CURRENT MINING OF OLIVINE AND SERPENTINE

Deborah A. Kramer U.S. Geological Survey Reston, VA

Mg-rich ultramafic occurrences in the United States

- Includes dunite, perioditite, and serpentinite
 - Dunite and perioditite may be mined for olivine
 - Olivine is produced only in North Carolina and Washington
 - Serpentinite may be mined for asbestos content
 - Only one asbestos mine in the United States, in California

 Serpentinite also may be mined and used as crushed stone, mainly for roadbed aggregate

Properties of olivine (Mg,Fe)₂SiO₄

- Solid solution of forsterite (Mg₂SiO₄) and fayalite (Fe₂SiO₄); substitution of Fe²⁺ with Mg²⁺ in crystal structure
- Water-free and basic
- High melting point (1,760° C)
- High magnesium content
- Excellent heat storage properties
- High relative density (3.3 g/cm³)
- Stable chemical composition
- Hard-grained (Moh's hardness 6.5-7.0)

Specifications of commercial olivine

MgO45%-51%SiO240%-43%Fe2O37%-8%CaO0.2%-0.8%Al2O3 + TiO21.8%-2%

Price range: \$50-\$110 per short ton, depending on grade and size

U.S. olivine at a glance

- U.S. production is less than 100,000 metric tons annually
- Imports, almost exclusively from Norway, average between 150,000 and 200,000 metric tons annually (2000—201,000 metric tons)
 - More than half goes to Bethlehem Steel, most likely for use as a slag conditioner
- Exports, mainly to South America, are less than 1,000 metric tons annually
- Consumption is estimated to be between 225,000 and 250,000 tons annually

Uses of olivine

- Slag conditioning
- Foundry sand
- Refractories
- Abrasives
- Soil conditioning
- Heat storage

Uses of domestically produced olivine in 2000

- Foundry uses—87%
- Refractory applications—7%
- Sandblasting and other abrasive uses—6%

U.S. producers of olivine

- Unimin Corp.
 - Mines in North Carolina and Washington
 - Processing plants in Indiana, North Carolina, and Washington
- Olivine Corp.
 - Mine and plant in Washington

Unimin Corp.

- North Carolina
 - Reserves in the Smokey Mountains total about 200 million metric tons
 - Material is sorted to remove unaltered material
- Washington
 - Reserves in the Cascade Mountains total about 1,700 million metric tons
 - Processes crude olivine produced by Olivine Corp.
- Indiana
 - Processes olivine imported from Norway into foundry and aggregate grades

Olivine Corp.

 Mostly produces refractory-grade material, but produces small quantity of foundrygrade material

Olivine production, by country, (Thousand metric tons) ^(e)

	1995	1999	
Norway	5,850	6,300	
Japan	900	900	
Spain	500	500	
United States	90	90	
Italy	50	50	
Others	40	65	
Total	7,430	7,945	
Note: (e) estimate			
Source: Industrial Minerals			

Serpentinite and/or ultramafic rock are known to be present in 44 of California's 58 counties. These rocks are particularly abundant in the counties of the Sierra Nevada foothills, the Klamath Mountains, and Coast Ranges.

Only operating asbestos mine in the United States

Source: California Department of Conservation, Division of Mines and Geology

U.S. asbestos at a glance

- Production in 2000 was about 5,300 metric tons
- Imports were about 14,600 metric tons
- Apparent consumption was estimated to be 14,600 metric tons
 - Essentially all the asbestos used was chrysotile
 - Principal end uses were roofing products (62%), gaskets (22%), and friction products (12%)

Asbestos production, by country (Thousand metric tons)

and the second second second second second	1995	1999		
Russia (*)	800	683		
Canada	524	311		
China	447	329		
Brazil	210	188		
Kazakhstan	161	139		
South Africa (1)	88	18		
Others	470	330		
Total	2,700	2,000		
Notes: (1) South A frican production includes crocidolite: (*) estimate				

Source: British Geological Survey, World Mineral Statistics 1995-99

Crushed stone

- USGS does not report serpentinite separately; it is included in "miscellaneous stone"
 - Total quantity of miscellaneous stone reported in 1999 was slightly less than 34 million metric tons
 - Average value was estimated to be between \$4 and \$5 per metric ton for material used as roadbed aggregate

Parts of Vermont and New Hampshire

Parts of New Jersey, Delaware, Pennsylvania, and Maryland

Parts of Maryland and Virginia

Parts of Virginia and North Carolina

Unimin's olivine operations

Parts of North Carolina and South Carolina

Parts of North Carolina, South Carolina, and Tennessee

Parts of Georgia and Alabama

Potential resource issues

• Economic

- Distance from deposit to power plant (transportation costs)
- Competition from other end-use applications (aggregate vs. olivine)
- Mining costs

Potential resource issues

- Environmental
 - Potential for asbestos occurrence in deposit
 - Disposal of magnesite and silica residue
 Minor and trace mineral concentration
 Land reclamation

Potential resource issues

- Urbanization and development in the area
- Public perception

