of the gradient in the outer galaxy. Therefore we do not see evidence of the radialmixing in the inner galaxy that would be the result of a strongly barred structure (Friedlict al. 1994). The absence of a strongly-barred structurein our galaxy is also consistent with the magnitude of the abundance gradient and the absolute value of abundances in the galactic center (Section 5.4).

6. CONCIUSIONS

The main results of this work are as follows:

1) Observations of [0 111] 88 and 52 pm , [h' III] $57 \mu \mathrm{~m}$, and [S 111] 19 pm IR fine-structurelines are reported for a sample of 34 compact and UC H II regions distributed in the galactic plane from O-12 kpe.
2) Internally consistent statistical and ionization equilibrium nebular models with line blanketed Kurucr, (199]) atmospheres were produced for each source consistent with the observed IR fine-structure lines and high-resolution radio continuum images. Where appropriate, models included two density components.
3) We find abundances which decrease with increasing Dc. We derive the gradients: $[\mathrm{S} / \mathrm{H}]=(-4.45$ $\pm 0.04)-(0.063 \pm 0.006) D_{G}(\mathrm{kpc}),[\mathrm{N} / \mathrm{H}]=(-3.58 \pm 0.04)-(0.072 \pm 0.006) D_{G}(\mathrm{kpc})$, and $[\mathrm{O} / \mathrm{H}]$ $=(-2.85 \pm 0.06)-(0.064 \pm 0.009) D_{G}(\mathrm{kpc})$. All gradients have the same slope, and the abundances are trotter fit by a single gradient than by two components or by a step function of D_{G}. The intrinsic scatter of

Thble 1: Observational I'arameters

Source	α (1950)"	$\delta(1950)$	Date	J)	$)^{\prime}{ }_{G}$
	hht mm ss.s	- 11		(kpc)	(kpc)
G359.98-0.08 (Sgr "A $\mathrm{A} / \mathrm{B})$	174241.5	-285822	5/93	$8.5{ }^{\text {f }}$	0.0^{5}
G359.98+0.03 (Sgr A H2)	174218.0	-2854 55	5/93	$8.5{ }^{\text {f }}$	$0.0{ }^{\text {f }}$
G5.97-1.18 (M8)	180036.4	-242254	8/95	$1.9{ }^{\text {a }}$	$6.6{ }^{\text {a }}$
G7.47-0.06	175911.8	-222802	8/95	$6.3{ }^{\text {b }}$	$2.4{ }^{\text {b }}$
G8.14-0.23	180000.9	-214813	8/95	$3.7{ }^{\text {a }}$	$4.9{ }^{\text {a }}$
G9.61+0.2013	180315.3	-203204	8/95	5.7 ${ }^{\prime}$	3.0 '
G1].95-0.03	180856.2	-183658	8/95	$4.4{ }^{\text {d }}$	$4.3{ }^{\text {d }}$
G12.21-0.10	180943.7	-182509	8/95	$13.4{ }^{\text {a }}$	5.4'
G24.47-0.49	183126.7	-072024	6/94	$9.4{ }^{\text {b }}$	$3.9{ }^{\text {b }}$
G25.38-0.18	183533.6	-065034	6/94	$10.8{ }^{\text {b }}$	$4.8{ }^{\text {b }}$
G25.4-0.14	183526.8	-064838	6/94	$9.6{ }^{\text {b }}$	$4.1^{\text {b }}$
G32.80+0.19	184756.8	-000535	6/94	$13.0{ }^{\text {b }}$	$7.5{ }^{\text {b }}$
G34.26+0.15	185046.2	011113	6/94	3.6	$5.9{ }^{\text {a }}$
G37.87-0.40	185924.7	040826	6/94	$9.2{ }^{\text {a }}$	5.8 ${ }^{\text {a }}$
(961.47+0.10 (s88 H)	194443.5	250522	6/94	2.0 '	7.7 ${ }^{\text {a }}$
G75.84 +0.40	201947.3	372126	6/94	$4.7{ }^{\text {a }}$	$8.7{ }^{\prime}$
G81.7+0.5(I)R 21)	203714.1	420854	6/94	2.0'	$8.6{ }^{\text {a }}$
G105.63-O.34 (S138)	223052.6	581248	6/94	6.3 '	11.4'
G108.19+0.58 (S146)	224730.7	593856	6/94	$5.2^{\text {c }}$	11.2'
G108.76.0.95 (S152)	225636.4	583046	6/94	5.3'	$11.3{ }^{\text {e }}$

- Kurtz 1996
${ }^{6}$ Garay et al. 1993
chofnelet al. 1994
${ }^{d}$ Wink, Altenhoff, \& Mezger 1982
${ }^{2}$ Kudolph 1994
$f_{\text {Galactic Center }}$

Table 2: Observed Line \& Continuum Fluxes (continued)

Source	Line Flux ($\overline{1} \overline{0}^{-18} \mathrm{~W}_{\mathrm{cm}^{2}}$) Continuum Flux (Jy)			
	[S III $19 \mu \mathrm{~m}$	[0 III$] 52 \mu \mathrm{~m}$	[N III] $57 \mu \mathrm{~m}$	[O 111] $88 \mu \mathrm{~m}$
G37.87 ${ }^{-1}$	$6.3: 1.0 \%$	31.5 ± 2.3	7.4 ± 0.8	9.7 ± 0.7
	69 ± 44	1994土181	28373220	34353286
	240	240	240	600
661.47	7.63.2.1	16.441 .5	3.330 .9	2.840 .4
	381 ± 96	59723429	5349 ${ }^{391}$	70713.510
	240	160	320	160
G75.84	65.0 ± 4.9	115.8 ± 8.2	20.831 .6	26.732 .2
	386 ± 75	40713339	3967 ± 333	38043.284
	160	360	280	160
G81.7	$2.8 * 1.6$	12.541 .1	6.931 .0	4.130 .4
	226 ± 60	5440 ± 421	7172 ± 531	108914766
	240	160	280	400
G105.63	2.4 ± 0.8	2.140 .4	0.730 .2	1.1 ± 0.1
	72 ± 43	779396	869370	889 ± 68
	480	480	480	480
C.108.20	$21.3 * 3.3$	36.553 .0	6.730 .8	16.931 .2
	2953157	8735169	6625106	647398
	80	80	120	160
Ci108.76	16.041 .4	6.6 ± 0.8		4.030 .6
	1673.71	9015-129		693382
	- 80	240		160

Table 4: Results

Source	$\begin{gathered} D_{G} \\ (\mathrm{kpc}) \end{gathered}$	$\begin{array}{r} n_{e} \\ \left(\mathrm{~cm}^{-}\right. \end{array}$	$\begin{aligned} & T_{e j f} \\ & (K) \end{aligned}$	$\overline{0^{77}} / 0$	$\mathrm{S}^{+7} / \mathrm{S}$	$\mathrm{N}^{+7} 7 \mathrm{~N}$	$\begin{gathered} S / \overline{11} \\ \left(10^{-5}\right) \end{gathered}$	$\begin{gathered} \mathrm{N} / \mathrm{H} \\ \left(10^{-5}\right) \end{gathered}$	$\begin{gathered} 0 / \mathrm{H} \\ \left(10^{-5}\right) \end{gathered}$	$\begin{gathered} T_{e} \\ (\mathrm{~K}) \end{gathered}$
C359.98	0.0	4000	32500	0.23	0.96	0.86	${ }^{2.6}$	38.1	64	6300
G5.97	6.6	140 C	33500	0.63	0.80	0.96	2.0	9.7	69	6700
G8.14	4.9	800	32500	0.21	0.96	0.80	1.3	7.6	59	720 (1
G9.61]	3.0	650	31500	0.03	0.97	0.42	2.1	7.3	58	6300
G24.47	3.9	825	35000	0.12	0.96	0.74	2.3	13.6	100	6100
G25.38	4.8	120 C	37500	0.28	0.94	0.85	1.6	16.3	85	6700
Ci25.4	4.1	120 C	34000	0.06	0.97	0.49	1.5	9.8	84	6700
C32.80	7.5	250 C	38750	0.77	0.74	0.96	1.2	7.3	18	10800
G37.87	5.8	hoc	38750	0.84	0.65	0.98	1.2	12.0	46	8700
(.61.47	7.7	575 C	32500	0.40	0.94	0.90	0.49	3.4	23	9800
G75.84	8.7	2100	36250	0.61	0.86	0.95	0.71	5.7	32	8800
G81.7	8.6	210 G	31500	0.15	0.97	0.68	0.65	2.7	27	9300
G105.63	11.4	175	32500	0.45	0.92	0.91	0.34	3.0	16	11200
G108.2O	11.2	650	34500	0.53	0.89	0.94	0.64	3.7	31	8500
G108.76	11.3	400	32000	0.10	0.98	0:93.	0.71		38	8400
60.1	=To--	175	32500	0.03 .	0.97	0.93..	3.0	~ : ${ }^{-}$	210^{-}	4400
G1.13	0.2	800	34500	0.14	0.97	0.86	3.3	20.7	190	4700
G10.30	3.6	200	34000	0.34	0.93	0.91	3.3	19.0	110	5900
(i10.32	3.6	800	33500	0.08	0.98	0.77	5.1	20.4	240	3900
G23.95	4.3	2200	32500	0.21	0.96	0.85	2.4	10.1	50	7300
G29.96	4.3	750	37500	0.60	0.83	0.96	2.2	18.2	56	7800
G30.76 ${ }^{\text {a }}$	4.7	600	35000	0.31	0.95	0.90	2.1	24.0	106	5500
(330.76 ${ }^{\text {a }}$	4.7	600	35000	0.35	0.94	0.92	2.3	23.9	104	5300
G30.78N ${ }^{\text {d }}$	4.7	775	35000	0.24	0.95	0.86	1.6	15.6	80	6500
G45.12	6.4	1700	36250	0.41	0.91	0.91	0.51	3.2	18	10500
G45.45	8.2	850	35000	0.28	0.93	0.88	1.5	6.8	82	6800
G49.49	6.7	1600	36250	0.54	0.88	0.94	1.1	10.2	50	7600
G70.3	9.9	750	38750	0.85	0.65	0.98	1 .(I	5.9	20	10600
G110.1	10.2	650	32500	0.40	0.93	0.91	1.1	5.5	32	9000
(i291.28	7.9	8000	3'8750	0.75	0.76	0.97	1.6	9.2	68	7400
G291.61 ${ }^{\text {a }}$	8.9	900	38750	0.71	0.80	0.96	1.6	13.3	89	6100
C291.63 ${ }^{\text {a }}$	8.9	950	38750	0.58	0.87	0.94	1.4	12.0	88	6400
C298.22	9.9	1900	40000	0.34	0.92	0.79	0.77	3.8	50	8600
G333.6	6.0	4000	34500	0.22	0.96	0.81	0.98	5.6	38	8600

${ }^{\circ}$ Full nebula not in beam

Hanel, R. A., Conrath, B. J., Kunde, V. G., l'earl, J. C., \& Jirraglia, J. A. 1983, Icarus, 53, 262
Henry, R. H. C.\& Howard, J. W. 1995, ApJ, 438, 170
Herter, T'., Helfer, H. L., Pipher, J. L. 1983, A\&AS, 51, 195
Hoare, M. G., Drew, J. E., \&I enby, M. 1993, MNRAS, 262, L19
Hofner, J'., Kurtz, S., Churchwell, E., Walmsley, C. h4., \& Cesaroni, R. 1994, ApJ, 429, J. 85
Howard, J. W., Henry, R. B. C., \& McCartney, S. 1996, ApJ, in prep
Jben, 1., Jr. \& Renzini, A. 1983, A\&A Rev., 2], 271
Jenkner, H., Lasker, B. M., Sturch, C. R., Mc Lean, B. J., Shara, M. M., \& Russell, J. L. 1990, AJ, 99,2082
Kaufer, A., Szeifert, Th., Krenzin, R., Baschek, B., \& Wolf, B.1994, A\&A, 289, 740
Kurtz, S. 1996, private communication
Kurtz, S. \& Churchwell, E. 1990, Ap, 3S, in prep
Kurtz, S., Churchwell, E., \& Wood, I). (). S.]994, ApJS, 91, 659
Kurucz, R. 1,. 1991, in IAUSymposium 149, Stellar l'ovulations of Galaxies, ccl. B. Barbuy \& A. Renzini (1)ordrecht: Reidel), 225

I arson, R. 11.1976, MNRAS, 176, 31
I,asker, 13. M, Sturch, C. R., Mc Lean, B. J., Russell, J. I., Jenkner, H., \& Shara, M. M. 1990, AJ, 99, 2019
Iester, D.F., Dinerstein, H. I,., Werner, M. W., Watson, D. M., Genzel, R., \&Storey, J. W. V. 1987, ApJ, 320, 573
Maciel, W. J. \& Köppen, J. 1994, A\&A, 282, 436
Mathis, J. S. 1985, ApJ, 291, 247
Matteucci, F. \& Francois, F'. 1989, MNRAS, 239, 885
Matteucci,F. 1991, in Frontiers of Stellar Fvolution, ed. I. L. Lambert (San Francisco: ASP), 539
Matthews, S., \&Erickson, E.F. 1977, NASA TM, X-73, 204
Mehringer, I. M., Palmer, P'., Goss, W. M., \& Yusef-Zadeh, F. 1993, Ap,J, 412, 684
Mendoza C. 1983, inIAU Symposium 103, Jlanetary Nebulae, ed. R. Flower (Dordrecht: Reidel), 143
Meyer, J.- I.1989, in AIP Conference Proceedings 183, Cosmic Abundances of Matter, cd. C. J. Waddington, (New York: AIP), 245
Merger, P. G. \&Henderson, A. P. 1967, ApJ, 147, 471
Mezger, I'. G., Pankonin, V., Schmid-Burgk, J., Thum, C., \& Wink, J. 1979, A\&A, 80, I. 3
Najarro, F., Kudritzki, R. P., Cassinelli, J. P., Stahl, O., \& Hillier, D. J. 1996, A\&A, 306, 892
Nussbaumer, H. \& Storey, 1986, A\&A, 64, 545
Osterbrock, D.E.\& Flather, E. 1959, ApJ, 120, 26
Pagel, I. E. J. \& Patchett, B. E. 1975, MNRAS, 172, 13
Janagia, N.1973, AJ, 78, 929
Panagia, N. \& Walmsley C. M. 1978, A\&A, 70, 411
Pardi, M. C., Ferrini, F., \& Matteucci, F. 1995, ApJ, 444, 207

Wink, J.E., Altenhoff, W. J., Meager, J. G.1982, A\&A, 108, 227
Wood, I). (). S. \& Churchwell, E. 1989, ApJS, 69, 831
Woodward, C.E., Helfer, H. L., \& Pipher, J. L. 1985, A\& A, 147, 84
Woosley, S. E., Timmes, R. X., \& Weaver, T. A. 1993, J. Phys., G.: Nucl. Part. Phys, 19, S183
Wyse, R. F.G.\& Gilmore G.1995, AJ, 110, 2771
Yusef-Zadeh, F., Zhao, J.- H., \& Goss, W. M. 1995, ApJ, 442, 646
Zaritsky, I)., Kennicutt, R. C., \& Iuchra, J. P. 1994, ApJ, 420, 87

This preprint was prepared with the AAS IATHX macrosv4.0.

Fig. 2: The ionization correction factor $\left(\mathrm{Z} / \mathrm{Z}^{+}+\right)$is shown as a function of $T_{\text {eff }}$ of the ionizing star. The models are for $\log \left(N_{c}^{\prime}\right)=49, f=0.1$, and $n_{e}=1000 \mathrm{~cm} 3.0 / 0^{++}$changes by up to 0.2 dex between stellar atmosphere models. 'here is a smaller variation in $\mathrm{S} / \mathrm{S}^{++}$and h ' N^{++}with $T_{e f f}$.

Fig. 4a: The mean intensity of the radiation field is plotted as a function of photon energy at three distances from the central star of $\mathrm{G} 32.80\left(T_{e f f}=38750 \mathrm{~K}\right)$. The ionization potentials of $\mathrm{S}^{-1}, \mathrm{~N}^{-1}$, and O^{+}are shown. The solid line is at $r=5103 \mathrm{PC}$, the short-dash line is at $\mathrm{r}=0.20 \mathrm{PC}$, just outside the boundary of the core-halo interface, and the long-dash line is at $r=0.6$ PC. ' I 'he optical depths at $912 \AA$ are $6.6106,0.73$, and 0.87 , respectively. The moderate opacities at $912 \AA$ occur only near the boundary of the core and beyond; over most of the core, the opacity is very small.

Fig. 5: The ionization correction factors $\left(\mathrm{Z}_{1} \mathrm{Z}^{++}\right.$) of 0^{+}, (empty squares), N^{++}(empty triangles), and $\mathrm{S}^{+\dagger}$ (filled squares) are shown as a function of $T_{e f f}^{\prime}$. The observations agree with the theoretical predictions in Figure 2, shown here as solid ($\mathrm{O} / 0^{++}$), long-dashed $\left(\mathrm{N} / \mathrm{N}^{+-1}\right)$, and short-dashed $\left(\mathrm{S} / \mathrm{S}^{+\dagger}\right)$ lines. The scatter of the points from the models is due to the range of $n_{e}, \mathrm{~A} C^{*}$, and Z from nebula to nebula.

Fig. $\mathbf{0 b}$: f 'oints are the ion ratios as a function of derived $T_{\text {eff }}$. The triangles are sources at $I_{G}>6 \mathrm{kpc}$; the crosses are sources at $D_{G}<6 \mathrm{kpc}$. In order of increasing $\mathrm{N}^{++} / \mathrm{O}^{++}$, the lines are abundances $[\mathrm{Z} / \mathrm{H}]$ $=-0.4,0,0.4$, and 0.8 Orion. There is additional scatter in the theoretical ratios of ± 0.06 dex due to the range of n_{e} and N_{c}^{\prime} of our sources. Most sources fall within the range of the models.

