What can *in vitro* digestion models add to human risk assessment of contaminated soil ?

History in vitro digestion models in soil

 Closer look at *human* risk assessment methodology

- Contaminant levels above the intervention values
- Especially the case for lead in the Netherlands
- For PAH's in countries like Denmark and Sweden
- Due to incorrect or too stringent assumptions in risk assessment ?

Risk assessment methodologies

CSOIL applied for intervention values and human risk assessment comparable to other european models

SUS site specific remediation urgency system (ecotox, human tox, risk of migration) applied for site specific risk assessment

Both used for Dutch Soil Protection Act

Otte PF et al. (2001) RIVM-report 711701021

CSOIL

2004 Bioaccessibility and Bioavailability Workshop/Adriënne Sips

rivm

Present/future Dutch policy

In 2023 all remediaton actions finished Tempo is by a factor 4 too slow (risk assessment)

Policy makers try to overcome these hurdles by: More regional responsibility Cost efficient: Fitness for use, *in vitro* models New tiered approach instead of SUS/CSOIL

Human risk assessment in CSOIL

- One of the routes of exposure is ingestion
 oral bioavailability (F_{soil})
- F_{soil} is assumed to equal F from matrices studied in toxicity studies underlying Reference Dose (RfD)
- CSOIL does not assume 100% F from soil
- Relative F is assumed to equal 100% in CSOIL

Bioavailability - our definition -

rivm

Relative F

$\mathbf{F} = \mathbf{F}_{\mathbf{b}} \mathbf{x} \mathbf{F}_{\mathbf{a}} \mathbf{x} \mathbf{F}_{\mathbf{h}}$

- F_a and F_h are supposed to be compound specific and not depending on matrix of ingestions;
- information on F_a x F_h can be derived from studies using drinking water or olive oil as matrix
- Relative F is described by bioaccessibility from certain soil sample compared to bioaccessibility from matrix used in RfDstudies

In vitro digestionmodel

duodenal juice +bile

BARGE = Bioavailability Research Group Europe

Aim:

Comparison of *in vitro* digestion models (5) - round robin studies Gaining insight in critical factors in those models - factorial designs

Comparison with *in vivo* data (from Maddeloni *et al.*) - one study in man available

Development: more participants also outside of Europe experiences from BARGE serve as input for ISO guideline

Oomen et al. 2002 Environ. Sci. Technol., Maddeloni et al. 1998 Environ. Health Perspect.

Bottlenecks BARGE

- financing
- only metals studied
- only one solid <u>human</u> in vivo study performed for validation

BARGE - wishes for the future

 New round robin studies, based on factorial design yield

- insight in factors influencing results of bioaccessibility tests

- better interpretation of existing data
- New round robin studies for organic compounds, based on factorial design yield

- insight in factors influencing results of

bioaccessibilty tests concerning organic compounds

- better interpretation of existing data

BARGE - wishes for the future

- New *in vivo* studies in man for various soil types and for organic as well as inorganic compounds yield
 - sound proof for vitro validation
 - better interpretation of existing data
- Better interaction between european and american/canadian groups specialized in bioaccessibility testing (e.g. annual workshop ?) yield
 - collaboration in research (shared research programme?)
 - bringing together various expertises involved

Description five digestion models

- (BGS, UK): static gastric model
- (Bochum, Germany): static gastrointestinal model
- In vitro digestion model (RIVM, NL): static gastrointestinal model
- (Ghent University, B): static gastrointestinal model
- (TNO, NL): dynamic gastrointestinal model

Table: Characteristics in vitro digestion models

	SBET	DIN	RIVM	SHIME	TIM
pH stomach	1.5	2.0	1.1	4.0	5.0 decreasing to
					2.0 in 90 min
Incubation	1 h	2 h	2 h	3 h	Gradual secre-
time stomach					tion at 0.5 ml/min
Solid-to-fluid	1:100	1:50	1:38	1:2.5	1:30
ratio stomach					
pH intestine	-	7.5	5.5	6.5	6.5-7.2
Incubation	-	6 h	2 h	5 h	Gradual secre-
time intestine					tion at 1 ml/min
Conc bile	-	4.5 g/l	0.9 g/l	1.5 g/l	Variable
Solid-to-fluid	-	1:100	1:98	1:4	1:51
ratio intestine					
Separation	0.45 μm	Centrifu-	Centrifu-	Centrifu-	Hollow fiber
chyme and	filter	gation	gation	gation	membrane
pellet		7000g	3000g	7000g	

Results

rivm

Bioaccessibility of As, Cd, and Pb after digestion of Montana 2711 (n=3)

	Bioacc As (%)	Bioacc Cd (%)	Bioacc Pb (%)
SBET	59 ± 2	99 ± 4	90 ± 2
DIN*	50 ± 1	79 ± 8	68 ± 2
DIN-WM*	41 ± 2	45 ± 3	46 ± 2
RIVM	59 ± 1	40 ± 2	11 ± 2
SHIME	10 ± 0.4	6 ± 0.3	3 ± 0.3
TIM	50 ± 1 (n=2)	58 ± 1 (n=2)	$17 \pm 3 (n=2)$

* DIN and DIN-WM represent a DIN digestion with and without milk powder, respectively.

Other soils: Flanders, Oker 11, Bunker Hill

Oomen et al. 2002, Environ. Sci. Technol. 36, 3326-3334.

Bioaccessibility and organic matter content

SUS new style offers

- Site specific risk assessment
- When soil ingestion is the most important route of external exposure, then determining *relative* F can be beneficial

 e.g. not beneficial for pesticides, DDT, DDE,
 dioxines
 e.g. beneficial for PAH's except naphtalene or dibenz(a,h)anthracene

Lijzen et al. RIVM report 711701 023 Technical evaluation of the Intervention Values for Soil/sediment and Groundwater. 2001

RIVM colleagues involved

Frank Swartjes, PhDLab for Ecological Risk AssessmentJohannes LijzenLab for Ecological Risk Assessment

Menno Duits Lab for Food and Residue Analyses

Agnes Oomen, PhD Centre for Substances and Integrated Risk Assessment

Cathy Rompelberg, PhD Centre for Substances and Integrated Risk Assessment

Adrienne Sips, PhD Centre for Substances and Integrated Risk Assessment

