Dilatometry

Materials from the 2007 presentation of George Schmiedeshoff, Occidental College were heavily used

Intensive Parameters:

- T: thermal expansion: $\beta = dln(V)/dT$
- H: magnetostriction: $\lambda = \Delta L(H)/L$
- P: compressibility: $\kappa = d\ln(V)/dP$
- E: electrostriction: $\xi = \Delta L(E)/L$

etc.

- Heron of Alexandria (0±100): Fire heats air, air expands, opening temple doors (first practical application...).
- **Galileo** (1600±7): Gas thermometer.
- **Fahrenheit** (1714): Mercury-in-glass thermometer.
- Mie (1903): First microscopic model.
- **Grüneisen** (1908): $\beta(T)/C(T) \sim constant.$

TbNi₂Ge₂ (Ising Antiferromagnet)

after gms et al. AIP Conf. Proc. 850, 1297 (2006). (LT24)

2nd Order Phase Transition, Ehrenfest Relation(s):

$$\frac{d\mathrm{T}_{\mathrm{N2}}}{d\mathrm{p}_{\mathrm{c}}} = \mathrm{V}_{\mathrm{M}}\mathrm{T}_{\mathrm{N2}}\frac{\Delta\alpha_{c}}{\Delta\mathrm{C}_{\mathrm{p}}}$$

1st Order Phase Transition, Clausius-Clapyeron Eq(s).:

$$\frac{d\mathbf{T}_{\mathrm{N1}}}{d\mathbf{p}_{c}} = \frac{\Delta \mathbf{V}}{\Delta \mathbf{S}} \approx \mathbf{V}_{\mathrm{M}} \frac{\Delta(\frac{\Delta L}{L})}{\Delta \mathbf{S}}$$

Paul Ehrenfest (1880-1933)

PhD from Vienna Technical University

1904 – married Tatyana Alexeyevna Afanasieva – Russian mathematician

1907-1912 – St. Petersburg, Russia (happiest days of his life)

1912-1933 - professor in Leiden

Depression...

Ehrenfest theorem Ehrenfest paradox

Ehrenfest-Tolman effect

Classification of phase transitions

Ehrenfest time

Spinor

He was not merely the best teacher in our profession whom I have ever known; he was also passionately preoccupied with the development and destiny of men, especially his students. A. Einstein

Grüneisen Theory (one energy scale: U_o)

$$\Gamma \equiv -\frac{\partial \ln U_o}{\partial \ln V} = V_M \kappa(T) \frac{\beta(T)}{C_p(T)} = const.$$

$$U_o \propto V^{-\Gamma}$$

e.g.: If U_o = E_F (ideal) then: \Gamma_{IFG} = \frac{2}{3}

Grüneisen Theory (multiple energy scales: U_i each with C_i and Γ_i)

$$\Gamma \equiv \frac{\sum_{i} C_{i}(T)\Gamma_{i}}{\sum_{i} C_{i}(T)} = \Gamma(T)$$

e.g.: phonon, electron, magnon, CEF, Kondo, RKKY, *etc.*

$$\Gamma_{eff} \equiv V_M \kappa(T) \frac{\beta(T)}{C_p(T)} = \Gamma_{eff}(T)$$

Examples: Simple metals: $\Gamma \sim 2$ $\Gamma_e = \frac{2}{3} + \frac{d \ln(m^*)}{d \ln(V)}$

Example (Noble Metals):

After White & Collins, JLTP (1972). Also: Barron, Collins & White, Adv. Phys. (1980). (Γ_{lattice} shown.)

Dilatometers

- Mechanical (pushrod *etc.*)
- Optical (interferometer *etc*.).
- Electrical (Inductive, Capacitive, Strain Gauges).
- Diffraction (X-ray, neutron).
- Others (absolute & differential).

NEITZSCH – DIL 402

push-rod with inductive readout (Ames Laboratory thermal analysis facility in Wilhelm Hall)

Technical Specifications

PC-Interface:

Furnaces (exchangeable):	RT 1200°C, RT 1600°C
Heating/Cooling rates:	0 50 K/min
Sample holders:	Fused Silica (max. 1100°C)
	Alumina (max. 1600°C)
	(user exchangeable)
Sample thermocouple:	type S (Pt/Pt10%Rh)
Measurement range:	500/5000 μm
Resolution:	up to 8 nm/digit
Sample diameter	≈1 12 mm
Sample length:	0 50 mm
Atmospheres:	oxid. (static, dynamic), inert
Electronics:	integrated TASC 414/5

USB

Optical dilatometer - interferometer

nanometer resolution, commercially available

Strain gauges

Gauge factor, GF = $[\Delta R/R]/[\Delta L/L]$ is usually about 2 (for metal film gauges)

PHYSICAL REVIEW B 78, 014507 (2008)

S.

Anisotropic thermodynamic and transport properties of single-crystalline Ba₁ $_x$ K_Fe₂As₂ (x=0 and 0.45)

N. Ni,^{1,2} S. L. Bud'ko,^{1,2} A. Kreyssig,^{1,2} S. Nandi,^{1,2} G. E. Rustan,^{1,2} A. I. Goldman,^{1,2} S. Gupta,^{1,3} J. D. Corbett,^{1,3} A. Kracher,¹ and P. C. Canfield^{1,2}

XRD dilatometry

Less accurate

Tedious/expensive

VERY useful for structural phase transitions (gives structural information)

Capacitive Dilatometer (Cartoon)

$$C = \varepsilon_o \frac{A}{D}$$

Rev. Sci. Instrum. **77**, 123907 (2006) (cond-mat/0617396 has fewer typos...)

BeCu spring (c).

D3

- Stycast 2850FT (h) and Kapton (i) insulation.
- Sample (d).

Calibration

- Use sample platform to push against lower capacitor plate.
- Rotate sample platform (θ), measure C.
- A_{eff} from slope (edge effects).
- $A_{eff} = A_o$ to about 1%?!
- "Ideal" capacitive geometry.
- Consistent with estimates.
- C_{MAX} >> C: no tilt correction.

<u>Much</u> smaller cell effect, above ~10K, using quartz (or sapphire?) instead of Cu for cell body. See, for example, Neumeier *et al.* (2005) and references therein.

Tilt Correction

- If the capacitor plates are truly parallel then $C \rightarrow \infty$ as $D \rightarrow 0$.
- More realistically, if there is an angular misalignment, one can show that $C \rightarrow C_{MAX}$ as $D \rightarrow D_{SHORT}$ (plates touch) and that

$$D = \frac{\varepsilon_{o}A}{C} \left[1 + \left(\frac{C}{C_{MAX}}\right)^{2} \right]$$

Pott & Schefzyk (1988).

- For our design, C_{MAX} = 100 pF corresponds to an angular misalignment of about 0.1°.
- Tilt is not always bad: enhanced sensitivity is exploited in the design of Rotter *et al.* (1998).

Kapton Bad (thanks to A. deVisser and Cy Opeil)

Torque Bad

- The dilatometer is sensitive to magnetic torque on the sample (induced moments, permanent moments, shape effects...).
- Manifests as irreproducible magnetostriction (for example).
- Best solution (so far...): glue sample to platform.
- Duco cement, GE varnish, N-grease...
- Low temperature only. Glue contributes above about 20 K.

- Cell is very sensitive to thermal gradients: thermal hysteresis.
 But slope is unaffected if T changes slowly.
- Magnetic torque on induced eddy-currents: magnetic hysteresis. But symmetric hysteresis averages to "zero":

Thermal expansion and magnetostriction of pure and doped $RAgSb_2$ (R = Y, Sm, La) single crystals

S L Bud'ko¹, S A Law^{1,4}, P C Canfield¹, G D Samolyuk¹, M S Torikachvili² and G M Schmiedeshoff³

0.8 3 YAgSb₂ ß H || L || [001] amplitude (arb.units) T = 1.8 K 2 0.6 ΔL/L₀ (10⁻⁶) 1 0.4 8 0 10 'n 5 F (MG) 0.2 0.0 (a) 100 120 40 60 80 140 H (kOe)

Quantum Oscillations

$$\epsilon_i = -MH \frac{\partial \ln S_m}{\partial \sigma_i}$$

Can estimate uniaxial pressure derivatives of the extremal FS cross-sections

Tricritical Phenomena at the $\gamma \rightarrow \alpha$ Transition in Ce_{0.9-x}La_xTh_{0.1} Alloys

J. C. Lashley,¹ A. C. Lawson,¹ J. C. Cooley,¹ B. Mihaila,¹ C. P. Opeil,¹ L. Pham,¹ W. L. Hults,¹ J. L. Smith,¹ G. M. Schmiedeshoff,² F. R. Drymiotis,³ G. Chapline,⁴ S. Basu,⁵ and P. S. Riseborough⁵

J. Phys.: Condens. Matter 18 (2006) 8353-8365

doi:10.1088/0953-8984/18/35/020

Anisotropic thermal expansion and magnetostriction of YNi₂B₂C single crystals

S L Bud'ko¹, G M Schmiedeshoff², G Lapertot^{1,3} and P C Canfield¹

NDAT

Magnetic-Field-Induced Lattice Anomaly inside the Superconducting State of CeCoIn₅: Anisotropic Evidence of the Possible Fulde-Ferrell-Larkin-Ovchinnikov State

V. F. Correa,^{1,*} T. P. Murphy,¹ C. Martin,¹ K. M. Purcell,^{1,2} E. C. Palm,¹ G. M. Schmiedeshoff,³ J. C. Cooley,⁴ and S. W. Tozer¹

GNET

The Good & The Bad

- Small (scale up or down).
- Open architecture.
- Rotate *in-situ* (NHMFL/TLH).
- Vacuum, gas, or liquid (magnetostriction only?).
- Sub-angstrom precision.

- Cell effect ($T \ge 2K$).
- Magnetic torque effects.
- Thermal and magnetic hysteresis.
- Thermal contact to sample in vacuum (T \leq 100mK ?).

Recommended:

- Book: *Heat Capacity and Thermal Expansion at Low Temperatures*, Barron & White, 1999.
- Collection of Review Articles: *Thermal Expansion of Solids*, v.I-4 of Cindas Data Series on Material Properties, ed. by C.Y. Ho, 1998.
- Book (broad range of data on technical materials *etc*.): *Experimental Techniques for Low Temperature Measurements*, Ekin, 2006.
- Book: Magnetostriction: Theory and Applications of Magnetoelasticity, Etienne du Trémolet de Lacheisserie, 1993.
- Book: *Thermal Expansion*, Yates, 1972.
- Review Article: Barron, Collins, and White; Adv. Phys. **29**, 609 (1980).
- Review Article: Chandrasekhar & Fawcett; Adv. Phys. 20, 775 (1971).
- ...and references therein.