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Dissecting the aetiology of complex diseases has been a great 

challenge for biomedical research, including epidemiology. 
1–4 5

Several thinkers, including Buchanan et al. recently, have 

focused on the unquestionable difficulties of this ambitious 

enterprise and the great obstacles encountered in the way. 

Some of them have ended up with a futility outlook. Over 

more than a decade, the debate has ranged wild on whether 
6epidemiology has reached its limits, is either dead or in a 

vegetative state, should call it a day, and whether ‘it is time for 

scientists to re-think the quest’ and realize that ‘base metal 
5

cannot be turned to gold’.

In this commentary, I will not argue whether the challenges 

for attaining evidence are formidable in the current, molecular 

era. I will certainly not propose that the ‘hunger of the paying 
5

public for easy answers and promises’ should be superficially 

satisfied. However, I will argue that not only the public, but 

scientists also, have been starving until now for some tractable 

knowledge. I will also argue that despite all shortcomings, 

molecular evidence, with molecular epidemiology as a centre 

piece, does have a future. I will try to demonstrate that 

reasonable progress can be achieved; that progress will require 

scientific humility and the realization that many postulated 

research findings have been false; that false discoveries will 

continue to be very common; and that we need to adapt from 

the concept of solid knowledge taken for granted to the concept 

of tentative information that should be replicated and 

scrutinized. Finally, I will propose a hierarchy for grading 

the credibility of molecular evidence in complex diseases that 

emerges under the current circumstances. 

Scientific prehistory (stone age until 
approximately early 21st century?) 

Critics of molecular evidence contrast the difficulties that arise 

in trying to understand complex diseases against a glorious past 
5

of biomedicine. As Buchanan et al. claim, the failure of current 

research is in ‘stark contrast to prior decades of success in 

which both epidemiology and human genetics uncovered 

major causal risk factors . . . and lent [their] fields . . . a well­

earned authority.’ I greatly respect past successes of these fields, 
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even more so, since they were achieved with limited means 

and crude methods. But epidemiology and genetics are not 

dead or finished disciplines—they are just starting now. 

Biomedicine until the mid-20th century had been to a large 

extent a compilation of unfounded beliefs and often 

dangerous practices, variously infiltrated by vague dogmatic 

theories derived from the equally or even more immature and 

overconfident physicochemical sciences. Who would like to 

defend an era before the mere existence of randomized trials 

and when even demonstrating major risk factors such as 

smoking for lung cancer met with enormous resistance from 
7

the establishment, while academic stupidities circulated at 

large? As we get closer to our times, we may have more 

resistance in admitting the limitations of our professions and 

scientific disciplines. Nevertheless, we have increasing empiri­

cal evidence that the performance of biomedical research has 

not been that spectacular to date—in any front, be it basic 

science, preclinical science and epidemiology, or clinical 

research. At a minimum, there is certainly much room for 

improvement. Among 101 publications in major basic science 

journals between 1979 and 1983 that made clear promises for 

resulting in major clinical applications, only one materialized 

in a widespread clinical application in the subsequent 20–25 
8 years. The translation of basic science in less prestigious 

journals and among the vast majority of basic research that 

does not even imagine being translated is unknown, but it is 

likely to be even less efficient.
9,10 

Much of the ‘basic’ science 

research to date is confined to ‘focused’ observations recycled 

within esoteric circles of similarly oriented sub-sub-specialists 

without any material consequence whatsoever. 

When it comes to epidemiological investigation and clinical 

research, the situation is not necessarily better. There is 

increasing concern that the quality of both epidemiolog­
11

ical investigations and clinical research, including clinical 
12–14

trials, has been quite poor until now. Exceptions of 

brilliant and well-designed studies only reinforce the rule. It is 

not surprising then that the findings of epidemiological and 
15

clinical research are very often refuted. In an evaluation of 

the 45 most-cited (over 1000 citations each) articles finding 

significant effects for interventions published between 1990 

and 2003, five out of six non-randomized studies had already 

been either clearly refuted by subsequent research or found to 

have proposed seemingly exaggerated effects by 2004. Even 
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among randomized trials, a quarter had already been refuted or 

found to be exaggerated. 

These data pertain to highly-visible research published in 

the best, most competitive journals. Less visible research some­

times has been so bad that refutation is not even an option. A 

scientific claim can be refuted only when it is coherent enough 

to allow refutation. Much research in the past has been 

performed with bad methods, for the wrong reasons, under 

heavy conflicts of interest, or with combinations of these flaws. 
16

Even randomized clinical trials suffer from publication bias,
17 18

time lag bias, and extensive selective reporting. As Doug 
19

Altman pointed out several years ago, poor medical research 

is a scandal. 

Are ‘macroscopic’ risk factors 
defendable? 

Defenders of the ‘macroscopic’ epidemiology of the pre­

molecular era might think of several reasons why to prefer 

traditional risk factors over mysterious molecular risk factors. 

Postulated risk factors like obesity, consumption of fruits and 

vegetables, or consumption of coffee are readily tangible. One 

can communicate to every lay person that obesity is bad, eating 

fruit and vegetables is good, and drinking coffee is bad, or good, 

or does not matter. Anyone can understand what obesity, a 

peach, or a cup of coffee is. Conversely, most of the genes and 

gene variants unearthed by molecular research (even when 

they have a name that is not created simply by a cryptic string 

of vowels, consonants, and numbers) remain a mystery to the 

layperson and sometimes also to the scientist-expert. The other 

postulated problem with most candidate molecular risk factors 

is that usually one cannot modify them—to date at least. One 

can advise people to lose weight, eat cucumbers, and drink 

black coffee in moderation. One cannot tell them to change a 

single nucleotide polymorphism (SNP) that they already carry 

in their genome. Last, one might argue that if 200 molecular 

factors act cumulatively, additively, synergistically, or com­

petitively along with 200 multifarious environmental expo­

sures to generate obesity, why not just focus on the final 

visible, tangible macroscopic risk factor, i.e. plain body fat, 

rather than try to chase 400 molecular ones? 

The reason why we have to go after these 400 risk factors is 

that we really have no other good choice. We have tried our 

best with macroscopic risk factors and this is what we got. A 

few years ago, the obesity epidemic was estimated to account 
20for an extra 300 000 deaths in the USA, while recently it 

was claimed that there is hardly any independent effect on 

mortality, and probably more deaths are caused from 
21

underweight than from overweight. Some studies had 

found that fruit and vegetables reduce the breast cancer risk 
22 23

10-fold, while recent large cohorts find no effect at all.

Coffee consumption was one of the first major ‘risk factors’ to 

be proposed and then retracted as a causative factor for 
5

pancreatic cancer.
24,25 

Buchanan et al. provide an excellent 

list of irreproducible findings of the past. Furthermore, even in 

the instances where reproducibility has been relatively good, 

the premise that these factors can be easily modified is 

spuriously optimistic. Finally, I do not believe that the ability of 

tabloids to accurately name or describe a risk factor should be 

taken as scientific proof for its importance. I think it simply 

means that many low-yield ‘macroscopics’ should be left to 

tabloids and epidemiology should proceed to the molecular era. 

If macroscopic risk factors are indeed the result of the 

interplay of hundreds of other more proximal risk factors then it 

should not be surprising that our results with traditional risk 

factors have been so unstable to replicate. Large heterogeneity 

is only to be expected. Results obtained with such risk 

factors may be difficult, if not impossible, to generalize to other 

patients and populations. Traditional risk factors are very crude 

composites of very heterogeneous risk quanta each of which 

may have a small impact on the macroscopic risk factor 

and on the final outcomes of interest. Obesity may be possible 

to describe eventually as a composite of 3000 different 

sub-types, and fruit consumption may be an extremely 

complicated biological phenomenon to which we may be doing 

gross injustice by simply measuring rations consumed per day. 

Is epidemiology a match for biology 
and aetiology? 

Molecular ‘progress’ may be difficult, if common complex 

diseases are the result of chance or if these diseases largely have 

a highly ‘private’ genetic epidemiology. For example, if each 

case of a lethal disease is caused by a new mutation and each 

new case represents still a new genetic variant that has not 

been previously encountered, we can keep cataloguing this 

knowledge but this will not be of prognostic value for the 

general population. Even then however, we might gain some 

interesting scientific knowledge (as opposed to practical, usable 

knowledge) from the mere evolving catalogue. Chance and 

private genetic epidemiology may have their share indeed for 

the aetiology of complex diseases. In fact one might consider 

‘chance’ as the private environmental epidemiology, 

equivalent of and working with or against the private genetic 

epidemiology. 

However, probably for most common and important complex 

diseases, there is a sizeable component of their aetiology that 

can be ascribed to measurable and reproducible risk factors, be 

it genetic or environmental, or both. Evolving and improving 

multivariate predictive models may never reach a coefficient of 
2

determination, R , of 1.00. However, it is reasonable to expect 

that we can improve these coefficients of determination for 

most complex diseases by starting to incorporate molecular 

factors. Examining how much we can improve them for each 

disease is actually a very interesting scientific question on its 

own. Current predictive knowledge is probably largely over-fit, 

biased, unchallenged, and non-validated. Most claims about 
2 

strong predictors and large R for many diseases are 

exaggerated and would not stand the test of large-scale 
26

independent validation in unbiased assessments. The threat 

for poor validation and exaggerated expectations for diagnostic 

accuracy and prognostic performance of multivariate models 
27–30

may be even greater in the molecular era. We may need 

to take a step back and acknowledge that we know less than we 

think we do. For many diseases, we may have to acknowledge 

that we know practically nothing that can stand much testing; 

anything we learn from now on would be a plus, even if 

biology and aetiology prove to be private to some extent. 
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A flood of candidate risk factors 

Molecular medicine and molecular epidemiology are charac­

terized by a rapid, exponential increase in the number of 

putative risk factors that can be measured. A couple of decades 

ago, the usual practice had been to focus entirely on a single 

candidate risk factor and at most consider a handful of other 

measured variables as adjustments to account for confounding. 

Ten years ago, measurements in the most complicated studies 

could master only a few dozens of candidate risk factors. Single 

experiments can currently measure tens and hundreds of 

thousands of candidate risk factors at the same time. This is 

typically exemplified by the expanding applications of 

genomics, proteomics, and metabolomics. It translates to 

over a 100-fold increase per decade in the candidate risk factors 

targeted in a typical study. If the trend continues, studies with 

billions of candidate risk factors may become possible before 

my generation passes away! 

Even if the numbers of candidates reach a plateau soon, the 

number of potential candidates is already formidable. It is 

unlikely that many of the probed candidates are really 

important. Even if chance and private epidemiology do not 

account for a big proportion of the aetiology of common 

complex diseases, there is probably a finite number of 

molecular risk factors that are operating for each disease. 

The smaller the average effect size for each of these risk 

factors, the larger their likely number. As shown in Table 1, we 

have evidence from studies to date that effect sizes in molecular 
31–38

epidemiology may cover the same range as the effect 

sizes described in pre-molecular medicine and epidemiology. 

Small effect sizes are not peculiar to the molecular era. In fact, 

the overwhelming proportion of epidemiological associations 

ascertained or proposed in the past have been small effects. 

This applies also to experimental clinical designs. The typical 

examples are medical treatments: most established medical 

treatments to date have very modest relative risk reductions, in 

the range of 10–40%, i.e. small or very small effects. However, 

the demonstration of such effect sizes has been left to 

randomized experiments, when it comes to treatment efficacy. 

It has been questioned whether epidemiological studies can 
39,40function as well in this range. There is thus some 

a
Table 1 Effect sizes in the pre-molecular era and in the molecular era 

understandable agony as epidemiological methods are relied 

upon to try to capture and validate small or very small effects. 

Regardless of the agony, since small and very small effects 

were being pursued already by macroscopic epidemiology, the 

challenge is not new. Moreover, I see no reason why someone 

should worry because epidemiologists can measure now a lot 

of variables. We had good reason to complain in the past that 

we could only measure a few variables; that our measurements 

were crude; and that most of the essential players remained 

unmeasured and unapproachable, collectively buried under 

residual confounding. Now we can measure a lot of things 

and the ability to measure keeps improving. This is good news. 

There are also other issues to consider this exponential 

improvement of measurement agility. The availability of tons 

of complex data may lead to greater temptation to perform 

data dredging and selectively report the most promising, but 

biased, results.
30,41 

This is certainly a threat and it is 

probably happening extensively currently as new methodolo­

gies appear and investigators are probing into their capabilities. 

Conversely, the opposite trend may prevail when these 

scientific disciplines mature. When tons of data are available, 

the conscious, unconscious, and subconscious need of 

investigators to data dredge for ‘significant’ results may 

diminish. A whole-genome association study of 500 000 SNPs is 

likely to yield many thousands of putative risk factors and even 

with a couple of rounds of replication experiments, several 

dozen candidates may survive for further testing. A mature 

scientist is faced with the problem of still having too many risk 

factors on his plate to pursue. Why data dredge then? 

Compare this full plate against the epidemiologist of old who 

took a decade to collect the data on one or two candidate risk 

factors and then, starved of statistical significance, would be 

willing to go wild on data fishing to come up with some 

respectable, but probably spurious, third-level sub-group 

interaction effect to promote his/her career. In all, the data 

manipulation is likely to be less if 500 000 candidates are 

screened all at once rather than if 500 000 candidates were to 

appear on the screen one-by-one over 1 000 000 years. We 

need to get to the bottom of it, so let us get there as soon as 

possible. 

Effect sizes Putative frequency Typical examples of postulated risk factors 

Pre-molecular era Molecular era 

Large (RR . 5) Rare Smoking and lung cancer APOE and Alzheimer’s disease
31 

BRCA1 and breast cancer 
32 

Moderate (RR 2–5) Uncommon Moderate obesity and 

cholesterol gallstones 

NOD2 and Crohn’s disease
33 

HLA shared epitopes and 

rheumatoid arthritis
34 

Small (RR 1.2–2) Common Racial descent and hypertension FcgRIIa and SLE
35 

GSTM1 and bladder cancer 
36 

Very small (RR 1–1.2) Unclear frequency
a 

Passive smoking and lung cancer GSTM1 and lung cancer 
37 

MTHFR and ischaemic stroke
38 

RR: relative risk. 
a 

Presented examples reflect current state of knowledge and are subject to possible refutation in the future; for small and very small effect sizes, it is uncertain 

whether these risk factors are true, even when evidence is based on large sample sizes from several studies. 
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Solid knowledge vs tentative 
information 

This new perspective requires a paradigm shift. Until now, 

scientists were eager to find, discuss, publish, and disseminate 

information that they felt was true. Refutations of such 

information created agony, debate, conflicts, and public 

upheavals. We should now recognize that most of the 

biomedical information that is likely to be found, discussed, 

published, and disseminated will be false. Instead of solid 

knowledge, we should get used to the notion of tentative 

information. Any single study in the molecular era, no matter 

how well-designed, well-conducted, well-analysed, and 

well-presented is probably more likely to be refuted rather 

than validated. This does not mean we should discredit these 

data. We should just accept them for what they are: tentative 

information, some of which, a small portion maybe, may 

eventually reach higher levels of credibility, while much will 

be refuted. 

Given this perspective, one could consider a grading of 

credibility of biomedical information in the molecular era. It 
42

can be proven that in the absence of overt biases, large effect 

sizes are probably more credible than smaller effect sizes. 

However, a key modifying parameter would be the ability to 

replicate molecular findings again and again in diverse studies. 

Table 2 shows the range of credibility of biomedical information 

according to the observed effect size and the extent of 

replication of the finding. 

A very small effect size (relative risk , 1.2), even if found 

formally statistically significant in a sizeable study, is very 

unlikely to be true in a research environment of massive 

discovery testing, where thousands and millions of such 

findings are likely to pop up by chance. Even with extensive 

replication across many studies, it would still be more likely for 

this finding to be false rather than true, unless it is corroborated 

not only by several similar studies but also by other 

independent lines of evidence. 

Small and moderate effect sizes may reach a credibility of 

50% or higher, if such extensive replication is available, while 

for very large effects credibility may reach up to 90 or 95% at 

Table 2 Typical credibility of research findings according to effect 

size and extent of replication 

Effect size Typical 

(relative risk) Replication credibility (%) 

Large (.5) None 10–60 

Limited 30–80 

Extensive 70–95 

Moderate (2–5) None 5–20 

Limited 10–40 

Extensive 50–90 

Small (1.2–2) None ,5 

Limited 2–20 

Extensive 10–70 

Very small (1–1.2) None ,1 

Limited 1–5 

Extensive 2–30 

times. Nevertheless, no candidate risk factor can be assumed for 

certain to be 100% true. The vast majority of proposed risk 

factors will continue to be at the low end of the credibility 

range. We need to accept that at any time point, 90% or more 

of our tentative information base included in our journals, web 

sites, textbooks (or whatever other forms of information­

archiving succeed or replace these forms) will be false. 

Is this new? Others may disagree with my view, but I think 

that 90% or more of our tentative information base is already 

false anyhow. Regardless of whether I am correct or not about 

this, the molecular era makes it clear cut that we need to 

recognize with humility and judiciousness these credibility 

limits. This has major implications on how research findings 

are interpreted and eventually used. It also has major 

implications on why transparent and comprehensive replica­

tion becomes so important. We cannot rely on single studies. 

Single studies are purely hypothesis-generating, and they are 

important to respect and register, but they will not provide the 

final answer. We need transparent and complete cataloguing/ 

registration of all studies that are happening in any specific 
43

field. Selective reporting and non-publication of results

becomes even more unacceptable. Global collaboration and 

transparency are essential. Evidence is not static, but its 
44

credibility needs to be continuously updated and reappraised.

In this direction, consortia of investigators working on the 

same topic with individual-level information may become the 
45

gold standard. These consortia would not hinder individual 

thinking and brilliant new research ideas, but whatever 

research findings are produced by individual teams would then 

be possible to test and validate or refute across the network of 

other investigators working on the same topic. Such an 
46

approach is already being adopted in several fields, and a 

network of networks has recently been created in human 
45genome epidemiology in an effort to share experiences on 

how to launch, build, maintain, and expand such networks of 

investigators. Such networks may also help to keep updating 

the molecular evidence base of their fields. 

Grading of molecular evidence 

Given the above considerations, one might consider a grading 

of molecular evidence, as shown in Table 3. The grading 

considers five axes: effect size, amount and replication of the 

evidence, protection from bias, biological credibility, and 

relevance. 

I have already discussed above the first two axes above, effect 

size and replication of the evidence. One should add some 

caveats regarding effect sizes. In the presence of bias, the 

observed effect sizes may actually simply measure nothing else 

but the average net bias operating in a scientific field. As shown 
42

previously, under conditions of bias, larger effect sizes simply 

mean that more bias is operating—a materialization of the ‘too 
47

good to be true’ situation. Given the massive data being 

procured, we actually have a better chance of measuring bias 

empirically in molecular research. Thus the third axis (bias in 

the evidence) becomes very important. In the presence of 

demonstrable strong bias, even strong effects that have been 

observed across several studies may need to be abandoned. 

Whole fields of scientific inquiry may be dismantled in this 

way. The problem is that for most currently conducted 
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Table 3 Proposed grading of credibility in molecular 

evidence 

First axis: Effect size 

1.1 Very small or small effect size (relative risk , 2) 

1.2 Moderate effect size (relative risk 2–5) 

1.3 Large effect size (relative risk . 5) 

Second axis: Amount and replication of evidence 

2.1 Single or few scattered studies 

2.2 Meta-analyses of group data 

2.3 Large-scale evidence from inclusive networks 

Third axis: Protection from bias 

3.1 Clear presence of strong bias in the evidence 

3.2 Uncertain about the presence of bias 

3.3 Clear strong protection from bias 

Fourth axis: Biological credibility 

4.1 No functional/biological data or negative data 

4.2 Limited or controversial functional/biological data 

4.3 Convincing functional/biological data 

Fifth axis: Relevance 

5.1 No clinical or public health applicability 

5.2 Limited clinical or public health applicability 

5.3 Considerable clinical/public health applicability 

research, we are given very limited or no information by which 

to judge whether bias has been present or not. Reporting in 

epidemiological studies is esoteric and elliptical. Hopefully, the 

efforts to improve transparency in the design, conduct, and 

reporting of research will remedy the situation.
48,49 

Otherwise, 

it is safe to interpret results as if at least some bias is present, 

until proven otherwise. 

Biological credibility is also important to consider, but we 

also need more data on how this should be operationalized. It is 
50 

easy to make post hoc claims about biological plausibility.

Much of that reasoning may be silly, but there is no validated 

scale to measure silliness. However, we do start to accumulate 

data on various molecular associations from other biological/ 

functional avenues of evidence. We need more empirical data 

in order to understand what exactly they mean, i.e. how much 

they should change the credibility of some molecular 

epidemiological findings.
51,52 

For example, how credible 

should associations be when an SNP is located in a non­

coding region or a conserved region? How much should the 

credibility improve when a luciferase experiment demonstrates 

an effect of this polymorphism on transcription? How much 

should negative functional data weight on the credibility of an 

epidemiological association? 

Despite some evidence that functional biological data are 

important,
51,52 

it is unavoidable that different experimental 
51

conditions may give somewhat different results. The increase 

or decrease in credibility based on biological and functional 

data will continue to be a subjective choice. However, we can 

now start posing questions and dissecting the components of 

biological plausibility. Given the massive accumulated data, we 

can start having some empirical evidence on what each piece 

of biology means. It will not be perfect, but it will be something 

that we can start measuring. Until now, this speculative part 

belonged to the Discussion sections of papers and approached 

poetry more than science. Eventually the likelihood ratios 

conferred by biological reasoning may become steeper across 

levels of evidence. 

The last axis to consider is the relevance of a molecular 

research finding. Seen at face value, most research findings 

have no major clinical or public health relevance. We should be 

ready to acknowledge this fact. Identifying a risk factor that 

accounts for 1–5% of the risk of a disease is a venerable target, 

and most venerable targets are likely to be of this sort. 

However, this does not mean that screening for this risk factor 

should automatically be introduced to the general popula-

tion.
53,54 

It is unavoidable that most molecular discoveries will 

continue to have limited relevance for public health and 

clinical medicine. 

This humility should not be embarrassing. Nor should 

the public be fed with easy answers. A cursory look through 

newspapers around the globe would suggest that the final total 

cure for cancer is discovered many times per week. Scientists 

should teach themselves and the public that scientific progress 

is making smaller steps, and these steps should be respected 

for what they teach us. In particular, we need to learn from 

our mistakes, biases, and misconceptions. We may never 

turn base metal to gold, but we still have a lot of fascinating 

things to learn from the basest of metals in molecular 

epidemiology. 
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