Testing (DRAFT)

Laura Reid, Expression Analysis Paul Wolber, Agilent Natalia Novoradovskaya, Stratagene Reinhold Mueller, Stratagene Garry Miyada, Affymetrix

Testing Platforms

Three Platforms:

- 1. One-Color Microarrays One biotin-labeled target per hybridization Multiple probes per transcript (e.g. Affymetrix)
- 2. Two-Color Microarrays

Two fluorescent-labeled (Cy3 & Cy5) targets per hybridization Single probe per transcript (e.g. Agilent)

3. Quantitative RT-PCR SYBR green, single tube procedure

> Amersham? ABI? Spotted? Alternative RT-PCR Methods?

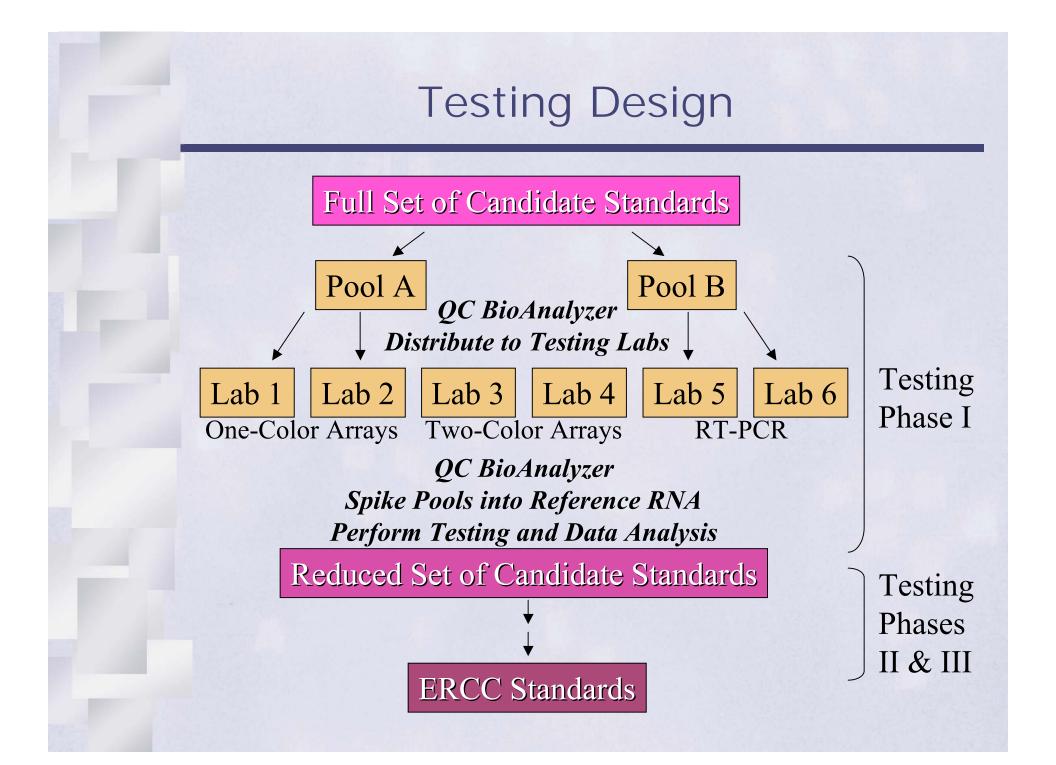
Testing Considerations

Common Requirements All Platforms If dilution series required in RT-PCR, then include it in array testing.

Expense

Dilution series are expensive. Useful to have quick screen to reduce the set of candidate standards.

Quality Checks


Frequently confirm the quality of all standards. Use Agilent BioAnalyzer before and after transport of pools.

Complexity

Test standards in complex RNA background. Spike pools of standards into human universal reference RNA.

Platform Differences

Include reverse-fluor hybridizations in two-color arrays.

- Phase I Replicates of Two RNA Pools Quick Screen for:
 - Reproducibility
 - Accuracy

Phase II – Series of Staggered Dilution Pools
 <u>Thorough Review for:</u>

- Sensitivity
- Specificity
- Accuracy
- Phase III Proposed Final Pools

Microarray Design

- Novel probes/probe sets complementary to candidate standards
 - Restrict to oligonucleotide arrays, not cDNA
 - Useful to test multiple probes/probe sets per transcript
 - Include replicate spots of same probe
 - Represent 5' and 3' regions of the transcript
- Established probes/probe sets complementary to genes expressed in the complex RNA background

Ideal Array = human catalog array modified to contain multiple probes/probe sets for each candidate standard

RT-PCR Primer Design

- Amplicon lengths between 100-200 bp Enables same primer sets can be used in SYBR green or target-based detection systems
- Two sets of primers per standard Represent both the 5' and 3' regions of standard
- Primers span intron/exon junctions, when possible Avoid amplifying genomic DNA
- Optimized for concentration and ratio
 Identifies fluorescent signal from primer dimers or non-specific amplicons

Phase I –	Repli	cates of	of Two RNA Pools
Candidate	Pool A	Pool B	Quick Screen for:
Tx 01	[High]	[Low]	Dome du oibility
Tx 02	[Low]	[High]	- Reproducibility
 Tx 03	[High]	[Low]	- Accuracy
Tx 04	[Low]	[High]	

All candidate transcripts at:

- Same two concentrations (Not a test of dynamic range)
- Same relative abundance between pools.

Both pool A and pool B have same quantity of RNA.

Phase I Testing

One-Color Arrays

Spike pools into human universal reference RNA. Hybridize four replicates of Pool A. Hybridize four replicates of Pool B.

Two-Color Arrays

Spike pools into human universal reference RNA. Hybridize two replicates with Cy5-Pool A and Cy3-Pool B. Hybridize two replicates with Cy3-Pool A and Cy5-Pool B.

RT-PCR

Select "normalizer" transcript & determine its copy number. Design and optimize two primer sets per transcript. Spike pools into human universal reference RNA. Run duplicate RT-PCR reactions for each primer set. Determine copy number for transcript by comparing to "normalizer".

Four Measures per Pool. Compare Pool A / Pool B.

Phase I – Replicates of Two RNA Pools

Candidate	Pool A	Pool B
Tx 01	[High]	[Low]
Tx 02	[Low]	[High]
Tx 03	[High]	[Low]
Tx 04	[Low]	[High]

Quick Screen for:

- Reproducibility
- Accuracy

Phase II – Series of Staggered Dilution Pools

Candidate	Pool A	Pool B	Pool C	Pool D
Tx 01	0	0.1	1	10
Tx 02	0.1	1	10	0
Tx 03	1	10	0	0.1
Tx 04	10	0	0.1	1

Thorough Review for:

- Sensitivity
- Specificity
- Accuracy

Transcript concentrations 0.1 – 1,000 copies per cell Expression ratios 0.01 to 100 (if resources permit)

Phase I – Replicates of Two RNA Pools

Candidate	Pool A	Pool B
Tx 01	[High]	[Low]
Tx 02	[Low]	[High]
Tx 03	[High]	[Low]
Tx 04	[Low]	[High]

Quick Screen for:

- Reproducibility
- Accuracy

Phase II – Series of Dilutions (Latin Squares)

Candidate	Pool A	Pool B	Pool C	Pool D
Tx 01	0	0.1	1	10
Tx 02	0.1	1	10	0
Tx 03	1	10	0	0.1
Tx 04	10	0	0.1	1

- Thorough Review for:
- Sensitivity
- Specificity
- Accuracy

 Phase III – Proposed Final Pools Confirm performance in multiple labs under a variety of conditions.

Outstanding Issues

- BioAnalyzer may not be sufficient for pool QC. Presence of yeast tRNA carrier Pool of 21 Class A transcripts 700-800 nt
- No distinction between Class A vs. Class B or purified vs. encapsulated standards.
- Inconsistent with 4 pools defined for kit 2.
 Pool 1 = 21 Class A Pool 2 = 21 Class A
 Pool 3 = 21 Class B Pool 4 = 21 Class B
- Need agreement with Acceptance Criteria. Test sensitivity from 0-10,000 copies and ratios from 1:1 to 1:50 Define as "Molecules mRNA/100,000" or "parts per million"
 - Analysis methods not defined.

Reproducibility = Correlation Coefficient at probe level or Percent Signal Change at probe set level