

Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes

Andrew M. Herring Colorado School of Mines 16th May 2007

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: April 1, 2006
- End: March 31, 2011
- 20% Complete

Budget

- Total project funding
 - DOE \$1,500K
 - Contractor \$375K
- Funding received in FY06
 - \$150K
- Funding for FY07
 - \$300K

Barriers

- B Cost
- D Water Transport within the Stack.
- E System Thermal and Water Management.

Partners

- Industrial 3M
- Management CSM

Objectives

• Overall	•Fabricate a hybrid HPA polymer (polyPOM) from HPA functionalized monomers with: – σ >0.1 S cm ⁻¹ at 120°C and <1.5 kPa H ₂ O
• 2006	 Selection of most hydrolytically stable HPA to monomer linkage chemistry Synthesize free acids of HPA polymers
• 2007	 Synthesis and optimization of hybrid HPA polymers for conductivity from RT to 120°C

Plan and Approach

- Task 1.1 <u>Phenyl link stability</u> Phenyl HPA derivatives subjected to low pH/high temperatures to determine optimum chemistry for fuel cell stability
 A vast synthetic chemistry of hybrid organic/inorganic HPAs exists but none of it has been applied to fuel cell ready environments. (90% complete)
- Task 1.2 <u>Ion exchange studies</u> Determination of most facile conversion of HPA polymers to proton conducting systems – Most published HPA chemistry is concerned with HPA salts. In order to conduct H⁺ we must learn how to convert these materials in to free acids. (50% complete)

• Task 1.3 <u>Optimization of hybrid HPA</u> polymers for RT

Morphology and structure of polymers controlled to optimize proton conductivity, HPA clustering or order(20% complete)

- Task 2.1 <u>Optimization of hybrid HPA</u> <u>polymers for 120°C</u> Maximize H⁺ availability, exploit HPA dissociable H⁺ donor groups - >100°C HPA have fast H⁺ diffusion but not all H⁺ are available (10% complete)
- Task 3.2 <u>Optimize oxidative stability</u> Use oxidatively stable organic chemistry, exploit HPA peroxide catalysis

Unique Approach

- Materials Synthesis based on HPA Monomers
- Novel "High and Dry" proton conduction pathways mediated by organized HPA moieties
- 3M brings additional synthetic expertise and direct later stages of project towards manufacturability.

Technical Accomplishments/ Progress/Results

- Demonstration of superior stability of phosphonate linkage in boiling 6 mol HCl or 3% H₂O₂
- Generation of free acid PolyPOMs even with less stable linkages
- Achievement of acceptable films by smart formulation (polyPOM formulations are proprietary to 3M/CSM and so will not be discussed in this presentation)
- Preliminary conductivity data

Model Phenyl Derivatives Synthesized for Stability Testing

 Lacunary HPA allow easy attachment points

- Extensive linkage chemistry available
- M = P, Si, Ge, Sn
- R, R' = Phenyl
- Zr 3M

Testing of Model compounds

- Boiled in 6M HCl for 4h
- Boiled in $3\% H_2O_2$ for 4h
- Compound degradation probed by NMR and IR
- PhPO-HPA linkage survived both tests
- CpTi-HPA linkages showed some stability
- Even though PhSiO-HPA did not survive, polyPOM containing SiO-HPA linkages could be ion exchanged in boiling acid, implying that polymer provides additional stability
- Additional MO-HPA model compounds are being synthesized at 3M

Preparation of Lacunary HPA SiO₃²⁻ + WO₄²⁻

Methods of Preparation

- **1. Direct Synthesis**
- 2. Basic Degradation of Saturated HPA

Lacunary[SiW₁₁O₃₉]⁸⁻

 α -, β -, and γ -Dodecatungstosilicic acids: isomers and related lacunary compounds; Teze, A.; Herve, G., Eds. *Inorganic Syntheses*; John Wiley & Sons: New York, 1990; Vol. 27.

Hybrid SiW₁₁O₃₉(Methacryl) Monomer

Reaction of SiW₁₁O₃₉⁴⁻ with 3-Methacryloxypropyltrimethoxy silane.

Knoth, W. H. *J. Am. Chem. Soc.* **1979**, *101*, 759-760. Weeks, M. S.; Hill, C. L.; Schinazi, R. F. *J. Med. Chem.* **1992**, *35*, 1216-1221.

PolyPOM100m

Radical polymerization of C=C functional group of organic component

Judeinstein, P. Chem. Mater. 1992, 4, 4-7.

Hybrid SiW₁₁O₃₉(Styryl) Monomer

Reaction of Lacunary HPA with Trichloro-(or Trialkoxy-) silanes to produce organicinorganic hydrid monomer.

Judeinstein, P. Chem. Mater. 1992, 4, 4-7.

PolymerPOM100s

Radical polymerization of C=C functional group of organic component

Judeinstein, P. Journal of Sol-Gel Science and Technology 1994, 2, 147-151

Formulation varies film properties

PolyPOMXm

PolyPOMXs

- 100+ films synthesized to date
- Free acid immobilized HPA films readily formed by simple acid exchange
- 3M expertise used to optimize formulation for films of acceptable quality

Self diffusion coefficients (PFGSE NMR) of mobile protons increase with temperature

In-plane H⁺ conductivity of low HPA PolyPOMx films

In-plane H⁺ conductivity of a PolyPOM50m

- Conductivity increases with POM content
- H⁺ conductivity Comparable to PFSA ionomers at 100%RH and 80°C
- Conductivity depends on correct molecular engineering of film

25%RH, 🔶 50% RH, 🔶 75% RH, 🔶 80% RH, 🔶 100% RH

Future Work

- Continue to explore methacrylate model system
- Develop P linked monomers and polymers
 - The emphasis will be polyPOM50x systems
- Achieve 1st milestone 70 mS/cm at RT and 80%RH -12/31/07
- Optimize conductivity and down select polymer system with consultation with 3M

Summary

- Stable immobalized HPA (polyPOMs) are readily synthesized
- Proton conductivities comparable to PFSA ionomers were achieved before system optimization

	April 2007	Project milestone	DOE 2010 target
H ⁺ conductivity	110 mS/cm 100%RH 80°C	70 mS/cm 80%RH, RT	100 mS/cm No inlet RH at 120ºC

