One NASA
 NMSA. Propritary Miletial

NASA Reliability/Quality Data Analysis

High Precision Voltage Reference Part Type

Preliminary Release for NASA Distribution Only
Commercial Off-The-Shelf
Plastic Encapsulated Microcircuits
Evaluation for NASA Space Requirements

NASA NEPP Task Number 100774 1.J.49.1

Contents:

- Burn-In Data Analysis; slides 3-39
- FIT Data Analysis; slides 30-36
- Initial Electrical Data Analysis; slides 37-39
- Operating Life Data Analysis; slides 40-41
- Incoming Quality Analysis; slides 42-47
- Summary; slides 47-53

Vendor A Burn-In Data Reliability Analysis

"High Precision Voltage Reference"

Preliminary Data Released for NASA Distribution Only

The purpose of this test is to electrically and thermally stress the parts to identify/accelerate potential failure modes due to weak devices which can then be eliminated

Introduction

This reliability analysis includes three high temperature performance specifications, VRLDSI A, VRLDSI B, and SHUNT REG which showed significant degradation after a +125 C burn-in preconditioning for 168 hrs . Other part parameters measured at high temperature showed acceptable performance and stability.

This report does not include failure analysis as to the root cause such as design, process, or assembly faults.

Various plots and graphs are shown that demonstrate reliability and data sheet electrical performance.

[^0]
ATE Electrical Test Conditions Used:

"LOAD REGULATION, SERIES MODE" and "LOAD REGULAION, SHUNT MODE" are listed below.

Series mode is tested with the input at 5.0 V . The difference in output voltage with 0 MA and 10 MA sink current is measured. The "A" test is at 2.5 V out. The "B" test is with 3.0 V out. Accuracy is $+/-200 \mathrm{uV}$.

Shunt mode is tested with the input at 2.5 V . The difference in output voltage with 1 MA and 10 MA is measured.

For all tests the input is bypassed with 1 UF to ground.

DEFINING AN EFFECTIVE BURN-IN

If $\mathrm{F}_{\mathrm{b}}(\mathrm{t})=$ failure distribution (all failures) before burn-in

And $\mathrm{F}_{\mathrm{a}}(\mathrm{t})=$ failure distribution (all failures) after burn-in

And τ is the burn-in time

Then $\mathrm{F}_{\mathrm{a}}(\mathrm{t})=\left[\mathrm{F}_{\mathrm{b}}(\mathrm{t}+\tau)-\mathrm{F}_{\mathrm{b}}(\tau)\right] /\left[1-\mathrm{F}_{\mathrm{b}}(\tau)\right]$
For burn-in to be effective, F_{a} must be

$$
\begin{aligned}
& \lambda=\left(\frac{\gamma}{\mathrm{n} \times \mathrm{t} \times \mathrm{Kt} \times \mathrm{K} v}\right) \times 1 \mathrm{E} 9[\mathrm{fit}] \\
& \mathrm{Kt}=\exp \left[\frac{\mathrm{Ea}}{\mathrm{k}}\left(\frac{1}{\mathrm{~T} 1}-\frac{1}{\mathrm{~T} 2}\right)\right] \\
& \mathrm{Kv}=10^{\mathrm{B}}(\underline{2-t 1)} \\
& \lambda \text { : Falure rate } \\
& \text { r. Refiadity moeficient } 1600 \text { reiabrity level } \\
& \text { is used) (See Table 1) } \\
& \text { n: Number of tests } \\
& t \text { Test time } \\
& \text { Kt Temparat.re acceleration coefficient } \\
& \text { Ex Adivaion energy } \\
& \text { k: Beltzmann's constant }(8.617 \mathrm{E}-5 \mathrm{e} / \mathrm{V} / \mathrm{K} \\
& \text { T1: Ambient temperaure (aboclue temperature) } \\
& \text { T2: Test temperaure (abrolue temperature) } \\
& \mathrm{Kr} \text {. Voltaçe acceleration coeficient } \\
& \text { B:Acceleation factor } \\
& \text { EL: Electric fied stength of oxide filn at } \\
& \text { raed voltage (MV/cm) } \\
& \text { E2: Electric fidd sTength of cwide filn } \\
& \text { during test (MV/am) }
\end{aligned}
$$

Table 1

Failure Rate Calculation superior to F_{b}

This plot demonstrates that the parameter Load Regulation Series Mode Sinking parameter has undergone a degradation in the performance after a +125 C burn-in preconditioning. Parts vary in the amount of degradation. Three different date codes are included in the samples measured. Similar type results were found with parameters VRLDSI B and Shunt Regulation.

This plot demonstrates that the parameter Load Regulation - Series Mode Sinking parameter has undergone a degradation in the performance after a +125 C burn-in preconditioning. Recorded values are sorted in ascending order. The number of parts failing the 1.5 MV upper limit has increased after burn-in. Similar type results were found with parameters VRLDSI B and Shunt Regulation.

"High Precision Voltage Reference" Measured Performance vs Burn-In

VRLDSI Variation With Burn-In Measured At 125C Per Manufacturers Specification				
		Time $=0$ Hrs \square	Time $=168$ Hrs \square	Max value measured Max delta observed=31.73\% (total population)
	2.25			
	2.1			
	1.95			
	1.8			
	1.65			Max Data Sheet Limit @ 125C
	1.5			
	1.35			
	1.2			Med value measured
	1.05		\cdots	Med delta obseved=16.72\%
	0.9			(total population)
MV	0.75			
	0.6			
	0.45			
	0.3			
	0.15			
	0			Min value measured
				Min delta observed=0.32\% (total population)

NASA PROPRIETARY MATERIAL

"High Precision Voltage Reference" Measured Performance vs Burn-In

VRLDSI A @+125C

Parametric Change vs Burn-In

"High Precision Voltage Reference" Measured Performance vs Burn-In

Statistical Results of the t-test between date codes

 0112 and 0122:| Mean | 0.197402 |
| :--- | ---: |
| Variance | 0.002336 |
| Observations | 75 |
| Pearson Correlation | 0.112825 |
| Hypothesized Mean Difference | 0 |
| df | 74 |
| t Stat | 7.19907 |
| $P(T<=t)$ one-tail | $2.09 \mathrm{E}-10$ |
| t Critical one-tail | 1.665708 |
| P(T<=t) two-tail | $4.17 \mathrm{E}-10$ |
| t Critical two-tail | 1.992544 |

These two date code are statistically different with a 95\% confidence level!!

Inital Value vs \% Change with Burn-In

"High Precision Voltage Reference"

 VRLDSI A@+125C
X Variable 1 Line Fit Plot

\% Change(Y) vs Pre-Burn-In Value (X in MV) With Linear Regression Prediction

NASA PROPRIETARY MATERIAL
"High Precision Voltage Reference" Measured Performance vs Burn-In
VRLDSI A Normal Probability Plot

NASA PROPRIETARY MATERIAL

"High Precision Voltage Reference" Measured Performance vs Burn-In

VRLDSI A Vout=2.5V@ 10ma Pre vs Post Burn-In @25C

All parts passed data sheet specification for this parameter.

NASA PROPRIETARY MATERIAL

"High Precision Voltage Reference" Measured Performance vs Burn-In

Vout=2.5V no load Pre vs Post Burn-In @ 25C

29 parts failed minimum data sheet specification for this parameter.

NASA PROPRIETARY MATERIAL

"High Precision Voltage Reference" Measured Performance vs Burn-In

VRLDSI B Vout=3.0V @ 10 ma Pre vs Post Burn-In @25C

All parts passed data sheet specification for this parameter.

NASA PROPRIETARY MATERIAL

"High Precision Voltage Reference" Measured Performance vs Burn-In

Vout=3.0V no load Pre vs Post Burn-In @25C

29 parts failed minimum data sheet specification for this parameter.

NASA PROPRIETARY MATERIAL

"High Precision Voltage Reference" Measured Performance vs Burn-In

Examples of 4 Different Parameters by Serial Number That Showed More Than 10% Change with Burn-In (Parameters Were Measured at 25C).

Reliability Plot for High Precision Reference Voltage - VRLDSI A

Post BI High Temperature Reliability Performance vs Degradation

- COTS PEM
- ss $=250$
- Single vendor
- BI precondition (time/temperature)

This plot demonstrates what reliability is expected with time depending on the $\%$ of performance degradation accepted by the user, for the intended application(s).

NASA PROPRIETARY MATERIAL

Reliability Plot for VRLDSI A at 125C, 85C and 25C

Post BI Temperature Reliability Performance vs 10% Degradation

- COTS PEM
- $\mathrm{ss}=250$
- Single vendor
- BI precondition (time/temperature)

This plot demonstrates that better performance reliability can be expected at lower operating temperatures after BI precondition.

NASA PROPRIETARY MATERIAL

Reliability Plot for High Precision Reverence Voltage - VRLDSI B

Post BI High Temperature Reliability Performance vs Degradation

- COTS PEM
- $\mathrm{ss}=250$
- Single vendor
- BI precondition (time/temperature)

This plot demonstrates what reliability is expected with time depending on the $\%$ of performance degradation accepted by the user, for the intended application(s).

Reliability Plot for VRLDSI B at 125C, 85C and 25C

Why is $\mathrm{R}(\mathrm{t})$ similar at 85 C and 25 C ??
\downarrow

Reliability Plot for High Precision Reference Voltage - SHNT REG

Post BI High Temperature Reliability Performance vs Degradation

- COTS PEM
- $\mathrm{ss}=250$
- Single vendor
- BI precondition (time/temperature)

This plot demonstrates what reliability is expected with time depending on the $\%$ of performance degradation accepted by the user, for the intended application(s).

Reliability Plot for SHNT REG at 125C, 85C and 25C

Post BI Temperature Reliability Performance vs 10% Degradation

- COTS PEM
- $\mathrm{ss}=250$
- Single vendor
- BI precondition (time/temperature)

This plot demonstrates that better performance reliability can be expected at lower operating temperatures after BI precondition.

Assumption:
Linear function for $\log \%$ drift versus $\log (\mathrm{t})$

From BI data VRLDSI A

2. Failure distribution plot

To Reliability Plot

 gradation on VRLDSI A, 125 C

10% degradation on VRLDSI A, 125C 20% degradation on VRLDSI A, 125C 30% degradation on VRLDSI A, 125C

Failure Distribution for VRLDSI B

Failure Distribution for SHNT REG

-- 10\% degradation on SHNT REG, 125C
$\rightarrow-20 \%$ degradation on SHNT REG, 125C
$\square-30 \%$ degradation on SHNT REG, 125C

Vendor A FIT Burn-In Data Reliability Analysis

"High Precision Voltage Reference"

Preliminary Data Released for NASA Distribution Only

The purpose of this test is to determine the failure rate as a point estimate on a portion (sample) of the population using established confidence intervals.

FIT 115C Static Burn-In Data, $\mathbf{s s}=22$, Vout at 2.5v, 25C

FIT 115C Static Burn-In Data, $\mathbf{s s}=22$, Vout at 2.5v, 25C

 Delta Performance

FIT 115C Static Burn-In Data, $\mathbf{s s}=\mathbf{2 2}$, Vout at 2.5v, 25C

Delta Performance

FIT 1500 hr 115C Static Burn-In Data, $\mathrm{ss}=\mathbf{2 2}$, Vout at 2.5 v \& 3.0v, 25C

.	VOUT 2.5	VOUT 3.0
MIN	2.49874	2.99869
MAX	2.50126	3.00131

Accuracy : +/-0.0015\%

Reject Summary

VOUT 2.5

sn333,337
sn333,337
sn337

VOUT 3.0
sn333,337,335,340
sn333,337
sn 333,337

There are 2 rejects from date code 0127 and no rejects from date codes
0112 and 0122 also sampled.

FIT 115C Static Burn-In Calculations

FIT CALCULATION:

$\mathrm{Fr}=\mathrm{Nf} / \mathrm{Ndt}$

$\mathrm{Nf}=$ number of failures $=2$
$\mathrm{Ndt}=$ number of device hrs at test temperature of $125^{\circ} \mathrm{C}=33000$
$\mathrm{Ndt}=\mathrm{Nd} \times \mathrm{Nh} x \mathrm{At}=864600$
$\mathrm{Nd}=$ number of devices tested $=22$
$\mathrm{Nh}=$ number of hrs of testing $=1500$
At $=$ acceleration factor between $\mathrm{Tj}=125^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}=26.2$
Using Chi squared table, $\mathrm{Fr}=\chi 2(\mathrm{x}, \mathrm{v}) / 2 \mathrm{Ndt}$ where
$\chi 2=6.22(60 \% \mathrm{CL})$ and $\chi 2=10.64(90 \% \mathrm{CL})$
$\mathrm{x}=(1-\mathrm{CL})$ and $\mathrm{v}=(2 \mathrm{~N}+2)$ degrees of freedom, where N is the number of rejects
At $60 \% \mathrm{Fr}=3.589 \times 10-6$ and at $90 \% \mathrm{Fr}=6.153 \times 10-6$

Sample Size: 22
Test time: 1500 hrs
Burn-in temperature: $115^{\circ} \mathrm{C}$
Burn-in condition: Static
Rejects: test lab reported two rejects

Activation Energy (Ea) used is 0.7 eV

Base plate ASSUMED is $70^{\circ} \mathrm{C}$ Std outgoing lot FIT is UNKNOWN (a) 90% CL

NASA FIT Findings:

FIT $=3589$ for 60%
FIT $=6153$ for 90%

Vendor A Published FIT Data

Life-Test Data Summary by Process Technology								
Process Technology	Brief Technology Description	S-Size	Qty Fail	Total Device Hrs	FIT Rate $55^{\circ} \mathrm{C}$ $60 \% \mathrm{CL}$	HTTF $55^{\circ} \mathrm{C}$ 60\% CL	FIT Rate $55^{\circ} \mathrm{C}$ 90%	$\begin{gathered} \text { HTTF } 55^{\circ} \mathrm{C} \\ 90 \% \mathrm{CL} \end{gathered}$
Bicmos	Bipolar + CMOS with minimum MOSFET feature size greater than 0.6 um	26980	12	2763317240	5	192314946	7	146975239
$\begin{aligned} & \text { Bipolar } \\ & <2.5 \mathrm{um}^{2} \end{aligned}$	Minimum emitter area $<2.5 \mathrm{um}^{2}$	9699	1	1158723500	2	572969297	3	297894038
$\begin{aligned} & \text { Bipolar } \\ & >2.5 \mathrm{um}^{2} \end{aligned}$	Minimum emitter area $>2.5 \mathrm{um}^{2}$	12425	0	1038141660	1	1132983629	2	450858613
CMOS 0.18 um	Minimum MOSFET gate length 0.18 um	878	0	105997500	8	115681161	22	46034070
CMOS 0.25 um	Minimum MOSFET gate length 0.25 um	3906	2	453030500	7	145885765	12	85119010
CMOS 0.35 um	Minimum MOSFET gate length 0.35 um	5418	0	595412500	2	649807865	4	258584030
CMOS 0.5 um	Minimum MOSFET gate length 0.5 um	6754	3	663080860	6	158811747	10	99251998
cmos 0.6 um	Minimum MOSFET gate length 0.6um	16516	5	1468609880	4	233412066	6	158346320
$\begin{gathered} \text { CMOS } 0.8- \\ 2.0 \mathrm{~m} \end{gathered}$	Minimum MOSFET gate length $0.8 \cdot 2.0 \mathrm{um}$	3305	0	339104860	3	370084614	7	147271180
CMOS $>2.0 \mathrm{um}$	Minimum MOSFET gate length $>2.0 \mathrm{um}$	3729	1	316918840	6	156711040	12	81476067

Vendor A Initial Electrical Data (incoming inspection) Reliability Analysis

"High Precision Voltage Reference"

Preliminary Data Released for NASA Distribution Only

The purpose of this test is to determine if the vendor's outgoing testing and or sampling plans guarantee the published data sheet specifications and performance over temperature.

Summary of Initial Electrical Rejects at 25C Testing (three date codes were 100% tested to data sheet at incoming)

Rejects: sn261 sn264 sn266 sn282 sn283 sn285 sn307 sn313 sn314 sn319 sn323 sn327 sn334-total of $13 / \sim 250$

These rejects failed data sheet spec for Vout either at 2.5 v or 3.0 v and were all from date code 0127 . There were no rejects from date codes 0122 and 0112 .

Note: Per vendor's website, the "Outgoing Quality Level" listed for electrical ppm = 0 for this specific part number and the majority for all other parts is $\mathbf{0} \mathbf{p p m}$ or no greater than 1.4 ppm. Data posted for 3Q03

Vendor A Published Sampling Methodology

Samples are pulled from each lot based on either an LTPD or AOL plan. The overall FFM level is calculated using Method B of ElA Standard 554, which is summarized below. All reject types are included \– functional, parametrics and downgrades.

Calculation Method Summarized

```
\(\left.\operatorname{PPM}=\frac{\sum\left(N_{x} *\left(\frac{d_{x}}{n_{x}}\right)\right.}{\sum N_{\mathrm{X}}}\right) * 10^{6}\)
    \(N_{X}=\) Total Quantity in Lot \(X\)
    \(\mathrm{n}_{\mathrm{X}}=\) Sample Quantity in Lot X
    \(d_{x}=\) Number of Rejects on the Sample \(n_{x}\)
LAR = Lot acceptance rate.
```


Vendor A Operating Life Test Data Reliability Analysis

"High Precision Voltage Reference"

Preliminary Data Released for NASA Distribution Only

The purpose of this test is to evaluate the bulk stability of the die and to generate defects resulting from manufacturing aberrations that are manifested as time and stress-dependent failures.

Vendor A Operating Life Test Data

Specification is 1.5 mV max at +125 C

$$
\mathrm{ss}=45 \mathrm{pcs} \quad \text { Shunt Regulation Drift }
$$

Long Term Stability Specification $= \pm 20 \mathrm{ppm} / 1000 \mathrm{hr}= \pm .100 \mathrm{mV} / 1000 \mathrm{hr}$

Vendor A Incoming Inspection Data Assembly/Process Quality Analysis

"High Precision Voltage Reference"

Preliminary Data Released for NASA Distribution Only

The purpose of this inspection is to evaluate the package assembly and wafer fabrication processes.

Vendor A CSAM Incoming Inspection Data Assembly Quality Analysis

"High Precision Voltage Reference"

Delamination Examples:

Vendor A X-Ray Incoming Inspection Data Assembly Quality Analysis

"High Precision Voltage Reference"

Minor wire sweep found on 3 leads for one part

Ref. Mil-Std-883, meth. 2012.6 for non-plastic, reject for slack wire within $0.002 \mathrm{in}(0.05 \mathrm{~mm})$ of another wire.

NASA Proprotary Waterial

Vendor A Outgassing Incoming Inspection Data Assembly Quality Analysis

"High Precision Voltage Reference"

SAMPLE NO.	13	14	AVGE	16	17	AVGE	18	19	AVGE	20	21	AVGE
WT. LOSS \%	0.42	0.42	0.42	0.29	0.26	0.28	0.41	0.36	0.39	0.32	0.44	0.38
WATER VAPOR RECOVERED WVF, \%	0.20	0.15	0.17	0.13	0.07	0.10	0.24	0.15	0.20	0.09	0.13	0.11
(WT. LOSS - WVR) \%	0.22	0.27	0.25	0.16	0.19	0.18	0.17	0.21	0.19	0.23	0.31	0.27
VCM \%	0.04	0.04	0.04	0.02	0.02	0.02	0.02	0.04	0.03	0.05	0.07	0.06
DEPOSIT	OPAQUE			LIGHT OPAQUE			LIGHT OPAQUE			OPAQUE		

NOTE: NASA ACCEPTANCE LEVELS ARE $\begin{aligned} \text { (WT, LOSS-WVR) } \% & =1,00 \% \mathrm{MAX} \\ & =0.10 \% \mathrm{MAX} .\end{aligned}$
All samples tested passed.

Vendor A Lead Coating Incoming Inspection Data Assembly Quality Analysis

"High Precision Voltage Reference"

Lead Coating Examination

Comments: The composition of the coating on the external package leads was determined using x-ray energy dispersive spectroscopy (EDS).

Vendor A SEM Incoming Inspection Data Process Quality Analysis

"High Precision Voltage Reference"

Worst case step coverage seen on 3 date codes is 65%

Methodology Summary:

\square A COTS PEMs high precision voltage reference part, built on a bipolar process, and encapsulated in an 8 ld SOIC package was tested and evaluated for its reliability and quality for use in NASA hardware.
\square The part under this evaluation was one of five parts selected and chosen to be evaluated by NASA.
\square A total of 250 parts per type were evaluated utilizing three different date codes to insure adequate sampling and meaningful statistics where possible.
\square Testing was conducted by an outside approved test house while all analyses/engineer reviews were conducted by JPL/NASA parts engineers, parts managers, including test and reliability specialists.
\square The analysis, findings, conclusions were solely based on the data and evidence collected and did not include any follow-up device failure analysis but did include initial destructive physical analysis.

Careful attention was given to methods, procedures, and accuracy to insure the integrity and quality of the data taken

NASA Proprotary Material

Burn-In Summary:

$\square \mathrm{A}+125^{\circ} \mathrm{C}$ dynamic burn-in was completed on 250 parts to determine the infant mortality failure rate and identify any reliability issues that are intrinsic to the die and those that are extrinsically related to the package.
\square There were no devices that failed catastrophically that is none were found to be non-functional.

A number of critical parameters for this type of device drifted outside the manufacturer's maximum rated specification and or failed to stay within the manufacturer's drift specification.
\square It was apparent that device performance degradation, as a result of the burn-in, correlated differently with the different data codes sampled.
\square Using reliability prediction methods and assuming the drift was linear with time, some devices would experience up to 30% degradation within 1000 hrs of high temperature exposure $\left(+125^{\circ} \mathrm{C}\right)$. Lowering the operating temperature would improve the reliability predictions.

Some parameters also showed degradation when operated at $+25^{\circ} \mathrm{C}$ after burn-in.

NASA Propriotary Waterial

FIT Summary:

A static burn-in was conducted on 22 samples with oven set at $+115^{\circ} \mathrm{C}$ (the low temperature was calculated for the low glass temperature of the packaged and the high junction temperature of the device) for 1500 hours to simulate what the vendor does to report FIT numbers.
\square Two serialized devices failed to meet the manufacturer's specification after FIT burn-in. All parts were tested before and after burn-in at $+25^{\circ} \mathrm{C}$ including test monitoring at 500 hours and 1000 hours.

Rejects only occurred from date code 0127 and none occurred from date codes 0112 and 0122.
\square NASA FIT calculations, using an Ea of 0.7 eV and a base temperature of $+70^{\circ} \mathrm{C}$, exceeded the manufacturer's posted FIT numbers for the device. FIT was 3589 @ $60 \% \mathrm{CL}$ and $6153 @ 90 \%$ CL with 864600 device hours accumulated and a Tj of $+125^{\circ} \mathrm{C}$.
\square Manufacture's published FIT is $2 @ 60 \%$ CL using a base temperature of +55 C and a total of 1158723500 device hours.

Operating Life Summary:

\square A dynamic operating life test was conducted on 45 samples, with oven set at $+125^{\circ} \mathrm{C}$ for 1000 hours, to evaluate the stability of the die and or robustness of the design and package assembly.

There were no occurrences of catastrophic failures or devices that failed device specification, although some parts were right on the edge of allowable limits with time progression.
\square Although parts remained in specification during the entire life test, they did not meet the manufacturer's long term stability specification for the first 1000 hours ($\pm 20 \mathrm{ppm} / 1000 \mathrm{hr}$).
\square Device performance to specifications at +125 C actually worsened within the first 418 hours (including burn-in time) and then gradually improved at the end of the 1168 hours of burn-in exposure. It appears that some annealing was occurring during the high temperature and long term exposure.

The degradation seen during the first 168 hour burn-in was shown to continue to worsen during the first 250 hours of life test and then started to show improvement. This is an important correlation for any reliability predictions.

NASA Proprotary Material

Incoming Electrical Summary:

$\square 100 \%$ incoming electrical test was performed to determine if the parts met the manufacturer's specifications across temperature.
\square There were $13 / 250$ serialized parts that failed the $+25^{\circ} \mathrm{C}$ testing for either Vout $=2.5 \mathrm{v}$ or Vout $=3.0 \mathrm{v}$.
\square All rejects came from date code 0127 . There were no rejects from date codes 0122 and 0112.
\square Note that the manufacturer's latest outgoing ppm for this part was 0 ppm using a standardized calculation method.

Manufacturing Quality Summary:

\square DPA was conducted on 22 samples to evaluate the package assembly and wafer fabrication processes.
\square Scanning acoustic microscopy inspection of the package found significant topside delamination around the die periphery and some on the top of the leadframe within the package.
\square X-ray inspection found very little evidence of wire sweep.
\square Outgassing inspection found all samples to be within specifications.
X-ray energy dispersive spectroscopy identified lead (Pb) as a component of the external lead coating along with tin (Sn).
\square SEM inspection of metal step coverage found all samples to meet specification for all three date codes.

NASA Propriotary Material

Conclusions:

\square Quality of wafer fabrication was acceptable
D Package assembly was not acceptable mainly because of delamination
\square Incoming electrical inspection was not acceptable indicating poor outgoing sampling by the manufacturer/ or not performing 100 testing.
\square Burn-in reliability was not acceptable because of part parametric drift.
\square FIT inspection was not acceptable because of two parts failing to meet specifications.
\square Life Test reliability was not acceptable because of part parametric drift.
\square Part will require full screening, qualification, and design performance evaluations prior to NASA's acceptance into any Space application.

[^0]: Reliability of a component is finding out the probability that the component will perform under it's intended operating conditions for a set period of time. A degradation failure has occurred if a parameter value drifts or degrades outside a pre-determined limit or an imposed performance application requirement(s).

