<u>CHARACTERIZATION AND OXIDATION BEHAVIOR OF SILICIDE COATING ON</u> <u>MULTIPHASES MO-Si-B ALLOYS</u>

Matthew J. Kramer

 225 Wilhelm Hall, Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 USA
Email: mjkramer@ameslab.gov; Telephone: (515) 294-0726; Fax: (515) 294-4291
Zhihong Tang and Mufit Akinc
2220 Hoover Hall, Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011
Email: makinc@iastate.edu; Telephone: (515) 294-0738; Fax: (515) 294-5444

ABSTRACT

Mo_{ss}-based Mo-Si-B multiphase alloys possess improved fracture toughness compared to its single-phase silicide counterparts (MoSi₂, Mo₃Si₃ or T2) without sacrificing high temperature strength, but they degrade rapidly in an oxidizing environment at elevated temperature. In the present study, MoSi₂ coating was applied to protect Mo_{ss}-based alloy from high temperature oxidation via pack cementation. Boron-modified MoSi₂ coating was also produced in an attempt to enhance the oxidation resistance of MoSi₂ coating via co-deposition of B and Si, using a two-step process. Isothermal and cyclic oxidation tests on coated Mo-4.3Si-1.1B alloy were performed at 1100°C and 1600°C, respectively up to 200 hours. The MoSi₂ coating provide enough protection from oxidation in both static and cyclic condition at 1100°C, while it degraded after ten hours by forming T1 (Mo₅Si₃B_x) phase at 1600°C via inter-diffusion between coating and substrate. The coating lifetime of MoSi₂ was limited by the Si depletion by diffusing into substrate. The Additions of boron into MoSi₂ did not enhance the oxidation resistance as boride phases (MoB or Mo₂B₅) do not slow the diffusion of Si to substrate to stabilize MoSi₂ or Mo₅Si₃.

INTRODUCATION

Molybdenum borosilicides have been investigated as a candidate material capable of service temperatures much higher than 1100°C. Two specific alloy systems have received considerable interests from the scientific community for high temperature applications. The first one, which was pioneered by Akinc and his co-workers[1], consists of three intermetallics alloys, Mo₅Si₃, the T2 phase Mo₅SiB₂ and the A15 phase Mo₃Si. They exhibit excellent oxidation resistance and creep strength up to 1600°C. The boron addition is critical for providing the observed oxidation resistance due to formation of low viscosity borosilicate glass layer that flows and seals the porous scale. However, these alloys also have low fracture toughness, and the thermal expansion anisotropy of the T1 phase make these alloys susceptible to thermal stress induced microcracking[2]. These deficiencies in mechanical behavior can be improved by moving towards the Mo-rich portion of the systems [3-8]. The second alloys, incorporates the bcc-Mo phase to impart some ductility and fracture toughness to a three-phase microstructure containing Mo₃Si and Mo_5SiB_2 (T2) along with Mo_{ss} . The Mo_{ss} phase can improve the room and high temperature fracture toughness significantly depending on its volume fraction and its distribution [6, 7]. However it presents a challenge in achieving adequate oxidation resistance as $Mo_{5}Si_{3}B_{x}$ -based alloys do. The oxidation resistant phase of these alloys is believed to be T2 phase (Mo₅SiB₂) yet, its high boron content results in a borosilicate glass with a much low viscosity than that formed with the T1 phase ($Mo_5Si_3B_x$) leading to excessive volatility of MoO_3 through the scale, contributing to unacceptable metal recession rates above about 1300°C [9, 10]. Schneibel et al. [11] explored designing a bcc-Mo containing composite to balance acceptable oxidation resistance with adequate mechanical behavior with limited success.

An emerging consensus is to protect the Mo_{ss} -based alloys with an oxidation resistant coating [12, 13]. One approach for developing an oxidation resistant coating is to deposit a silicon-rich phase, such as the $MoSi_2$ or T1-based alloy, onto the surface of the component. The halide activated pack cementation (HAPC) process has been successfully employed to deposit $MoSi_2$ onto a two-phase T2/Mo(ss) eutectic alloy by Ito et al.[13], and Mo-3Si-1B alloy by Sakidja et al. [12]. Although the steady-state oxidation rate of the coated alloy was nearly equal to that of $MoSi_2$ for up to 50 hours at 1300°-1500°C, the $MoSi_2$ layer was partially transformed to T1 phase, and the long term effect of this microstructural change on the oxidation resistance of the coating was not investigated. The present

work investigates the feasibility of using the HAPC process to form oxidation resistant diffusion coatings on the Mo_{ss}-based Mo-4.3Si-1.1B (wt.%) alloy. Coating process development, oxidation performance and interdiffusion behavior of the coated alloy will be discussed.

EXPERIMENTAL

The nominal composition of the substrate alloy selected for this study is Mo-4.3 wt.%Si-1.1wt.%B (all compositions are in weight percent unless stated otherwise). These ternary alloys contain Mo₃Si, Mo₅SiB₂ (T2) and α -Mo (Mo solid solution), and were fabricated by either drop-casting or sintering powder compacts. Both drop-cast and sintered alloys were cut into small coupons and polished with 600-grit SiC paper, then ultrasonically cleaned in acetone and ethanol. The halide-activated pack cementation process was employed to deposit silicon and/or boron onto the substrate samples. The components in pack cementation include: the masteralloy (i.e. a powder of the element or elements to be deposited on the surface of the parts, such as Si and/or B), a halide activator (e.g. NaF), and an inert filler powder (e.g. Al₂O₃). Three kinds of pack cementation processes were employed in this study: i) Si deposition only, ii) co-deposition of Si and B, and iii) two-step boronizing and siliconizing. The deposition process was carried out at 900°C or 1000°C for 12-48 hours in flowing Ar atmosphere.

Isothermal oxidation tests on coated samples were conducted in a tube furnace in flowing dry air at 1100°C or 1600°C up to 400 hours. Thermal cycling exposure was also carried out in air at 1100°C. The thermal cycle consists of heating to 1100°C at 20°C/min, holding for 24 hours and cooling in 5 min to room temperature. Mass change was continuously recorded after every cycle. The as-deposited, annealed and oxidized samples were examined by X-ray diffraction (XRD, Scintag XDS 2000, Cupertino, CA) to identify the phases formed. Microstructural features of the surface and cross-section of the samples were examined by scanning electron microscopy using backscattered electron imaging (SEM/BSE, JEOL, JSM 6100, Peabody, MA) and energy dispersive spectroscopy (EDS, Oxford Instruments, Valley, CA).

RESULTS AND DISCUSSION

Silicide Coating

Fig.2a shows a typical cross-section of the silicide coating formed on sintered alloy 3 (Mo-4.3Si-1.1B) coupon after 48 hours pack cementation at 1000°C in an Si pack. The EDS and XRD analysis confirmed that the coating was $MoSi_2$ with the $C11_b$ structure. A uniform coating layer about 40µm in thickness formed on the substrate. At least 10 measurements were taken and the average thickness of $MoSi_2$ layer was determined. Growth of $MoSi_2$ layer was found to be parabolic with respect to deposition time with a corresponding rate constant of $8 \times 10^{-11} \text{ cm}^2/\text{s}$ at 1000°C. This value compares very well with the intrinsic parabolic growth rate constant of $MoSi_2$ obtained from Si/Mo diffusion couple $(3.91 \times 10^{-10} \text{ cm}^2/\text{s})$ [14]. The inward-diffusion of silicon is thought to be the rate-controlling step. None of the Mo_5Si_3 , Mo_3Si or T2 (Mo_5SiB_2) phases were detected between the $MoSi_2$ layer and the substrate. This result is in agreement with the kinetic studies of $MoSi_2$ about two or three orders of magnitude at 1000°C. It should be noted the $MoSi_2$ coating of the as-deposited alloy was always cracked at the corners and edges of the substrate, and the perpendicular microcracks were extending to the surface were also observed (see Fig2a).

Figure 1 a. Micrographs of silicide coating growing on sintered Mo-4.3Si-1.1B alloy by a NaF activated pack; b. Mass change of a pack cemented alloy after isothermal and cyclic oxidation at 1100°C in dry air

The oxidation behavior of the coating was assessed by measuring the weight change as a function of exposure time. Fig.2b show that the weight gain data at 1100°C for pack cemented alloy. For comparison, the mass change of uncoated Mo-4.3Si-1.1B alloy reported by Mandal et. Al [15] at 1100°C was also included in this plot. Only a slight weight loss of about 0.2 mg/cm² was observed after oxidation at 1100°C for 200 hrs. Even after 8 cycles (total 192 hours), weight loss was less than 0.5 mg/cm², suggesting that the micorcracks formed by pack cementation process was sealed by silica glass and had no obvious detrimental effect on the oxidation behavior of MoSi₂ coating during exposure to air at 1100°C. For comparison, Mandal et. al.[15] reported the uncoated Mo-4.3%Si-1.1%B alloy suffered a significant weight loss of more than -60 mg/cm^2 at 1100°C for 200 hrs, suggesting a loss of volatile MoO₃. Clearly, MoSi₂ coating significantly suppressed the rapid oxidation of alloy 3. The cross-section of oxidized alloy is shown in Fig.3a. No significant oxidation was observed in the coating or substrate. Only a thin silica glass formed at the surface. A very thin Mo₃Si₃ layer was observed between the silica scale and MoSi₂ coating due to selective oxidation of Si. In addition, a Mo₅Si₃ layer below the MoSi₂ coating less than 20µm thick was observed as a result of interdiffusion between coating and substrate.

Oxidation in air at 1600°C for two hours results in a small weight loss of about -0.1 mg/cm², but significant changes in the microstructure (see Fig.3b). The microstructure of the coating depicts three layers: i) an outer layer about 25 μ m in thickness comprising mixed MoSi₂/T1 phases, ii) an intermediate layer about 50 μ m in thickness containing single T1 phase, and iii) a 10 μ m thick interlayer consisting of MoB and T2 phases. The cracks that penetrated through the outer MoSi₂ layer were arrested at the intermediate T1 layer and sealed by the silica glass.

Figure 2 Micrographs showing cross-section of silicide coating growing on sintered Mo-4.3Si-1.1B alloy by a NaFactivated pack after isothermal oxidization in dry air: (a) at 1100°C for 200hrs, (b) at 1600°C for 2 hours.

Although the transformation rate from $MoSi_2$ to T1 layer was not experimentally determined, annealing of the sample in Ar confirmed that the transformation of a $MoSi_2$ coating, is less than 12hrs at 1600°C. Once $MoSi_2$ layer is completely transformed to T1, the coating oxidized rapidly since the T1 and MoB/T2 multilayer structure do not form a protective silica layer. In fact, the coated alloy was completely oxidized after exposure to air at 1600°C for 50 hours.

Borosilicide Coating

The rapid loss of the $MoSi_2$ coating is a result of preferential silicon diffusion into substrate which leads to the growth of T1 layer. Since the oxidation behavior of T1-based phase is strongly dependent on boron content, undoped T1 (i.e., Mo_5Si_3) exhibits catastrophic mass loss above 1000°C due to formation of a porous oxide scale. A small amount of boron added to Mo_5Si_3 results in a non-porous, protective scale. The B addition allows viscous flow to close submicron scale porosity. Meyer and Akine [16] studied the isothermal oxidation of several B-doped Mo_5Si_3 alloys around Mo_5Si_3 phase field at 1450°C and concluded that a minimum boron content is somewhere between 0.14 wt.% and 0.91 wt.% required in order to form a protective scale on Mo_5Si_3 -based materials. This boron level is definitely exceeds the solubility of B in Mo_5Si_3 . Indeed, the oxidation resistant Mo_5Si_3 -based alloys studied to date were always multiphase containing at least a small amount of $MoSi_2$, T2 or MoB phases. Therefore, the boron-modified silicide diffusion coatings were developed via pack cementation in order to address the poor

oxidation behavior of T1 interlayer. Two approaches were employed: co-deposition of B and Si onto alloy 3 and sequential deposition of B followed by Si.

Co-Deposition Of B And Si

The SEM micrograph in Fig.4a shows the cross-section of a multilayered borosilicide coating formed on sintered Mo-4.3Si-1.1B alloy after 48 hours co-deposition of Si and B in a pack with Si/B=9 (#3) at 1000°C. Instead of single MoSi₂ layer observed in silicon only coating, the co-deposited coating consists of three layers: i) an 20µm thick MoSi₂ outer layer, ii) a 30µm thick intermediate layer consisting of MoB needles and particles in a MoSi₂ matrix. The presence of MoB was confirmed by XRD by carefully polishing away the top MoSi₂ layer, iii) a 10µm thick inner layer containing mostly T2 (Mo₅SiB₂) phase with dispersed MoB particles. Thus, MoB phase was successfully incorporated into the coating by incorporating B in the pack mixture. The distribution of boron in the coating suggested that diffusion of B in MoSi₂ layer is much faster than Si.

Figure 3 SEM micrographs of B-modified silicide coating on sintered Mo-4.3Si-1.1B alloy produced by codeposition of B and Si: (a) as-deposited, (b) after isothermal oxidation in dry air at 1600°C for 2 hours.

Both short-time and long-time isothermal oxidation tests were run on the co-deposited samples. A weight loss of less than -0.1 mg/cm^2 was observed after oxidation at 1600°C for two hours in air, while the sample is totally oxidized after 50 hrs exposure. Fig.4.b shows back-scattered electron (BSE) images of co-deposited alloy after short-time oxidation. No obvious oxygen attack into substrate through cracks was observed, which indicated that cracks were sealed by borosilicate glass and were not the cause of the long-time oxidation failure. The MoSi₂ coating was partially transformed into T1 phase and an interlayer consisting of MoB particles-dispersed T2 matrix with was observed. The interlayer has the same phase constitutions (T2+MoB) as that in Si only coating. It is thicker (25µm vs. 15µm) perhaps in part due to the incorporation of boride phases into MoSi₂ coating. According the Mo-Si-B ternary phase diagram, MoB is can co-exist with MoSi₂ and Mo₅Si₃ phases. However, careful XRD and SEM analysis after removing the top layer showed no evidence of MoB phase in either MoSi₂ or Mo₅Si₃ phases, suggesting that MoB must have reacted with Si to form T1 as silicon diffuses into the substrate, as will be discussed later. The MoSi₂ layer was completely transformed into T1 phase after annealing at 1600°C for twelve hours. It is presumed that poor oxidation resistance of Mo₅Si₃ layer formed by interdiffusion between the coating and substrate is responsible for the degradation.

Two-Step B+Si Coating

Fig.5 shows the micrographs of Mo-4.3Si-1.1B alloy after boronizing. A complex two-layer diffusion microstructure was developed: a $\sim 10 \mu m$ thick outer Mo₂B₅ layer with dispersed MoB particles, a $\sim 30 \mu m$ thick network of T2 and MoB mixed inner layer. Apparently, MoB in T2/MoB inner layer formed from reaction of B with Mo₃Si. Closer examination of the interface between the coating/substrate by SEM/EDS revealed fine T2 particles, which were formed within the MoSi₃ phase near the interface. Dark spots observed in the inner T2 layer were identified as MoSi₂ phase by EDS. The formation of MoSi₂ could occur if Si content exceeds the solubility limit in T2 phases as B reacts with Mo₃Si to form T2.

Figure 4 SEM micrographs of cast Mo-4.3Si-1.1B alloy pack cemented in a B pack

Fig.6a shows the cross-sectional microstructure of as-prepared and annealed two-step coating (B+Si). After two step pack cementation (boronizing and siliconizing), Mo_2B_5 top layer formed is totally converted into $MoSi_2$ and a ~12µm thick $MoSi_2$ layer is formed. A 40µm thick T2+MoB intermediate layer is observed between $MoSi_2$ and substrate. The thickness of this intermediate layer is similar to that of B-packed alloy 3 (Fig.5). It implies that when Mo_2B_5/MoB transformed into $MoSi_2$ by Si cementation followed by B diffuse through $MoSi_2$ since the solubility of boron in $MoSi_2$ is negligible.

After annealing at 1400°C for 24 hours, the $MoSi_2$ phase is completely transformed into T1, and the T2 fraction in the T2/MoB layer increased. Unlike the as-packed coating in which the T2/MoB interlayer consists of MoB matrix with interconnected T2 phase, the interlayer in the annealed coating consists of T2 matrix with isolated MoB grains. Some Mo₅Si₃ particles were also observed in the T2 phases.

Figure 5 SEM micrographs of cast Mo-4.3Si-1.1B alloy by boronizing in a B pack (#2) followed by siliconizing in a Si pack(#1): (a) as packed coating, (b) annealed at 1400°C for 24 hours

Evaluation Of Silicide And Borosilicide Coating

The excellent high temperature strength and oxidation resistance qualify MoSi₂ as protective coating for Mo-based alloys. Similar studies by Ito et al.[13, 17] on Mo-9Si-18B (at.%) alloy and Sakidja et al.[12] on Mo-14.2Si-9.6B at.% alloy revealed. Two significant challenges for future high temperature application still remain: i) thermal stresses generated by coefficient of thermal expansion (CTE) mismatch at the coating-substrate or coating-oxide interface, and the large CTE anisotropy of T1 may induce cracks during process. Although these cracks may be sealed by silica (or borosilicate) glass at high temperature, it may still cause degradation of coating under thermal cycling, ii) the rapid diffusion of Si from MoSi₂ coating results in the formation of the T1 phase which does not provide oxidation protection for the substrate.

Thermal Stress

MoSi₂ is goes through ductile-to-brittle transition at approximately 1000°C. Thermal stress resulting from the CTE mismatch between the MoSi₂ coating and substrate can cause cracks in the coating if they reach or exceed a critical value, i.e., the strength of MoSi₂. Since the tensile strength of MoSi₂ is much lower than its compressive strength (275 MPa vs. more than 1378 MPa)[18], tensile stresses are particularly damaging and will promote transverse microcracking in the coating, as observed in this study.

Using the bulk CTE as and $\Delta T=975^{\circ}$ C (cooling the sample to room temperature from 1000°C), the thermal stresses developed in the MoSi₂ coating are 1041, 709 and 520MPa with substrates Mo, Mo₃Si and Mo₅SiB₂, respectively. These stresses definitely exceed the tensile strength of MoSi₂ (275MPa). As shown Fig.2a and Fig.4a, the transverse microcracking was observed in the as-packed MoSi₂ coating no matter how slowly they were cooled. Fortunately, the present oxidation experiments showed that no significant oxidation through cracks ($\Delta m <-1$ mg/cm²) occurred since the silicate glass formed by oxidation may have sealed them. Similar results were also reported by Ito et.al.[13]. They indicated the presence of microcracks in the as-deposited MoSi₂ coating on T2/Mo_{ss} substrate; however, steady-state weight gain with mass gain of less than 2mg/cm² was observed after 50 hours oxidation at 1500°C. It

should be noted that the $MoSi_2$ were not completely transformed into T1 phases after 50 hours exposure in Ito's experiments, which provide the reservoir of Si for the formation of continuous silicate glass.

Thermodynamic Stability

Figure 6 Schematic description of diffusion path showing reaction between $MoSi_2$ coating and three-phase (Mo+Mo₃Si+T2) substrate ,

From the microstructural features, the diffusion paths for silicide and boron-modified silicide coatings on multiphase alloy 3 can be drawn on Mo-Si-B ternary phase diagram (Fig.7). A diffusion zone with Mo_5Si_3 (T1) and MoB+T2 two-phase layer was observed in both cases whether the coating contains boride phases or not. The diffusion reaction can be described as followed: $MoSi_2$ decomposes into T1 ($Mo_5Si_3B_x$) and Si by Equation (1) as in $MoSi_2/Mo$ and $MoSi_2/T2$ diffusion couple. The interface 1 shifts toward $MoSi_2$ phase and the Si atoms diffuse through T1 to interface 2, at which additional T1 phase is formed by the following reactions:

$$5MoSi_2 \to Mo_5Si_3 + 7Si_{Mo_5Si_3} \tag{1}$$

The interface 1 shifts toward $MoSi_2$ phase and the Si atoms diffuse through T1 to interface 2, at which additional T1 phase is formed by the following reactions:

$$3Si + 5MoB \rightarrow Mo_5Si_3B_x + (5-x)B \tag{2}$$

$$2Si + Mo_5SiB_2 \rightarrow Mo_5Si_3B_x + (2-x)B \tag{3}$$

Since solubility of boron in T1 phase is negligible, the excess boron atoms must diffuse toward interface 3 to form boron-rich phases such as: T2 and MoB since B has limited solubility in T2 phase. Therefore, the lifetime of silicide coating is limited by the growth rate of T1 layer, i.e. conversion of MoSi₂ into T1.

In B/Si co-deposition coating, the diffusion path did not change even though the composition of the coating moved up to the B-rich side along the tie line between MoB and MoSi₂ in the ternary Mo-Si-B phase diagram. MoB did not stabilize the MoSi₂ phase; rather it reacted with Si to form T1 phase and release B atoms. The excess B diffuses to coating/substrate interface to form borides by reacting with Mo and Mo₃Si.

For the MoSi₂-based coating, the lifetime is limited by the growth rate of T1 layer. Fig.8 shows the apparent growth rate of Mo_5Si_3 layer for $MoSi_2/Mo$ diffusion couple. The data represents the intrinsic growth rate of Mo_5Si_3 layer. Although there is some scatter in the data in part due to difference in sample preparation, the values are on the same order magnitude. The apparent growth rates of Mo_5Si_3 layer in the $MoSi_2/T2$ diffusion couple and $MoSi_2$ coating on T2+ Mo_{ss} are also included. The growth rates of Mo_5Si_3 in ternary Mo-Si-B system are slightly lower than that of $MoSi_2/Mo$ diffusion couple presumably due to the existence of T1+MoB two-phase layer. The lifetime of $MoSi_2$ coating on three-phase Mo-Si-B alloy can be estimated by considering conversion rate of $MoSi_2$ to T1. Fig.9 shows that estimated lifetime as a function of exposure temperature assuming that the initial thickness of Mo_5Si_3 layer in Fig.8a. The coating can last more than 1000 hours with service temperature below 1300°C, while it will lose protection less than hundred hours above 1500°C due to rapid interdiffusion.

Figure 7 Arrhenius plot of parabolic growth rate as a function of the reciprocal temperature for a) Mo₅Si₃ and b) Mo₃Si.

Strategies Of Extending Lifetime Coating

MoSi₂-based coating was impaired above 1300°C by the formation of poor oxidation resistant Mo₅Si₃ interlayer due to rapid interdiffusion. No alloy has been identified as a diffusion barrier for MoSi₂/Mo couple. Addition of refractory alloying elements such as W and Nb can slow the growth rate of (Mo,M)₅Si₃ significantly[19], but not enough to last for several hundred hours above 1500°C. Thus new coating design strategy needs to be considered. Thom et al.[20, 21] reported that Mo-13.4Si-2.6B (T1+MoB+MoSi₂) and Mo-9.9Si-1.4B (T1+T2+Mo₃Si) alloys possess excellent oxidation resistance up to 1600°C. Thus, if the coating composition was shifted to Mo-rich regions, such as T1+T2+Mo₃Si three phase region, the Si diffusion inward will result in the formation of Mo₃Si or T2 interlayer instead of T1 according to Mo-Si-B ternary phase diagram. The

coating on three-phase (Mo_{ss}+Mo₃Si+T2) allov

intrinsic growth rate of Mo_3Si phase is about at least one order of magnitude lower than that of Mo_5Si_3 at the temperature of 1000-1700°C

as shown in Fig.8, And this can reduce the depletion rate of Si from silicide coating, therefore extend the lifetime of coating.

SUMMARY

 $MoSi_2$ -based silicide diffusion coating was successfully deposited onto Mo_{ss} -based multiphase Mo-Si-B alloy via pack cementation, the coating process, oxidation behavior and interdiffusion behavior were investigated, and the results obtained are summarized as follows:

- 1. In the pack siliconizing coating, a MoSi₂ layer was developed on the three phase substrate (Mo+Mo₃Si+Mo₅SiB₂). After annealing or exposure to air at high temperature, MoSi₂ was transformed to T1 phase, which possesses poor oxidation resistance at elevated temperature.
- 2. Boride phases (MoB and Mo₂B₅) were successfully added to MoSi₂ coating either by co-deposition of B and Si or by a two-step process, and the concentrations of boride phases can be controlled by adjusting the Si/B ratio in the pack mixture. However, those boride phases cannot be stabilized with either MoSi₂ or Mo₅Si₃ phases after exposure to high temperature. MoB phase was consumed by the formation of Mo₅Si₃ as silicon diffuse downward and the expelled boron diffused downward into substrate to form new borides. As a result, a diffusion zone with Mo₅Si₃/(T2+MoB) layers formed.

- 3. Both silicide and boron-silicide coating can prevent the oxidation of Mo-4.3Si-1.1B alloy at 1100°C in both static and cyclic conditions and estimated to be lasted for thousand of hours, while the coating lost their protection at 1600°C due to rapid interdiffusion between MoSi₂ and substrate, which leads to formation of poorly oxidation resistant T1 phase. The lifetime of MoSi₂-based coating is limited by Si depletion through the formation of T1 phase.
- 4. New coating design approach was proposed based on the diffusion data. T1-based Mo-Si-B coating will reduce the Si depletion rate from the surface by formation of slow growing Mo₃Si or T2 layer without sacrificing the oxidation resistance of the coating, therefore extending the coating lifetime above 1500°C.

ACKNOWLEDGEMENTS

"This manuscript has been authored, in whole or in part, under Contract No. DE-AC02-07CH11358 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

REFERENCES

[1] M. Akinc, M. K. Meyer, M. J. Kramer, A. J. Thom, J. J. Huebsch, B. Cook, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing A261 (1999) 16-23.

[2] H. L. Zhao, M. J. Kramer, M. Akinc, Intermetallics 12 (2004) 493-498.

[3] D. M. Dimiduk, J. H. Perepezko, MRS Bulletin 28 (2003) 639-645.

[4] R. Sakidja, S. Kim, J. S. Park, J. H. Perepezko, Materials Research Society Symposium Proceedings 753 (2003) 59-64.

[5] J. H. Perepezko, R. Sakidja, S. Kim, Z. Dong, J. S. Park, Structural Intermetallics 2001, Proceedings of the International Symposium on Structural Intermetallics, 3rd, Jackson Hole, WY, United States, Sept. 23-27, 2001 (2001) 505-514.

[6] J. H. Schneibel, P. F. Tortorelli, M. J. Kramer, A. J. Thom, J. J. Kruzic, R. O. Ritchie, Materials Research Society Symposium Proceedings 753 (2003) 53-58.

[7] J. H. Schneibel, R. O. Ritchie, J. J. Kruzic, P. F. Tortorelli, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 36A (2005) 525-531.

- [8] J. H. Schneibel, M. J. Kramer, O. Unal, R. N. Wright, Intermetallics 9 (2001) 25-31.
- [9] M. G. Mendiratta, T. A. Parthasarathy, D. M. Dimiduk, Intermetallics 10 (2002) 225-232.
- [10] T. A. Parthasarathy, M. G. Mendiratta, D. M. Dimiduk, Acta Materialia 50 (2002) 1857-1868.
- [11] J. J. Kruzic, J. H. Schneibel, R. O. Ritchie, Scripta Materialia 50 (2003) 459-464.
- [12] R. Sakidja, J. S. Park, J. Hamann, J. H. Perepezko, Scripta Materialia 53 (2005) 723-728.
- [13] K. Ito, T. Murakami, K. Adachi, M. Yamaguchi, Intermetallics 11 (2003) 763-772.
- [14] J.-K. Yoon, J.-Y. Byun, G.-H. Kim, J.-S. Kim, C.-S. Choi, Thin solid films 405 (2002) 170-178.
- [15] P. Mandal, A. J. Thom, M. J. Kramer, V. Behrani, M. Akinc, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing A371 (2004) 335-342.
- [16] M. K. Meyer, M. Akinc, Journal of the American Ceramic Society 79 (1996) 2763-2766.
- [17] K. Ito, T. Hayashi, M. Yokobayashi, T. Murakami, H. Numakura, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 36A (2005) 627-636.

[18] T. A. Kircher, E. L. Courtright, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing 155 (1992) 67-74.

- [19] P. I. Glushko, V. I. Zmii, N. A. Semenov, B. M. Shirokov, Powder Metallurgy and Metal Ceramics (Translation of Poroshkovaya Metallurgiya (Kiev)) 42 (2003) 154-157.
- [20] A. J. Thom, E. Summers, M. Akinc, Intermetallics 10 (2002) 555-570.
- [21] A. J. Thom, M. J. Kramer, P. Mandal, M. Akinc, Scripta Materialia 53 (2005) 915-919.