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Abstract

Over the last several years there has been a major
thrust at the Lawrence Livermore National Laboratory
toward building extremely large scale computing clusters
based on open source software and commodity hardware.
On the storage front, our efforts have focused upon the
development of the Lustre[1] file system and bringing it
into production in our computer center. Given our
customers’ requirements, it is assured that we will be
living on the bleeding edge with this file system software
as we press it into production. A further reality is that our
partners are not able to duplicate the scale of systems as
required for these testing purposes. For these practical
reasons, the onus for file system testing at scale has fallen
largely upon us. As an integral part of our testing
efforts, we have developed programs for stress and
performance testing of parallel file systems. This paper
focuses on these unique test programs and upon how we
apply them to understand the usage and failure modes of
such large-scale parallel file systems.

" This document was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor the University of California nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

1. Introduction to the Lunatic Fringe
1.1. ASC Computing Requirements

The FY1993 Energy and Water Authorization Bill,
signed in October 1992 by President Bush established a
moratorium on nuclear testing. President Clinton
extended that moratorium in July 1993. Furthermore, the
U.S. decided to halt the production of new nuclear
weapons.

To implement these policy decisions, the Stockpile
Stewardship program was established by the Department
of Energy and managed by the NNSA. The goal of the
program is to provide scientists and engineers with the
technical capabilities to maintain the nuclear weapon
stockpile without the two key tools that had been applied
for 50 years: (1) underground testing and (2)
modernization through the development of new weapon
systems.

This reality meant that a new and powerful role for
modeling and simulation was required: The Advanced
Simulation and Computing program (Formerly known as
the Accelerated Strategic Computing Initiative, ASCI)
was established in 1996 to develop this capability. ASC is
creating these simulation capabilities using advanced
codes and high-performance computing that incorporates
more complete scientific models based on experimental
results, past tests and theory.

To meet these needs in the year 2005 and beyond, ASC
is solving progressively more difficult problems as we
move further away from physical testing. Applications
must achieve higher resolution, high fidelity, three-
dimensional physics, and full-system modeling
capabilities to reduce reliance on empirical judgments.
This level of simulation requires computing at ever
increasing levels of performance. Therefore, ASC
collaborates with industry to accelerate development of
more powerful computing systems and invests in creating
the necessary software environment.
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Let’s take a quick look at the high-level system
specifications for the 2005 incarnation of ASC platform
(i.e. ASC Purple):

* 100 teraflops

¢ 50 TB memory

* 2 PBRAID disk

* 100 GB/sec I/O delivered to single app

Combining these specifications with highlights of our
local programming and usage model gives one a sense of
life as a user on one of our present day systems.

* Many (~1000) shared memory nodes of modest
local scale (2 — 16 processors)

¢ Individual jobs running on hundreds to a few
thousand processors

* Primary programming model is distributed
memory (MPI communications) with threads,
openMP, shared memory communications
secondary

¢ All nodes mount a shared parallel file system:
codes can perform parallel I/O to a single shared
file or a file per process in a single directory

¢ Codes written in C, C++, FORTRAN

*  Writes dominate read by about a 5 to 1 ratio

Since this paper focuses upon the I/O component of
the system, we need to be more precise about the meaning
of a few terms. For purposes of the present discussion,
we define “parallel file system” as a shared disk-based
system, supporting a single namespace, mounted across
many compute nodes, and capable of supporting
concurrent transfers from all of the nodes to either a
single shared file or to multiple (shared or private to each
process) files. Our working definition of “parallel I/O” is
the set of I/O operations executed by a single parallel
program executing on a cluster mounting the parallel file
system.

1.2. Livermore Linux Strategy

There are many research activities at the Livermore
laboratory other than those involved directly in stockpile
stewardship. The Laboratory's multiprogrammatic and
institutional computing (M&IC) initiative [12] was
conceived to bring cost-effective, high performance
computing services to these LLNL programs and
scientists. M&IC was created to enable all programs to
benefit from the large investment being made by the DOE
Advanced Simulation and Computing Program at LLNL
by providing a mechanism to leverage resources and
lessons learned. This led us to a technology development
strategy that has been an adaptation of the ASC platform
strategy:

* Replicate the ASCI programming and usage
model

* Take on risks and responsibilities as a system
integrator of components

¢ Base architecture on commodity hardware

e Utilize partners for all key components (compute
nodes, cluster network, RAID storage)

¢ Use Open Source (i.e. Linux) software
components as much as possible

* Develop Linux components and enhancements as
required utilizing in-house teams and external
partners

To replicate the ASC model, Livermore’s Linux
Project identified and addressed four areas of technical
enhancement:

* High performance interconnect
* Resource manager
*  Administrative tools

and
= Scalable, parallel file system

In order to achieve the I/O requirements and the
related components of the Livermore usage model, we are
collaborating with other DOE National Laboratories at
Los Alamos and Sandia. The three laboratories are
frequently referred to as the Tri-Labs in a number of
cooperative efforts. The Tri-Labs are working with
industrial partners Cluster File Systems, Inc., Hewlett-
Packard, and Intel to develop and bring the Lustre file
system into production.

1.3. Broader Livermore I/O Strategy

In addition to the bandwidth requirements for ASC scale
computing (estimated at 1 GB/sec per teraflop of
computing performance), the Livermore Computing
vision includes a usage model where an enterprise wide
file system is mounted across all platforms of interest to
our computational scientists (to minimize the need for
multiple copies or transfers of files, for example).
Implementation of this vision requires a high
performance, site wide, global file system accessible to
the compute clusters, visualization clusters, archival
systems and potentially even each individual scientist’s
workstation.

2. Lustre

]

The name “Lustre” is a contraction of “Linux” and
“Clusters”. Lustre is a novel file system architecture and
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implementation suitable for very large clusters typified by
the assortment that we have in the Livermore Computing
Center (See appendix I). Lustre is designed, developed
and maintained by Cluster File Systems, Inc.

The central target in this project is the development of
is a next-generation object-based cluster file system
which can serve clusters with 10,000's of nodes, petabytes
of storage, move 100's of GB/sec with state of the art
security and management infrastructure.

Lustre is in use on many of the largest Linux clusters
in the world and is included by partners as a core
component of their cluster offering, such as in the HP SFS
product.

The latest version of Lustre is available from Cluster
File Systems, Inc. Public Open Source releases of Lustre
are made under the GNU General Public License. The 1.0
release of Lustre is now available.

2.1. Object Based File Systems

A key advantage of Object Storage Devices (OSDs) in
a high-performance environment is the ability to delegate
low-level allocation and synchronization for a given
segment of data to the device on which it is stored,
leaving the file system to decide only on which OSD a
given segment should be placed. Since this decision is
quite simple and allows massive parallelism, each OSD
need only manage concurrency locally, allowing a file
system built from thousands of OSDs to achieve
massively parallel data transfers [13].

Further aspects of this design include:

*  Separates I/O and metadata functions

¢ Puts I/O functions in (OSD’s) on a network

* Eliminates need for File Server nodes

* Reduces the size and complexity of the O/S
dependent file system client

2.2. The Lustre Architecture

The Lustre architecture provides significant

advantages over previous distributed file systems. Lustre
runs on commodity hardware, using object based storage
and separate metadata servers to isolate these functions
and improve scalability.
Replicated metadata servers (MDS) with failover
maintain a transactional record of high-level file and file
system changes. The many Object Storage Targets
(OSTs) are responsible for actual file system I/O and
interfacing with storage devices. Lustre supports strong
file and metadata locking semantics to maintain
coherency even for situations of concurrent access. File
locking is distributed, with each OST handling locks for
the objects that it stores.

10,000 clients

System & Parallel
File /10
File locking

Directory Operations,
Metadata &
Concurrency

1000’s Recovery
File status
Object Storage | File creation = Metadata

Targets (OST) | Servers (MDS)

Figure 1. Lustre components and control

3. Lustre Testing Background
3.1. Testing efforts by CFS, HP and LLNL

There are several quasi-independent testing efforts of
the Lustre file system under way. We are aware or
involved to various degrees on efforts at CFS, Inc. and at
HP in additional to the Tri-Lab efforts.

At CFS, daily Lustre testing as an integrated part of the
development process is described in their project
documentation on Lustre testing [14]. ltest is the suite of
programs enabling automation of the routine CFS testing
process. A complementary facility, buffalo, is a web-
based interface allowing browsing both the recent and
historical results of various tests.

Another formal testing process is directed by our
partner, Hewlett-Packard, and is focused upon specific
feature and performance deliverables of the Path Forward
collaboration. Included among these testing efforts are
performance milestones for metadata performance,
security testing, and relevant portions of the POSIX test
suites.

We mentioned in the abstract that our efforts are
focused upon testing at scale on the many large clusters
here at the Livermore Laboratory. While that is true, it is
more accurate to say that our efforts are focused upon
delivery of the high quality of file system service to our
customers.

3.2. Related Work on File System Testing

At the inception of the Lustre efforts at LLNL, we
surveyed existing file system and I/O test programs for
their potential utility for our testing. We found a broad
range of tools, for example: Bonnie++ [3], dbench [4], fsx
[5], and IOzone [6]. They are interesting and useful and
are still used as minor elements of our present testing.
The major shortcoming of these, and others, is that they
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are not designed with much sense of coordinated or
parallel I/O in mind and certainly not for the scale of
systems of interest to us. /Ozone is the lone exception
since it can be run with multiple threads on a single
processor.

Beyond these file system tests, there are other I/O tests
and benchmarks, which like ours, intend to address issues
peculiar to a specific workload or application. These
include for example, The SPEC SFS (formerly LADDIS)
benchmark, targeted for NFS servers, the SPECweb99
benchmark for www servers, and the PostMark File
system Benchmark, designed to probe the “ephemeral
small-file regime” crucial to internet services such as
Email, netnews, and general web interactions. The totally
different types of workloads that these tests target are not
like ours, nor do they probe the parallel file system
characteristics.

Some closely related work by the GUPFS team at
LBNL [18] includes efforts to evaluate parallel file system
hardware and software and they have also developed
throughput and metadata performance tests.

In the 1994 paper by Chen and Patterson [19], they
suggest that the “Ideal” I/O benchmark would posses the
following characteristics:

*  Spends most of its time doing I/O

*  Scales gracefully over a wide range of current and
future machines

*  Allows fair comparison across machines

* Relevant to a wide range of applications

* Helps designers to understand why the system
behaves as it does

They go on to propose and explore a testing regimen, and
apply it to some systems of the day. Our present testing is
first for correctness and then for performance, yet their
ideals still apply. Adapted in meaning to our particular
purposes, these are excellent objectives for our present
correctness testing. As the file system matures, we expect
that our testing focus will shift to understanding the
complex performance profiles.

4. Lunatic Fringe Parallel File System Tests

Before discussing in detail the codes that we have
developed, it is a good point to summarize the details of
our computing environment, our local programming and
usage model, plus something about the nature of our
application mix.

The bulk of the compute cycles in our center are
consumed by scientific codes simulating various physical
processes, often in three dimensions. These simulations
may run on hundreds to thousands of processors.
Simulations may consume a few hours to a few months
of elapsed run time. This may represent many years of

cpu time. Users do not have the luxury of continuous
running time, so will periodically write a file or set of
files which contain the state of the simulation in sufficient
detail and form that they can be read to resume the
simulation. These are referred to as “restart files”. Files
called “plot files” with a more concise set of state
information may be written periodically with information
for physical analysis and display.

The 1/O patterns of these codes fall primarily into one
of two basic models: 1) For many programs, each process
writes independently to its own private set of files; and 2)
For some programs, processes write concurrently to a file
shared by all of the processes. We refer to these as “file
per process” and “shared file” respectively.

Most codes are written in C, C++, or FORTRAN. The
MPI (Message Passing Interface) programming model
and variants of it are the basis for almost all code
development of parallel programs in our center [7]. MPI
provides the mechanisms to communicate between and
synchronize processes executing on the processors of a
computing cluster with distributed memory.

For our parallel I/O test programs, we have used the
MPI programming model for several reasons. Primarily,
MPI allows for synchronized I/O for large or small task
counts. Second, there are many conveniences offered by
the MPI parallel environment we use to simplify testing
logistics. Finally we believe that the MPI coordinated
tests can simulate workloads with greater instantaneous
loading of the file system due to synchronization of the
I/O operations. These synchronized tests more readily
shake out locking issues and race conditions in the file
system.

Finally, in keeping with our theme of Open Source
development, all of the codes are Open Source and freely
available.

4.1. TOR Test Code

IOR is a file system bandwidth testing code with a long
history of use and development at LLNL [8]. It was
initially developed to test GPFS [20] from IBM on the
ASCI Blue Pacific and White machines and has been
previously applied and discussed at this conference [21].
IOR was first designed for testing bandwidth performance
of parallel file systems using various interfaces and access
patterns. The supported interfaces and patterns attempt to
represent the usage patterns of ASC applications. In our
arsenal of testing tools, /OR is the most heavily used, in
particular for situations of a high, sustained 1/O load on a
parallel file system.

IOR has the capability for either “shared file” or “file
per process” operation. At present, most user codes
employ the file per process I/O model (fig. 2). We have
been encouraging the use of the shared file model to
alleviate logistical and technical issues of dealing with
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large sets of files, particularly as the node counts of our
systems rise. The shared file model (figs. 3,4) presents
challenges as well, in particular for the file system. Thus,
we require that JOR offer both access modes as options to
test file system throughput.

N processes

(P2) (P2) (Po) wuu (P)
AAA AA AAI! Al‘
aaaa bbbb ccccl|= = minnnn

n separate files

Figure 2. File Per Process I/0 Model

IOR checks for data correctness and reports incidences,
patterns, and locations of errors, should they occur. After
writing or reading, a file check may be performed on the
file to determine any error during the write or read phase.
To prevent skewing of the performance results, the write
and read data checks are not performed during the data
transfer performance measurements. Further, to assure
that stored rather than cached data is checked, there is an
option that allows a different processor to perform the
check than had performed the data transfer. The
application of /OR utilizing these checks has been
particularly valuable in detecting and debugging some
rather obscure race conditions in the file system.

Initially named for the acronym from °‘interleaved or
random’, JOR supports access patterns to a shared file
which are periodic with respect to the set of MPI
processes. At present, support for “random” patterns has
been dropped, as they were found to be difficult to
maintain in the test code while adding little practical
coverage for the present file system test protocol.

IOR supports two general data layout patterns in the
shared file I/O model: segmented and strided (or
interleaved). The primary distinction between the two
patterns is whether an MPI task’s data is contiguous or
noncontiguous in the file.

For the “segmented” pattern (fig. 3), each process (P-a
and P-b, e.g.) stores its blocks of data in a contiguous
region in the file. This pattern is generally less
challenging to the parallel file systems that we are
familiar with as potentially larger data buffers can be

transferred and with fewer requests/revocations of locks
for byte-ranges in the file.

N processes

lajalala|biblbib |clelclc nininin|

4 writes to n segments in one file

Figure 3. Segmented Access Pattern:

Shared File 10 Model

With the “strided” access pattern (fig. 4), each task’s
data blocks are spread out through a file, interleaved by
process rank. While this pattern may be more natural for
storing a multi-dimensional mesh, it is usually inefficient
from the viewpoint of the file system due to additional
locking requirements and smaller data transfers.

N processes

lalblcl..infalblcl..infalblc|..Infalbc|..In]

4 writes strided from n processes to one file

Strided Access Pattern:
Shared File I/0 Model

Figure 4.

Transfer sizes as well as the number of transfers that a
process writes into a contiguous portion of the file can be
specified for test code operation. This combination of
adjustable parameters allows for continuous tuning of the
test from flat out bulk I/O transfers for large contiguous
transfers in the segmented pattern to file system
interaction being dominated by lock acquisition and
revocations for short transfers, interleaved in the file
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according to task rank. For further detail of runtime
options for IOR, please refer to Appendix II.

4.2. simul Test Code

simul was developed to test simultaneous file system
operations other than data transfers from many nodes and
processes [10]. It is composed of simultaneous file
system calls and calls to library functions to probe the
correctness and coherence of parallel file system
operation. The exact state of the file system is checked
after each set of operations to determine if the commands
were all executed correctly. A set of MPI tasks executes
standard POSIX operations on either shared or private
files.
There are forty individual tests that simul can perform to
exercise simultaneous metadata operations [see appendix
II]. For both the concurrent and independent file access
modes, there are operations to both files and directories.
For files, the operations of open, close, file stat, Iseek,
read, write, unlink, rename, creat, truncate, symlink,
readlink, link to a single (shared) file, and link to file-per-
process are performed. For directories, the chdir,
directory stat, readdir, mkdir, and rmdir operations are
tested. simul provides a high instantaneous load in
metadata operations (depending upon the number of
tasks), providing a rigorous test of a parallel file system
functions other than data movement.

4.3. mdtest Test Code

mdtest allows multiple MPI tasks to create, stat, and
remove shared or private files and directories[9]. The rate
of these operations is measured, calculated and reported
by mdtest. This information has been used to determine
bottlenecks in the important area of metadata performance
as a growing file system performance issue.
mdtest has many options [see appendix IV]. For
example it has the option to perform its tests with tasks
working in shared or private directories. The number of
files or directories that each task accesses may be set,
allowing one to simulate a range of behaviors for various
application code situations. It has an option to prevent
reading locally cached file or directory information when
performing a stat on a newly-created file by using a ‘read-
your-neighbor’ approach.

4.4. Other tests

Beyond the “general purpose” tests detailed above, we are
sometimes called upon to create “one off” tests to
reproduce specific user encountered problems in a more
focused way. An example is as follows: A user was
seeing intermittent errors in his restart files which were
composed of periodic unformatted writes of six arrays

from a single write() in FORTRANO9O0 code. Iterating
back and forth with the user, a short test code (in
FORTRANO90) consisting of the I/O kernel and some data
checking was developed, and subsequently demonstrated
the problem seen by the user.  Tests such as this are
integrated into the testing protocol as long as they are
relevant, and become candidates for more general-
purpose tests. This particular example will be further
discussed later.

5. Case studies

This section will provide some more specific examples
demonstrating how the test codes we have developed are
used in practice for our quality assurance efforts,
customer support, and operational planning.

5.1. Sanity check of new Lustre version

As each new version of Lustre is installed on one of out
tests systems, it is immediately subjected to at least one
round of JOR and one of simul at scale. We have found
this to be a good initial check for the new file system
software and for the process of installing and bringing it

up.
5.2. File system performance profile

IOR was initially designed as a benchmark for file
system throughput and is used here to develop an
overview of file system performance. In Figure 5, we
display a concise study of throughput on the Lustre file
system of Thunder, presently our largest Linux cluster.

Thunder is comprised of 1024 quad 1.4 Ghz Itanium
Madison Tiger4 nodes with 8.0 GB DDR266 SDRAM.
There are 64 Object Storage targets fronting 8 couplets
(racks) of DataDirect Network’s S2A8500 Silicon Storage
Systems totaling about 190 TB of storage with potential
throughput approaching 8 GB/sec. In practice,
performance is network limited for our present
configuration, but we have sufficient GigaByte Ethernet
connections to support approximately 6.4 GB/sec peak
throughput to a single Lustre file system.

For the study represented by Figure 5, the transfer size
of 64K bytes was used throughout and was selected
because that is the Lustre stripe size. Each client writes
2.5 GB so that performance boosts due to caching are
reasonably well eliminated. Our intent is to measure the
throughput that can be sustained in a steady state, i.e. the
rates for asymptotically large files.

For this study, the file per process model is expected to
achieve the highest throughput rate because of the
absence of overhead for locking. For the shared file
model, the segmented case will have all transfers from an
individual client to contiguous locations within the file.
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In the strided case, segments of 16 contiguous transfers
are interleaved among clients, leading to a segment size of
1MB, which was chosen to equal to the RPC size.

For the file per process mode, the files are striped
across 4 OSTs, which is the default setting for this file
system. For the shared file tests (segmented and strided)
we use maximal striping across all 64 OSTs of the
installation. While this may not be optimal for smaller
client counts, it is for the large client counts.

I/O throughput rates are measured and the number of
clients is increased from one to 128 in powers of 2. Three
iterations of each individual test are performed, and the
maximum measured throughput is reported.

Throughput for Lustre File System on
Thunder

5000
4500 -
4000 -
3500 -

o 3000 1

3

< 2500 |

o

Z 2000 |
1500 1
1000 -

500

R —

o 32 64 96 128
nodes

—&— write FPP: stripe 4 —4—read FPP
—e— write shared: stripe64 —=—read shared: stripe 64
—o— write strided: stripe64 ——read strided: stripe64

Figure 5. Performance Profile

Throughput rates for writes and reads using /OR for
the three transfer patterns as number of clients is
varied in powers of 2. File per process tests striped
to 4 OSTs, Shared file tests striped to all 64 OSTs.

Our rational for selecting the best of a series of
performance measurements has been the subject of debate
within our team through the years. What we would like,
in principle, is to present the mean and standard deviation
for each set of test runs executed on a completely
dedicated system: That is with no other workload of any
sort taking place on the system. On these large systems
however, we are only very rarely allowed the luxury of a
machine entirely dedicated to our testing. Most often, we
are running our tests as a component of the system’s
routine workload. It is possible for any individual test
iteration to have other simultaneously running codes
competing for the same I/O resources. In practice, this is
apparent in terms of reduced performance observation for
a test iteration. When we select the highest value, we
assume that we achieved that great rate because there was

no competing load during that run, and conclude that is a
more accurate measure of the underlying capability of the
system than an averaged value including some
performance measurements suppressed by other workload
competing for the file system resource.

Here are some observations:

¢ Performance is quite excellent for our dominant
I/O situation, i.e. writing in the file per process
mode.

* Achieve asymptotic rates with ~64 clients for
system with 64 OSTs expected

*  Write rates exceed read rate for every pattern.

*  We were surprised how good the performance was
for write shared-segmented.

*  One might be initially disappointed with the share-
strided performance. However, keep in mind that
MPI-IO can be applied to convert this pattern at
the application level into the shared-segmented
pattern via a communication phase. It is likely
that Lustre’s read-ahead has hurt performance in
this case, though it would help the other cases
where there are large contiguous sections being
read by the same client.

5.3. Daily automated testing

We currently test on a near continuous basis on 450
nodes (900 processors) of one of our large Linux clusters
and at smaller scale on several other clusters. When
testing at this scale on this portion of the cluster, we are
usually running Lustre file system software which we
believe to be the “latest stable” software: It is usually a
known baseline release with fixes to problems that we
have been focusing on, and has seen significant testing on
the smaller test clusters mentioned.

The following is the output from recent testing period:

For the period beginning Wed, Dec 08, 2004, at 17:00 and ending Thu, Dec
09, 2004, at 08:00

kernel: 2.4.21-p4smp-76chaos
lustre:
1.2.8.3-19691231160000-PRISTINE-.usr.src.linux-2.4.21-p4smp-76chaos

General results:

atomicity : No tests run
bonnie  : No tests run

cabot . Passed 1of 2 50%
test 39506: exited abnormally

dbench : Passed 50of 5 100%
fsx . No tests run

ior . Passed 63 of 63 100%
iozone  : No tests run

mdtest : Passed 1of 1 100%

prodcon : No tests run

simul . Passed 130of 13 100%
sppm . No tests run
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IOR performance results:

File per process (locking on):

tasks stripe xfer bytes/ rates (MB/s)  sample
(CPUs) ct size size task write(%dev)(%opt) read(%dev)(%opt) count

450(1)32 4M 32M 256M 2645(5)44) 1259(15)21) 2
450(1) 1 1M 1M 256M 1889(34)(32) 2301(2)(39) 2
450(1) 2 1M 2M 256M 1815(14)(30) 2167(0)(36) 2
450(1) 4 16M 32M 256M 2557(0)43) 1756(0)(29) 1
450(1) 8 16M 32M 256M 2383(0)40) 1350(0)(23) 1
450(1) 16 16M 32M 256M 2538(0)(43) 1689(0)(28) 1
450(1) 1 M 2k 256M 2354(0)(40) 1488(0)(25) 1
450(1) 8 1M 8M 256M 2489(0)42) 1360(0)(23) 1
450(1)16 1M 16M 256M 1367(0)(23) 1228(0)21) 1
450(1)32 1M 32M 256M 2730(0)46) 1231(0)21) 1

Single file (locking on):

tasks stripe xfer bytes/ rates (MB/s)  sample
(CPUs) ct size size task write(%dev)(%opt) read(%dev)(%opt) count

450(1)32 256k 8M 256M 2138(2)(36) 1092(1)(18) 2
450(1)32 512k 16M 256M 1748(27)(29) 1177(1)(20) 4
450(1)32 4M 32M 256M 1985(8)(33) 1309(3)(22) 4
900(2) 32 512k 16M 256M 2267(1)(38) 1023(1)17) 2
900(2)32 4M 32M 256M 1999(14)(34) 1119(2)(19) 3
450(1) 2 1M 2M 256M 209(2)(56)  78(9)(21) 2
900(2)32 1M 32M 256M 2314(0)(39) 1061(0)(18) 1
900(2)32 2M 32M 256M 1915(0)(32)  1093(0)(18) 1
900(2)32 8M 32M 256M 961(0)(16)  939(0)(16) 1

In this example report, several different tests were run
to check a variety of possible problem areas. The three
codes that are the bulk of the present discussion (/OR,
simul, mdtest) generally form the bulk of our daily testing,
with IOR dominating. Parameters for JOR were selected
for both the shared file and file per process I/O models to
monitor changes in performance as Lustre patches may be
applied.  Five iterations of dbench [4] are included,
testing for previously observed defects. The test entitled
“cabot” is a one-off test code representing the problem
discussed in detail in the next section.

This type of report in generated on a daily basis for
each of the several systems being used for Lustre testing.
Several problems, particularly those that are related to
large scale have been discovered in this stage of testing.
For the subtle types of race condition issues that can
occur, repeated automated testing allows us to
characterize the prevalence of such problems (i.e. the
odds of being caught on the wrong end of the race) and
assess the level of risk for our user community.

5.4. User reports data corruption on Thunder

Perhaps nothing gets the attention of our local Lustre
team more quickly than the phrase “data corruption”.
From one of our most esteemed users:

| was able to complete a couple of "identical" runs early this
morning to test reproducibility. As you are supposed to anticipate
by the quotes, the resulting restart dumps were not the same, but
not in the way that Charles saw. Instead, I'm getting missing
patches or miswritten words of data in the output files. | also saw
this once last week.

There are at least two patterns. In the first, some processes
occasionally produce output with the first 511 8-byte words
zeroed out (one word shy of 4K). This almost certainly occurs
during output, since the corruption is pristine, i.e., not smeared
out at all by the numerical solution. This type of corruption
occurred 3 times in the 2nd run this morning, with evidence of
another evolved corrupt patch that was in fact introduced 3 dumps
prior. Values of the effected variable are quite small in that region,
and this corruption would typically go unnoticed.

The 1st run this morning was free of this, but three processes
produced errors in the last 8-byte word of the output buffer,
corresponding to values of a variable in a boundary plane in the
flow. Typical values in this plane are small (~1e-12); one
erroneous value was of similar size, but two were set to 1. It turns
out that this plane of data is not used to advance the solution, so
this corruption happens to be benign.

Otherwise, aside from three bad patches and three bad points
(1536 points altogether), the rest of the data was byte-for-byte the
same. (On the positive side, that was 56,899,582,464 out of
56,899,584,000 right. Good enough for government work, eh?)
Both runs used nodeset thunder[22-998,1000-1002].

Here is the chronology of the highlights of our
debugging and testing efforts:

*  User observes output files not identical for identical
runs as a rare but disturbing occurrence. Parts of first
and last block of I/O buffer zeroed in error.

* Code is FORTRAN F90, I/O model is file per
process.

* A small run is “straced” to understanding the transfer
pattern of the code.

* Lustre developer comments on “bizarre” I/O pattern,
which turns out to be the insertion of FORTRAN
control words at the beginning and end of each
record.

¢ User instruments his code to check for this pattern of
error while executing.

¢ Problem is linked to Fortran: the first attempt at a
reproducer written in F77.

* Bounced the trial reproducer off of the user, he
reworked it to be a precise kernel of the 1/O for his
code.

*  We tried the test on the cluster where the problem had
occurred as well as on our semi-dedicated test cluster.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE



* The problem was observed about once per day using
several hundred nodes, and only on the Thunder
(TIA64) cluster.

* More detailed analysis by Lustre developer
associated the error with a write of an incomplete
page. (There were actually quite few writes of
incomplete pages in the real case, which was why we
were observing the problem only once per day).

* IOR parameters were selected so that every 1000 byte
transfer would be an incomplete write. In particular,
we realized that if we used the strided data pattern on
a shared file, with transfers of 1000 bytes that: 1) few
of the transfers would be aligned on page boundaries,
and 2) buffering at the client could not “assemble”
the transfers so as to produce complete pages.

¢ Problem was reproduced on a few (5-10) nodes after
running for a few minutes (HUGE breakthrough for
debugging - faster, smaller, simpler bug reproducer)

*  CFS fixed Lustre problem.

*  Problem as observed by user resolved.

* Problem with identical symptom diagnosed and fixed
for shared file situation.

This example demonstrated of number of very
important points about the particular environment at
Livermore:

e It is crucial to the success of adopting a bleeding
edge technology to have customer’s commitment
and good humor. This case in particular required
sustained efforts from the developer, the test team
and the end user.

* We have had excellent developer support from
CFS, Inc.: also crucial to success.

* There can be some really obscure symptoms and
behaviors of such complex systems.

e If the developer says “a user would never do X”,
the test team should create a test to do X

*  The important differences of FORTRAN vs. C I/O
were highlighted.

* JOR proved to be incredibly versatile in delivering
a problematic data pattern once the bug was
understood at a sufficiently low level.

5.5. Performance modeling with IOR

One of our important application code developers had
some puzzling observations of his code’s I/O performance
and had been in touch with us to discuss and determine if
we had any suggestions. We agreed to model his code’s
I/O using IOR to gain some insight. This Email below
describes the I/O situation including some parameters
detailing the pattern of transfers:

Here is some more data about my code's I/O on thunder.
The restart file to be read is on lustre:

-rW-r--r-- 1 user1 useri

h201024.xml

243771630993 Aug 9 18:16

Its size is about 244 GB.

When the job starts, 3920 MPI tasks open that file. Each task
reads a block of size "local_size".

The local block size is determined as follows: (the total file
size is "sz")

off_t block_size = sz / ntasks;

off_t local_size = block_size;

off_t max_local_size = local_size + sz % ntasks;
// adjust local_size on last task

if ( ctxt.mype()==ntasks-1)

local_size = max_local_size;

}

reading proceeds then using the following statements:

off_t offset = ctxt.mype()*block_size;
fseeko(infile,offset, SEEK_SET);
fread(&buf[0],sizeof(char),local_size,infile);

In the present case, each tasks reads approximately 62 MB.
There are 4 tasks running on each node.

Our initial discussion suggested that this I/O situation
could easily be modeled using IOR, and the appropriate
selection of parameters. The description is of a large
shared file, shared by 3920 tasks, being read in a
segmented fashion, where each process reads its entire
segment in a single transfer. For a read using the POSIX
API, reference to the /OR usage and some trivial analysis
yielded the following command line:

ior —r —a POSIX —s 1 —b 62186640 —t 62186640

A further discussion with the user led us to believe that
he had used only the default Lustre striping (across 4
OSTs). In an effort to reconcile this user’s observed
performance, we ran the IOR test on the default striping
of the file system (4-way) and maximum striping (64-
way).

The object in this case was to present the user with
some understanding of the performance that he observed
and some useful guidance to achieve better performance.
We were fairly confident in our theory that striping of the
shared file would explain the problem, and chose to
explore that issue at a smaller scale (128 nodes/512
processes).

The data in Figure 6 confirm our suspicion that poor
performance would be observed should we default
striping (across 4 OSTs) when maximum striping was
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needed for a highly parallel I/O situation. Lustre striping
other than the default (here across 4 OSTs) must be
explicitly set either for a specific file or by directory, in
which case subsequent files in that directory will inherit
the stripe setting. Even for this sophisticated user, the
Lustre interface to set striping is easy to overlook.

Performance Modelling with IOR

3000 4

2500
/ B
2000

9 / —e— write stripe 4
] .
< 1500 —e—read stripe 4
2 —A— write stripe 64
—=—read stripe 64
1000

1] 32 64 96 128
nodes

Figure 6. Striping and performance for

I/0 to a shared file

5.6. Performance evaluation of file

configurations with mdtest

system

To provide a consistent view of the file system from
multiple compute clusters, it is preferable to configure the
Lustre metadata servers to be networked via gigabit
Ethernet to all clusters rather than have them directly
attached to the high performance (Elan) switch fabric of
one of the clusters, as is the present situation. mdtest can
be applied to measure the impact of this configuration
change upon metadata performance.

Here is the output resulting from a run of mdtest:

mdtest-1.7.1 was launched with 850 total task(s) on 850 nodes

Command line used:
mdtest -d/p/gt1/lustre-test/mdtest -i2 -f850 -I850 -s850 -n10 —tuv
Filesystem: thunder4:/mds_p_gt1/client

1K-blocks Used Available Use% Mounted on
162089444160 135716882140 26369179400 84% /p/gti

850 tasks, 8500 files/directories’

Operation Duration Rate
* iteration 1 *
Directory creation: 14.86 sec, 571.73 ops/sec
Directory stat 2.67 sec, 3180.60 ops/sec
Directory removal : 5.82 sec, 1459.37 ops/sec

File creation 5.62 sec, 1510.15 ops/sec
File stat 2.59 sec, 3281.94 ops/sec
File removal 6.89 sec, 1233.13 ops/sec

* iteration 2 *

Directory creation: 22.02 sec, 385.87 ops/sec
Directory stat 2.67 sec, 3178.61 ops/sec
Directory removal : 5.83 sec, 1456.39 ops/sec

File creation 5.62 sec, 1510.90 ops/sec
File stat 2.60 sec, 3261.09 ops/sec
File removal 6.75 sec, 1259.24 ops/sec

SUMMARY: (of 2 iterations)

Operation Max Min  Mean Std Dev
Directory creation: 571.7 385.8 478.8 92.9
Directory stat 3180.6 3178.6 3179.6 0.9
Directory removal : 1459.3 1456.3 1457.8 1.4

File creation 1510.9 1510.1 1510.5 0.3
File stat 3281.9.3261.0 3271.5 10.4
File removal 1259.2 1233.1 1246.1 13.0

As yet, we have not reconfigured a system in order to
perform the “after” evaluation. One can imagine
however, that we would be quite comfortable in
committing to a configuration change if minimal changes
in these performance test measurements were observed.

5.7. Long Term Performance Regression Tests

Experience has shown us that even after a machine and
file system is generally available for users, “aging” of the
file system and/or upgrades to the hardware and software
can cause significant changes to I/O and metadata
performance.

For this reason we have set up monthly regression tests
using IOR and mdtest to detect and report these long term
changes. The regression tests are run when we know there
are scheduled upgrades, but there have been cases when
performance changes without update or with "trivial
updates that could not affect the file system".

Not all of the results from these tests need to be
retained, but at least one set a year needs to be kept and
identified for long-term comparisons until the machine is
retired.

6. Ideas for future work

Our efforts in developing such tests will continue to be
driven by the needs of the center to support users and
resolve problems that arise. At the present, we can think
of the following four testing projects:
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6.1. Fortran version of IOR

Many of our users’ codes are written in some dialect of
FORTRAN. By way of a user-discovered problem, we
recently became aware of some of the subtlety of
FORTRAN I/O (as opposed to C I/O). In FORTRAN,
control words are inserted before and after each record.
This resulted in an undesirable interaction with the Lustre
file system. A FORTRAN version of JOR would be a
valuable test tool that would represent this aspect of our
center’s workload.

6.2. Parameter space surveys with IOR

As our IBM systems running GPFS file systems
matured, we had the opportunity to study throughput
performance as a function of transfer sizes and data
layout. JOR was designed with this type of study in mind.
We would like to study our various configurations of
Lustre file systems to get a more comprehensive
understanding of the performance profile.

6.3. Future systems

We plan on running Lustre on future systems at the
Laboratory, including on the BG/L [11] from IBM. This
system has a different sort of architecture from the
parallel system that we have had recently. Notably with
regard to the I/O system, a set of 64 compute nodes will
be serviced by one I/O node: for our recent systems each
compute node could handle its own I/O. We anticipate a
lot of activity in testing and test development in support
of the Lustre efforts on this system.

6.4. Randomness returns to IOR: AMR codes

Several of our important application codes are now using
adaptive mesh refinement. This means that the amount of
data varies for each process depending on the physical
behavior of the problem being analyzed. Because the
imbalance in the amount of data can become quite large, it
can potentially have a severe effect on the I/O
performance for the code. To help understand the I/O
behavior of such AMR codes, it would be useful to let
IOR model the same type of access patterns. This would
require introducing some kind of randomness in the
amount of data and transfer sizes on each process
somewhat similar to the original IOR.

7. Conclusions

The massive computing and corresponding I/0O
requirements of the ASC program has driven our
involvement with the Lustre file system for our ever-
expanding realm of Linux clusters.

Our extensive testing program has been crucial for the
local success of the Lustre file system. The program
includes nearly continuous testing on 450 nodes of a
large-scale Linux cluster as well as on some smaller
clusters. Beyond that there is remedial testing as required
to diagnose and understand newly discovered file system
issues.

We have developed a suite of test programs including
performance and stress tests of both data transfer and
metadata operations. The codes are based on the MPI
parallel programming model, which is ubiquitous in our
computer center. These tests originate both from our
understanding of the I/O usage patterns of our customers
and from problems discovered by them. The resulting test
tools also serve us well in modeling customer I/O
situations and in evaluating present and future file system
configurations.

Let’s review our suite of tests against the
characteristics of an “ideal” benchmark as envisioned by
Chen and Patterson:

¢  Spends most of its time doing I/O — most definitely

* Scales gracefully over a wide range of current and
future machines — yes: our tests are designed to
scale to larger systems in the same manner as the
codes in the general workload.

* Allows fair comparison across machines - across
machines that would interest us, yes.

® Relevant to a wide range of applications — across
ASC applications, yes.

® Helps designers to understand why the system
behaves as it does — yes: we are certainly able to
develop compelling stories about why Lustre
behaves the way it does on our application mix.

We have successfully accomplished these objectives in
developing our file system tests in the context of our own
systems and workloads. The utility of our particular tests
for general environments or very different workloads may
fairly be challenged. In that case, a higher-level view of
our approach, that of a technical liaison and interpreter
between developers and end users, may be applied.
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Appendix la. Livermore Laboratory Computer Center Major Systems (Open Computing Facility)

Machine Compute Memory Disk File System
Power Capacity Capacity Bandwidth
Purple 100 48 TiB 2 PB 100 GB/s
TFLOP/s
White 12.3 8 TB 100 TB 6.4 GB/s
TFLOP/s
UM & UV 12.3 4TB 140 TB 12 GB/s
TFLOP/s
Lilac 9.2 3.1TB n/a * 9 GB/s
TFLOP/s
TFLOP/s
SGI Vis 139 140 GB 20 TB 2.8 GB/s
Platforms GFLOP/s
Linux Vis 717 272 GB n/a * 2.8 GB/s
Platform GFLOP/s

* n/a indicates that these platforms share a single “site-wide” lustre file system of approximately 150 TB.

Appendix Ib. Livermore Laboratory Computer Center Major Systems (Secure Computing Facility)

Machine Compute Memory Disk File System
Power Capacity Capacity Bandwidth
BG/L 360 16 TB n/a* 40 GB/s
TFLOP/s
Thunder 20.1 7.2 TB n/a * 6.4 GB/s
M&IC) TFLOP/s
TFLOP/s
Frost 1.6 1.0 TB 20TB 1.6 GB/s
TFLOP/s
Sphere
Cube 2.5 544 GB n/a 1.6 GB/s
TFLOP/s

* n/a indicates that these platforms share a single “site-wide” lustre file system of approximately 250 TB.
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Appendix IlI: Usage of IOR

Command lines for the throughput studies in section 5.2

file per process (Figure 2)

JIOR -q-v-aPOSIX -d 1 -w -r -0 /p/gt1/rhedges/IOR/iorData -t 65536 -b 2684354560 -F -i 3 —C

shared segmented (Figure 3)

JIOR -q-v-a POSIX -d 1 -w -r -0 /p/gt1/rhedges/IOR/dir_max/iorData -t 65536 -b 2684354560 -i 3 —C

shared strided

JIOR -q-v-a POSIX -d 1 -w -r -0 /p/gt1/rhedges/IOR/dir_max/iorData -t 65536 -b 655360 -s4096 -i 3 -C

Command Line Options:

-asS
-bN
-B
-C
-C
-dN
-e
-E
-fS
-F
-9
-h
-H
-iN
-1

-k

-|

-n
-0S
-0
-p
-P
-q
-r
-R
-sN
-S
-t N
-T
-u
-U
-v
-V
-w
-W
-X

api -- API for 1/0 [POSIXIMPIIOIHDF5INCMPI]

blockSize -- contiguous bytes to write per task (e.g.: 8, 4k, 2m, 1)
useO_DIRECT -- uses O_DIRECT for POSIX, bypassing /O buffers
collective -- collective 1/0

reorderTasks -- changes task ordering to n+1 ordering [!HDF5]
interTestDelay -- delay between reps in seconds

fsync -- perform fsync after POSIX write close

useExistingTestFile -- do not remove test file before access
scriptFile -- test script name

filePerProc -- file-per-process

intraTestBarriers — use barriers between open, read/write, and close
showHelp -- displays options and help

showHints -- show hints

repetitions -- number of repetitions of test

individualDataSets -- datasets not shared by all procs [not working]
keepFile -- keep testFile(s) on program exit

storedFileOffset -- use file offset as stored signature

noFill -- no fill in HDF5 file creation

testFileName -- full name for test

options -- options string

preallocate -- preallocate file size

useSharedFilePointer -- use shared file pointer [not working]
quitOnError -- during file error-checking, abort on error

readFile -- read existing file

checkRead -- check read after read

segmentCount -- number of segments

useStridedDatatype -- put strided access into datatype [not working]
transferSize -- size of transfer in bytes (e.g.: 8, 4k, 2m, 19)
maxTimeDuration -- max time in minutes to run tests

uniqueDir -- have each task in file-per-process use unique directory
hintsFileName -- full name for hints file

verbose -- output information (repeating flag increases level)
useFileView -- use MPI_File_set_view

writeFile -- write file

checkWrite -- check read after write

singleXferAttempt -- do not retry transfer if incomplete

NOTE: S is a string, N is an integer number.
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Appendix lll: Usage of simul

Usage: simul [-h] -d <testdir> [-f firsttest] [-I
lasttest] [-n #] [-N #] [-i "4,7,13"] [-e "6,22"] [-S]
[-v][-V #]

-h: prints this help message

-d: the directory in which the tests will run

-f: the number of the first test to run (default: 0)

-I: the number of the last test to run (default: 39)

-i: comma-separated list of tests to include

-e: comma-separated list of tests to exclude

-s: single-step through every iteration of every
test

-n: repeat each test # times

-N: repeat the entire set of tests # times

-v: increases the verbositly level by 1

-V: select a specific verbosity level

The available tests are:
Test #0: open, shared mode.
Test #1: close, shared mode.
Test #2: file stat, shared mode.
Test #3: Iseek, shared mode.
Test #4: read, shared mode.
Test #5: write, shared mode.
Test #6: chdir, shared mode.
Test #7: directory stat, shared mode.
Test #8: statfs, shared mode.
Test #9: readdir, shared mode.
Test #10: mkdir, shared mode.
Test #11: rmdir, shared mode.
Test #12: unlink, shared mode.
Test #13: rename, shared mode.
Test #14: creat, shared mode.
Test #15: truncate, shared mode.
Test #16: symlink, shared mode.
Test #17: readlink, shared mode.
Test #18: link to one file, shared mode.
Test #19: link to a file per process, shared
Test #20: open, individual mode.
Test #21: close, individual mode.
Test #22: file stat, individual mode.
Test #23: Iseek, individual mode.
Test #24: read, individual mode.
Test #25: write, individual mode.
Test #26: chdir, individual mode.
Test #27: directory stat, individual mode.
Test #28: statfs, individual mode.
Test #29: readdir, individual mode.
Test #30: mkdir, individual mode.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Test #31: rmdir, individual mode.

Test #32: unlink, individual mode.

Test #33: rename, individual mode.

Test #34: creat, individual mode.

Test #35: truncate, individual mode.

Test #36: symlink, individual mode.

Test #37: readlink, individual mode.

Test #38: link to one file, individual mode.
Test #39: link to a file per process, individual

Appendix IV: Usage of mdtest

Usage: mdtest [-h] [-f first] [-i iterations] [ last]
[-s stride] [-n #] [-p seconds] [-d testdir] [-t] [-u] [-V]
[-D] [-F1 [-N #] [-S] [-V #]

-h: prints this help message

-c: collective creates: task 0 does all creates

-d: the directory in which the tests will run

-f: first number of tasks on which the test will run

-i: number of iterations the test will run

-I: last number of tasks on which the test will run
-n: every process will creat/stat/remove #

directories and files

-p: pre-iteration delay (in seconds)
-s: stride between the number of tasks for each

test

-t: time unique working directory overhead
-u: unique working directory for each task
-v: verbosity (each instance of option increments

by one)

-w: bytes to write to each file after it is created

-D: perform test on directories only (no files)

-F: perform test on files only (no directories)

-N: stride # between neighbor tasks for file/dir stat

(local=0)

-S: shared file access (file only, no directories)
-V: verbosity value
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