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INTRODUCTION 

Measurement of the bulk minority carrier lifetime (τb) by 
optical methods, such as photocurrent decay or 
QSSPC, is strongly influenced by surface 
recombination. A number of techniques are known to 
lower the effective surface recombination velocity. 
These include use of oxidation, floating N/P junction, 
SiN:H layer, HF immersion, and use of iodine in ethanol 
or methanol (I-E solution) [1-7]. Use of I-E appears to be 
very simple and this technique does not require any 
high temperature treatment such as oxidation, diffusion, 
or nitridation processes that can change τb [1].Yet, this 
is not a preferred procedure within photovoltaic 
community because it is a common experience that it is 
difficult to obtain same τb-values reproducibly, 
particularly when the wafer lifetime is long. Our objective 
for studying lifetime measurement using I-E passivation 
is twofold: (i) to apply it to compare lifetimes of wafers 
(having different τb) by various techniques such as 
QSSPC and transient PCD using short laser pulses of 
different light intensity; NREL has a number of τb 
measurement systems; and (ii) to make minority carrier 
diffusion length (L) measurements by surface 
photovoltage technique, and to use τb and L data to 
determine diffusivity (D) values for various impurity and 
defect concentrations, using relationship L2 = D* τb [3, 6, 
7]. 
 
We have investigated various reasons which can make 
lifetime measurements irreproducible using I-E solution 
passivation. We studied influence of the strength of 
iodine in ethanol solution, wafer cleaning procedures, 
influence of wafer container during lifetime 
measurement, and stability of I-E. Although some of 
these studies were also performed by other 
researchers, they only examined individual parameters 
[2]. Our objective was to examine interdependencies 
between these parameters. We have determined that 
the problems in τb  measurement arise from two main 
sources: (i) improper wafer cleaning, and (ii) instability 
of I-E solution when in contact with a Si wafer. 
 

INFLUENCE OF WAFER CLEANING 

Our initial cleaning procedure ("ICP") was similar to 
used by others, and consisted of the following: removal 
of organics by solvent clean followed by DI water rinse, 

piranha (H2SO4:H2O2 2:1) clean at 80 °C, Dil. HF rinse, 
DI water rinse and nitrogen drying.  
 
Following this cleaning by "ICP" the sample was placed 
in petri dish or polyethylene bag. We found that zip-lock 
bags provided an excellent way to passivate the 
sample. We tried a variety of bags of different quality 
and thicknesses. The most convenient is 1 mil 
polyethylene bag. A well cleaned sample is placed in a 
polyethylene bag and covered on both sides with I-E 
solution (typically the molarity of 0.1). Excess solution 
from each surface is squeezed out to leave a thin 
uniform layer of the solution on the surface. In our 
measurements the molarity of the solution (within range 
of 0.01 and 0.1) did not influence the measurement. 
Figure 1 shows typical measured lifetime using QSSPC 
technique using Sinton apparatus, as a function of time 
(curve A). The wafer was a semiconductor grade, p-
type, with a resistivity of 12.8 Ω-cm. 

 
The lifetime values correspond to injection level of 1016 
cm-3. The wafer was prepared using above described 
ICP and the measurements were made every 5 
minutes. Following these measurements, the sample 

Fig. 1. τB of a p-type Si wafer measured by QSSPC 
as a function of time. The sample was cleaned by 
“ICP” and passivated in IE solution. (A) after ICP; 
(B) dil. HF dip after (A); (C) dil. HF dip after (B); (D) 
after oxidation clean. 
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was dipped in dil. HF and dried, and measured (curve 
B). The curve C was done after dipping the sample once 
again following measurement B. 
 
These and similar other results indicated that the 
sample surface was progressively loosing cleanliness 
resulting in longer time to reach final lifetime. This 
indicated that surface was not properly cleaned and that 
near-surface region influences the passivation 
characteristics of I-E/Si interface [4]. It also indicated 
that very thin region near the surface can have a strong 
influence on the passivation. To confirm this, we 
cleaned the wafers, oxidized a thin region at the 
surface, and etched the oxide off. Curve D shows the 
time dependence of the wafer using I-E passivation. 
This curve shows that the lifetime maximum was 
reached much faster and the maximum is higher than 
previous values. It is clear that it is necessary to remove 
the native surface (in this case by oxidation and dil. HF 
dip). To establish how deep the surface has to be 
removed, we performed oxidation in steps. Figure 2 
shows the time dependence of the lifetime 
measurements for first three steps. The sample was 
cleaned and oxidized after each set of measurements. 
Further oxidations only increased the slope of the 
curves while the τmax remained the same. 

 
INFLUENCE OF ILLUMINATION 

We also observed that if the measurements were done 
at shorted intervals, the slope of the curves increased. 
This is an interesting phenomenon indicating that the I-E 
surface passivation has a light-activated component. To 
evaluate this effect, we cleaned a wafer (using our new 
oxidation procedure), placed in an I-E bag, and exposed 
it to about 0.5 sun intensity from a solar simulator for 15 
minutes. It was found that the lifetime after the exposure 
gave the τmax immediately after the exposure; 
furthermore, there was a slow decrease (as shown in 
Figure 3). This decrease occurs for all wafers after the 
measured lifetime reaches maximum. Figure 4 shows a 
short-term variation of τb for a long lifetime wafer. 

 
It was tempting to assume that light-induced passivation 
occurred from dissociation of I-E solution (presumably to 
ionize I), which might be induced by UV light. When the 
wafer in I-E bag was exposed to UV light, the lifetime 
did not reach τmax. We also tried to determine if the 
effect was thermally induced because exposure of the 
wafer in I-E bag caused it to heat. Again heating did not 
produce any change in the lifetime. Figure 5 elucidates 
the influence of various treatments on time dependence 
of the lifetime measured immediately after the 
treatment. 

Fig. 3. τB decay after light exposure (no rise time 
was observed) 

 
Fig. 2. Time dependence of τB after including 
oxidation in the cleaning procedure, for sequential 
cleaning steps. 

 
DISCUSSION 

Fig. 4. Short-term variation of τB for a long lifetime 
wafer. The wafer was cleaned with the new 
procedure. 

Our experiments seem to indicate that wafer preparation 
for a good passivation requires two essential steps: 
1. Wafer cleaning, which includes removal of about 200 
-300 Å of Si from each surface. We have outlined a 
procedure that yields a very clean surface. We have 
found that use of fresh chemicals (piranha, HF, and 
other acids) for each batch of wafers minimizes surface 
quality variations. Our experience is that these chemical 
have propensity to acquire impurities from ambient and, 
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in some cases, leach them from the containers if very 
high quality containers are not used. We suggest use of 
optical oxidation following piranha clean. Although 
piranha process also produces a thin layer of a 
suboxide, it requires multiple steps of piranha clean to 
remove the desired thickness. We have noted that 
Kimerling et.al [2] had observed improvement in 
measured τb following multiple cleaning. However, they 
did not attribute this to surface removal. It should be 
noted that similar cleaning is also demanded for 
obtaining high quality oxide or nitride passivation. In this 
regard, wafer preparation for I-E passivation is similar. 
 

 
2. Activation of surface passivation, which seems to 
require establishment of a steady state between I-E 
solution and Si surface. One can expect two 
mechanisms to participate in this process: (a) formation 
of a steady state at the I-E and Si interface in which I- 
ions produce a surface field. This field is influenced by 
the parameters (such as resistivity and lifetime) of the Si 
wafers. It is expected that a surface layer of the order of 
a Debye length plays an important role. Because a 
wafer typically has a contamination at the surface layer, 
which may extend to a 200-300 Å, it is necessary to 
remove this layer to create a high quality passivation. 
This mechanism can also explain sensitivity of 
passivation to the light and perhaps dependence on 
resistivity and lifetime. Unfortunately, our data on a 
variety of wafers are not consistent. For example, 
wafers from a lot (with similar resistivities and lifetime) 
do not have same dependence of lifetime on the light 
exposure. However, we consistently see that lower 
lifetime wafers have less dependence on the light 
exposure (i.e. they stabilize faster). Further 
investigations are being done to understand the 
observed time dependence of the measured lifetime 
time. 
 

Based on these results, we can propose a simple model 
for wafer preparation as shown in Figure 6. 
 

 
 

 

 
Fig. 6. A wafer with a shallow (200-300 Å) 
contaminated surface layer (a), after cleaning (b) 
and surface passivation (c). 
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