
Dynamic Algorithm Selection in Parallel GAMESS Calculations ∗

Nurzhan Ustemirov
Masha Sosonkina

Department of Computer Science
Ames Laboratory

Iowa State University
Ames, IA 50011 USA

{nurzhan,masha}@scl.ameslab.gov

Mark S. Gordon
Michael W. Schmidt

Department of Chemistry and
Ames Laboratory

Iowa State University
Ames, IA 50011 USA

{mark,mike}@si.fi.ameslab.gov

Abstract

Applications augmented with adaptive capabilities are
becoming common in parallel computing environments
which share resources such as main memory, network, or
disk I/O. For large-scale scientific applications, dynamic
adjustments to a computationally-intensive part may lead
to a large pay-off in facilitating efficient execution of the
entire application while aiming at avoiding resource con-
tention. Application-specific knowledge, often best revealed
during the run-time, is required to initiate and time these
adjustments. In particular, General Atomic and Molecular
Electronic Structure System (GAMESS) used for ab initio
molecular quantum chemistry calculations has two differ-
ent implementations of Self-Consistency Field (SCF) meth-
ods, each of which targets either disk I/O or memory. This
paper describes a mechanism enabling switching of algo-
rithms during GAMESS run-time and shows the effect of
the adaptations on the performance of GAMESS calcula-
tions as well as on a parallel GAMESS execution for differ-
ent resource availability. The test results indicate that, in
the presence of I/O resource contention, parallel GAMESS
enhanced with adaptive mechanism may sustain the perfor-
mance similar to that of full resource availability.

1. Introduction

The General Atomic and Molecular Electronic Struc-
ture System (GAMESS) performs ab initio molecular quan-
tum chemistry calculations [6] to perform a wide range
of Hartree-Fock (HF) wave function (RHF, ROHF, and

∗This work was supported in part by the U.S. Department of Energy
under Contract W-7405-ENG-82, in part by National Science Foundation
under NSF/CHE-0535640 grant, in part by Minnesota Supercomputing In-
stitute, and in part by the University of Minnesota Duluth.

UHF) calculations. Using Self-Consistent Field (SCF)
method, GAMESS iteratively approximates solution to the
Shrödinger equation which describes the basic structure
of atoms and molecules. There are two different imple-
mentations, direct and conventional, of the SCF method in
GAMESS. The direct algorithm recomputes integrals “on-
the-fly” for each iteration mainly consuming physical mem-
ory and CPU resources. Conversely, the conventional disk-
based algorithm calculates integrals once, stores them on
disk, and reuses during iterations resulting in a heavy disk
I/O usage.

1.1 GAMESS in distributed environments

Many GAMESS calculations have parallel implementa-
tions which enable the utilization of distributed resources,
such as main memory and disk storage. Remote data ac-
cess, however, may appear as a limiting factor to GAMESS
scalability. To avoid this problem, GAMESS native com-
munication layer (called Distributed Data Interface (DDI))
takes advantage of shared memory on symmetric multipro-
cessor (SMP) nodes [5].

We have observed [12] that a parallel job in which com-
puting processes are equally distributed (scattered) over dif-
ferent nodes runs faster than the one using multiple proces-
sors within the same SMP node. This could be due to the
inability of certain communication layer implementations
to efficiently handle shared-memory access [8, 2]. On the
other hand, by using a single processor per node (scatter-
ing), each process utilizes the networking hardware without
waiting for CPU or memory. In addition, we have observed
that GAMESS conventional parallel job on two processors
of the same SMP node may be actually slower compared to
its sequential counterpart. The poor performance could be
the result of disk I/O channel bottleneck due to simultane-
ous access by more than one conventional processes con-
stituting a parallel job. On the other hand, running concur-



rently scattered parallel GAMESS jobs with only one des-
ignated as conventional SCF algorithm on the same set of
SMP nodes, has shown rather good performance. Thus, in
parallel environments, the choice of an SCF algorithm has
significant effect on performance. Similar to the study of
concurrent GAMESS processes [11, ?], a particular SCF
algorithm was selected at the start of execution such that
it does not compete with the peer GAMESS calculations
already running in the system. It has been also assumed
that the parallel environment is dedicated to running peer
GAMESS calculations (i.e., those GAMESS applications
which were integrated with a helper-middleware). For real-
istic situations, this assumption may be too restrictive since
computational resource availability often changes in the
course of application execution. Thus, additional run-time
adaptations may be required to maintain good efficiency of
execution.

This is especially true in a typical multiuser cluster en-
vironment, where users could simultaneously run a variety
of high performance applications. Thus, adaptations made
only in the preprocessing stage may not always lead to an
improvement under such system conditions, and thus dy-
namic adaptations are desirable.

Modifying GAMESS source code to insert adaptations is
not a feasible option. The source codes of quantum chem-
istry algorithms are already complex, so increasing their
complexity may be detrimental to their correctness and us-
ability. The latter is of particular concern since GAMESS
is designed to run on a given computational platform by
an application scientist without the knowledge of computer
science. Therefore, employing some generic middleware
tools, which may access the dynamic system conditions
and invoke GAMESS adaptations – via a separate function
handler – may be beneficial, assuming that such tools are
lightweight and may be turned on/off by the user in a simple
manner. In this work we present a generic integration model
for applications, such as GAMESS, with dynamically in-
terchangeable algorithms. The integrated middleware tool
monitors system resources, analyzes job performance and
invokes adaptation handlers to improve resource utilization
and application performance.

The paper is organized as follows. Section 2 explains
the dynamic selection of GAMESS algorithms while Sec-
tion 3 presents its implementation using the middleware tool
NICAN, which has been integrated with GAMESS. In Sec-
tion 4, we show test results for the integrated software. The
work is summarized in Section 5.

2 Possibility of dynamic switching in the SCF
method

The SCF algorithm is one of the computationally-
intensive parts of an electronic structure calculation that

GAMESS performes. Thus, a proper selection of its im-
plementation has a considerable effect on the overall cal-
culation. Figure 1, modified from [3], sketches the SCF
algorithm [3, 6]. The main difference between the two im-
plementations is the handling of the two-electron (2-e) in-
tegrals. In the direct SCF method, the 2-e integrals are re-
calculated for each iteration. This method has high demand
for CPU time but avoids the possible disk I/O bottleneck.
In the conventional SCF method, the 2-e integrals are cal-
culated once at the beginning of the SCF process (box with
dashed border in Figure 1) and stored in a file on disk for
subsequent iterations. This implementation performs best
on a system where the available physical memory exceeds
the file size for 2-e integrals, so that the file is cached in
physical memory. Thus, re-reading buffered 2-e integrals is
faster than recalculating them as in the direct method.

Figure 1. Illustration of the SCF algorithm as
conventional (C) and direct (D) implementations.

Since the SCF algorithm (Figure 1) is of iterative nature,
switching between conventional and direct implementations
may be possible in an arbitrary SCF iteration, although the
precise implementation details of the switching are rather
complex. The following is a brief outline of the procedure.
One may pre-compute the 2-e integrals before commenc-
ing the iteration cycle, as for the conventional SCF algo-
rithm. Then at each new iteration, the 2-e integrals are ei-
ther fetched from a file or (partly) recomputed for the con-
ventional or direct implementations to be used depending
on the resource availability. In a similar fasion, any quan-
tum computation algorithm that may be implemented to re-
compute certain large quantities, as 2-e intergals, may be a
candidate for the algorithm selection technique presented in
this paper.

3 Using middleware with GAMESS

Following our previous work [11, ?, 12], we have chosen
the middleware NICAN [7] to guide the toggling between



the two implementations of SCF algorithm in GAMESS.

3.1 NICAN middleware tool

The main idea of integrating NICAN with an application
is to decouple the system-related decision making from the
execution of the application, while timely invoking appli-
cation adaptation functions (handlers) [9]. The NICAN en-
gine is encapsulated into a separate thread, Manager which
controls the functional modules and invokes application
adaptations. Due to dynamically loadable modules, NICAN
is versatile and may have a wide variety of interactions with
the system or application. Each module is designated to
perform a separable function, such as to determine a system
runtime characteristics or to validate machine-dependent
parameters. NICAN has a rather general and flexible in-
teraction mechanism, which permits to “talk” to a variety of
application codes [7, 9]. Enhanced with “general-use” mod-
ules, such as CPU monitoring or disk I/O checking, NICAN
may not require customized integration with an application.
However, to explore application-specific trigger conditions,
“specific-use” NICAN modules may also be needed.

An attractive feature of NICAN is that it does not require
substantial coding modifications to the high-performance
application with which it is interfaced. In the case of
GAMESS, we have only a few changes to the source code.
Specifically, the changes made to GAMESS enables it to
dynamically switch between two SCF algorithms. Whereas
resource monitoring, analysis and triggering adaptive mech-
anism is implemented within the NICAN engine.

3.2 Integration model for dynamic adap-
tations

The GAMESS package consists of two main parts. The
first one, written in C, handles the setup of DDI needed
for efficient memory management in parallel executions [5].
The second part, the legacy code written in Fortran77, does
the actual computations. The initial GAMESS-NICAN in-
tegration was designed to encapsulate the entire GAMESS
computation code [12]. A high-level approach was consid-
ered for adaptation: Adjust GAMESS input settings based
on the system conditions and on the settings of the “peer”
GAMESS-NICAN jobs co-existing in the system. Thus,
NICAN Manager made changes to the GAMESS input pa-
rameters by selecting appropriate SCF algorithm at the pre-
processing stage. The design assumed that the system is
dedicated to run only GAMESS jobs. However, the as-
sumption is too restrictive for modern realistic computing
environments when e.g., several applications may reside on
the same SMP node or when the I/O channel is shared by
many applications.

Figure 2 depicts the GAMESS-NICAN integration for

Figure 2. GAMESS-NICAN Integration

the GAMESS adaptations to be performed at runtime
(shown as bold-faced double arrow). These adaptations are
implemented as changes to iteration start parameters and
result in switching from one algorithm to the other between
SCF iterations. The GAMESS-NICAN integration model
(Figure 2) includes both specific- (S) and general-use (G)
modules. GAMESS-Check specific module, utilizing the
special execution mode of GAMESS, calculates required
memory for the given job and makes proper memory param-
eter adjustments to the GAMESS input file [11]. Memory
module monitors available physical memory on the node.
By performing light weight quick benchmarking, disk I/O
module checks the available I/O resources. The Daemon
module starts NICAN daemon (NcnD), if there is no other
NcnD running on the node, for observing peer application
jobs and for communication among distributed NICAN pro-
cesses. The daemon is self-contained and is independent
from the job for which it has been started. The daemon per-
forms standart operations such as: read, write, delete and
self-distroys if there are no records. Each record consists of
a process ID and a description to the job. Thus, the Man-
ager can record any usefull information about the process
executed on the node. The design of NcnD is versatile, so
that the daemon module may be used for any application
integrated with middleware NICAN.

Figure 3. GAMESS adaptation scheme

Figure 3 details how the interaction between the NICAN



Manager and GAMESS SCF calculation is implemented.
At the beginning of an SCF iteration, GAMESS calls the
adaptation handler GMS NCN the function of which is to
communicate with the NICAN manager and to contain the
adaptation decisions, if any, as returned by the NICAN man-
ager. The decision is made by Manager’s controller, which
analyzes job’s past performance, system resource informa-
tion collected my modules and the state of peer GAMESS
jobs as obtained from NcnD daemons. While a precise
collibration of the decision making is of paramount impor-
tance, in this paper, we concentrate mostly on the toggling
abilities of the SCF calculations and their implementation
using middleware. In Section 4, we describe our exper-
iments with only one possible adaptation control option,
leaving its broader investigation as a future work.

4 Experiments

We consider the behavior of parallel GAMESS cal-
culations in a dynamically changing computing environ-
ment. In particular, the computing platform is shared by the
GAMESS calculations integrated with NICAN and other
applications that burden the resources critical for GAMESS
execution. To study the adaptive features of the SCF al-
gorithm in GAMESS which, in the conventional mode, re-
quires much disk I/O, another application competing for
this resource has been introduced during GAMESS runtime.
The iozone benchmarking tool [4] has been taken as such an
application. Although this tool may be used for measuring a
variety of operations on files, we are interested in its ability
to congest the disk I/O channel by writing to disk the files
of a particular size, and thus occupying a certain percentage
of the I/O channel.

The tests were executed on the Tools cluster owned by
the SCL group at the Ames Laboratory. This cluster has
eight SMP nodes, one half of which are 2.2 GHz Intel
XEON dual-processor nodes and the other half is 1.7 GHz
AMD Athlon MP 2100+ dual-processor nodes. All nodes
have 768 MB of physical memory. Each XEON node has
its own scratch directory mounted on a 250 GB 7200 RPM
hard drive. On the other hand, the hard drives for the AMD
nodes have varying characteristics. To correlate the perfor-
mance of GAMESS with the I/O bandwidth consumed by
iozone and to exclude the effects of processor differences,
all the experiments were performed on the XEON nodes
only.

As a test problem, we consider the computation of the
luciferin molecule structure using the RHF energy calcu-
lation. In Figure 4, the molecule structure is plotted us-
ing MacMolPlt program [1, 10]. For luciferin energy,
GAMESS converges in 15 iterations with conventional SCF
algorithm requiring to store files of at most 3.57 GB or with
direct SCF algorithm consuming 5.65 MB of main mem-

Figure 4. Luciferin molecule structure ob-
tained by GAMESS RHF calculation

ory as estimated by the GAMESS-NICAN Check module
(Figure 2). By default, GAMESS is given the conventional
mode on input.

In the first set of experiments, we compare the perfor-
mances of the original GAMESS with conventional mode
(GAMESSorig), i.e., GAMESS without any kind of adap-
tation, and of GAMESS in which NICAN triggers a dy-
namic selection of the SCF algorithm. The latter is de-
noted as GAMESSdyn. Each job was executed on two
processors, one per SMP node, such that any GAMESS
process may not share the (same SMP) I/O channel with
another process of the same parallel GAMESS calcula-
tion. At the GAMESS runtime, iozone starts to introduce
a certain amount of I/O Congestion (denoted here as Cio)
by writing a large file to disk on one of the SMP nodes
to which GAMESS calculation is mapped. Since parallel
GAMESS algorithms synchronize at certain times, the Cio

perceived on an I/O channel may affect the execution of all
the GAMESS processes.

Figure 5 depicts the time per SCF iteration. Each curve
represents the GAMESS performance when different per-
centages, Cio, of I/O bandwidth are consumed by iozone,
which starts at the point of the fourth GAMESS iteration.
(Note that iteration four was chosen arbitrarily to start I/O
congestion at runtime. If the I/O congestion is present at
the very start of GAMESS calculation than the preprocess-
ing adaptation of GAMESS, described in [12] and denoted
in this section as GAMESSprep, will detect it and adjust
the SCF algorithm accordingly.) Until the fourth iteration,
GAMESSorig and GAMESSdyn have the same perfor-
mances. Starting at the fourth iteration, the execution time
for the next SCF iterations has increased, depending on Cio.
In GAMESSdyn (solid lines in Figure 5), NICAN moni-
tors the time to perform an SCF iteration and compares it
with the times to perform the previous two iterations. If
the time has first increased by 10% and then either keeps



constant or increases further, the adaptation handler is in-
voked on the SCF algorithm and is toggled from conven-
tional to direct. In other words, this adaptation control strat-
egy is based on the window of three iterations and on the
increase of 10%. In the present experiments, these parame-
ters have been dictated mainly by the type of molecule and
of GAMESS calculation considered. In addition, the archi-
tecture parameters, such as the I/O bandwidth and the main
memory size, may need to be considered, which is left out-
side of the scope of this paper. The dashed lines in Figure
5 show the performance of GAMESSorig , while the solid
lines reflect the change in the course of GAMESS execu-
tion at the sixth iteration when GAMESSdyn is used. For
any Cio, the performance of GAMESSdyn is almost indis-
tinguishable from the “no-congestion” case (denoted with
circles in Figure 5) and it may be more than two times bet-
ter than when GAMESSorig is used with a I/O bandwidth
fully consumed.

Figure 5. Two-processor execution of paral-
lel GAMESS job for different amounts of I/O
congestion, Cio

The aim of the second set of experiments is to ob-
serve the multiple parallel peer GAMESS calculations
executing concurrently in the same computing environ-
ment that experiences congestion of I/O channels. Two
jobs of the same GAMESS calculation using three adap-
tivity settings — non-adaptive (GAMESSorig), at run-
time (GAMESSdyn), and only in the preprocessing stage
(GAMESSprep) — are executed on either two or four pro-
cessors. Figure 6 shows the total time taken by two jobs
for each adaptivity setting. In each pair, the jobs are started
one after another with minimal delay. GAMESSorig jobs
have finished as conventional resulting in a bad resource
utilization caused by mutual competition, as described in
[11]. With the I/O congestion, the performance of multi-
ple GAMESSorig jobs deteriorates further (gray bars in
Figure 6). Since GAMESS selects by default the conven-

Figure 6. Total time to complete two simul-
taneous parallel GAMESS jobs for different
adaptivity settings

tional mode, this scenario is rather likely to happen in a
multiuser cluster environment. When preprocessing is used,
in GAMESSprep and GAMESSdyn, once the presence of
the peer GAMESS conventional calculation is detected for
the job starting second, its SCF algorithm is switched to the
direct mode. Thus, the GAMESSprep pair finishes with
one conventional and one direct SCF algorithm (dark bars
in Figure 6). The GAMESSdyn pair, however, is adapted
further to the I/O channel congestion Cio = 46% by chang-
ing the algorithm of the job started first to the direct mode.
(light-colored bars in Figure 6). Similar to the previous set
of experiments, this change happens at the sixth iteration
since the I/O congestion procedure and the control strat-
egy are taken as in the first set of the experiments. We
observe that dynamic adaptations of GAMESS calculations
bring 10% to 15% improvement in the cumulative execu-
tion time of two jobs on four and two processors, respec-
tively. We expect this improvement to hold for massively
parallel GAMESS calculations performed on the comput-
ing platforms with few I/O channels, which are requested
simultaneously by many GAMESS processes.

5 Conclusions and future work

The main contribution of this work is to demonstrate
the adaptive capabilities of GAMESS, a large-scale paral-
lel legacy code, to dynamic changes in the vital system re-
sources. In particular, we considered the effect of the disk
I/O channel congestion on the conventional SCF algorithm



when GAMESS was executed with and without adaptive
features. As the result of adaptations, the SCF algorithm
mode may be switched dynamically based on the current
state of the multiuser computing environment. This switch-
ing as well as the analysis of system parameters and of the
peer GAMESS jobs are performed by the NICAN middle-
ware that is tightly integrated with GAMESS and controls
the adaptation process. It has been observed that dynami-
cally adaptive GAMESS calculations may be several hun-
dred percent faster than non-adaptive ones. Dynamic adap-
tations of GAMESS also proved beneficial in all the test
cases when I/O has been used by other applications, and
thus switching of the SCF algorithm mode only once, at
start-up, was insufficient.

Although our tests do not cover all the possible
GAMESS calculations which use the SCF algorithm, the
obtained results already indicate that GAMESS benefits
considerably from an application-level middleware that fa-
cilitates its parallel execution. In the future, we envision
to apply similar technique for post Hartree-Fock and non-
SCF calculations as well as to develop multiple adaptation
control strategies suitable for many GAMESS calculations.
The obtained results may also be extended to various types
of heterogeneity in computing platforms.

We envision that the proposed GAMESS-NICAN in-
tegration model may be easily reused, with only a few
application-specific changes, for dynamic adaptations of a
wide class of HPC applications. In particular, it may be
most suitable for the applications trading heavy I/O for ex-
tra computations in an iterative fashion. Such an algorith-
mic trade-off may be readily exploited within the integra-
tion model at the run-time.

References

[1] B.M. Bode and M.S. Gordon. Macmolplt: a graphi-
cal user interface for GAMESS Journal of Molecular
Graphics and Modeling, 16, 133-138 (1998).

[2] X. Chen, D. Turner. Efficient Message-Passing within
SMP Systems. Recent Advances in Parallel Virtual
Machine and Message Passing Interface, 10th Euro-
pean PVM/MPI conference, Venice, Italy, pg 286-293
(October 2003).

[3] F. Jensen. Introduction to Computational Chemistry.
Wiley, Chester UK, 1999

[4] W. D. Norcott and D. Capps. Iozone Filesystem
Benchmark. http://www.iozone.org

[5] R. M. Olson, M. W. Schmidt, M. S. Gordon, A. P.
Rendell. Enabling the Efficient Use of SMP Clus-
ters: The GAMESS/DDI Model, Proceedings of

the 2003 ACM/IEEE conference on Supercomputing,
p.41, November 15-21, 2003

[6] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. El-
bert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Mat-
sunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis,
J.A. Montgomery. General Atomic and Molecular
Electronic Structure System. Journal of Computa-
tional Chemistry, 14, 1347-1363(1993).

[7] M. Sosonkina. Adapting Distributed Scientific Appli-
cations to Run-time Network Conditions. In J. Don-
garra, K. Madsen and Jerzy Wasniewski, editors, Ap-
plied Parallel Computing, State of the Art in Scientific
Computing, 7th International Workshop, PARA 2004,
Revised Selected Papers, volume 3732 of Lecture
Notes in Computer Science, pages 745–755. Springer,
2006.

[8] M. Sosonkina, S. Storie. Parallel performance of an
iterative method in cluster environments: an experi-
mental study. In Proceedings PMAA 2004, Marseille,
October 2004.

[9] S. Storie. Aspects of Communication Subsystem
Analysis for Distributed Scientific Applications. Mas-
ters Thesis, University of Minnesota Duluth, May
2004.

[10] E.H. White, F. Capra, W.D. McElroy. The Structure
and Synthesis of Firefly Luciferin J. Am. Chem. Soc.,
83(10), 2402-2403(1961).

[11] N. Ustemirov, M. Sosonkina, M.S. Gordon, M.W.
Schmidt. Concurrent Execution of Electronic Struc-
ture Calculations in SMP Environments. In Proceed-
ings HPC 2005, April 2005.

[12] N. Ustemirov, M. Sosonkina. Efficient Execution
of Parallel Electronic Structure Calculations on SMP
Clusters. Minnesota Supercomputing Institute Tech-
nical Report umsi-2005-227, University of Minnesota,
2005


