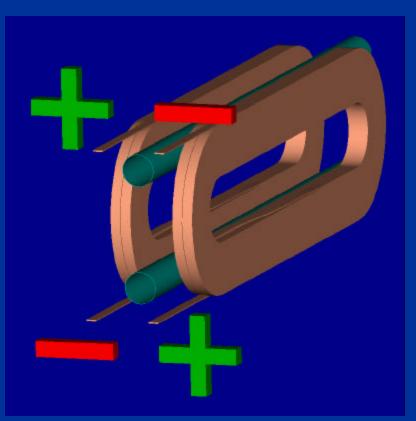
Common Coil Magnet R&D


VLHC 2000 Annual Meeting

Port Jefferson, NY October 16 - 18, 2000

Stephen A. Gourlay LBNL

Common Coil

- Features
 - It's a different approach (potential for lower cost)
 - Large bend radii (R&W)
 - Intrinsic dual-bore geometry leads to simpler support structure

R&D Goals

- Common Goal for the Common Coil
- Develop a low cost (\$ / B dl) accelerator dipole with *acceptable* field quality and aperture

Best way . . .

• Approach from several directions

Program Profiles

React and Wind, HTS, rapid-turnaround design/technology studies

React and Wind, Nb₃Sn, 11 - 12 Tesla

Wind and React, Nb₃Sn, 12 - 15 Tesla

1	\cap	1	7	n	Δ	
1	\mathbf{U}	Т	1/	U	U	

Exploring Parameter Space

Programs Address these issues

- Conductor utilization (Nb₃Sn/HTS)
- Coil Design
 - Field
 - Field Quality
 - Aperture
 - Simplicity

- Support Structures
- Fabrication/Infrastructure Development
 - Fabrication methods
 - Design tools/studies
 - Tooling/facilities

Conductor

- Advantages
 - High B_{c2} , T_c
 - Higher field magnets, thermal margin, stability, compact geometries
- Challenges
 - Strain Sensitivity and Cabling
 - A bigger challenge for HTS
 - More a fabrication issue for Nb₃Sn- not a problem up to 16 Tesla?
 - Magnetization
 - Cost

Conductor Expectations

What can we expect from conductor development program?

- Nb₃Sn
 - $J_c \le 3,000 \text{ A/mm}^2$
 - Filament Diameter ≥ 20 microns
 - Strain effects on J_c negligible up to 150 MPa (MJR)
- HTS
 - J_c cross-over with Nb₃Sn now at 14 Tesla
 - Keep working

Strain Sensitivity

- Degradation under Lorentz loads
 - Compressive stress
 - Bending stress
 - With adequate support not as big a deal as we thought for Nb₃Sn, but... Need more study on PIT and Internal Tin

e.g. at 10 T, 100 - 150 MPa, degradation of MJR material is about 10%

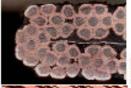
Fabrication (Cabling, Bending)
– R&W

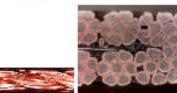
React & Wind

- Advantage
 - Eliminate reacting full size coils
- Challenges
 - Cabling Degradation (Fine strand conductor)
 - Bending Degradation

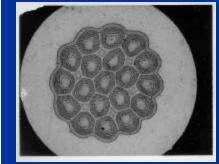
Coils with HTS/Nb₃Sn tapes, cables

Coils with Nb₃Sn cables


 $\overline{\text{HTS}}/\text{Nb}_3\text{Sn cables}$


10/17/00

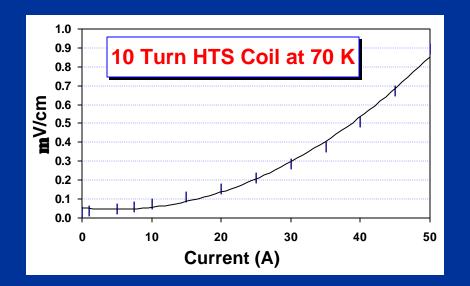
S. Gourlay VLHC Annual Meeting


React and Wind Cable R&D

son hammalaa ay ahammalaa ay ah

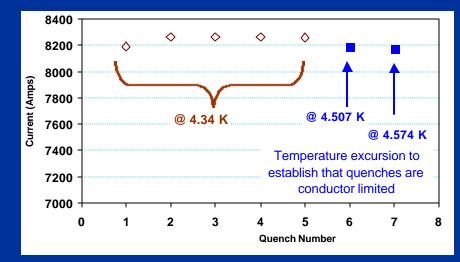
Using left-over ITER internal tin diffusion conductor made by IGC

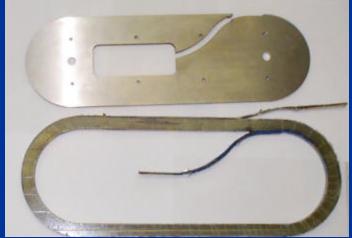
Cable No.	Wire Ø	Str. No	Cable dimension	Core dimension	Min/max strain ¹
Al	0.7	41	15.04x1.22	none	0.170/0.365
A5	0.7	41	15.04x1.24	0.013x12.7	- -
<i>B1</i>	0.5	57	15.01x0.86	none	0.122/0.260
<i>B</i> 2	0.5	57	15.04x1.35	0.025x12.7	- -
Cl	0.3	7x36	15.05x1.53	0.013x12.7	$0.196/0.421^2$
<i>C</i> 2	0.3	7x36	15.05x1.51	none	- -
D	0.7	60	21 wide	in progress	0.170/0.365



10/17/00

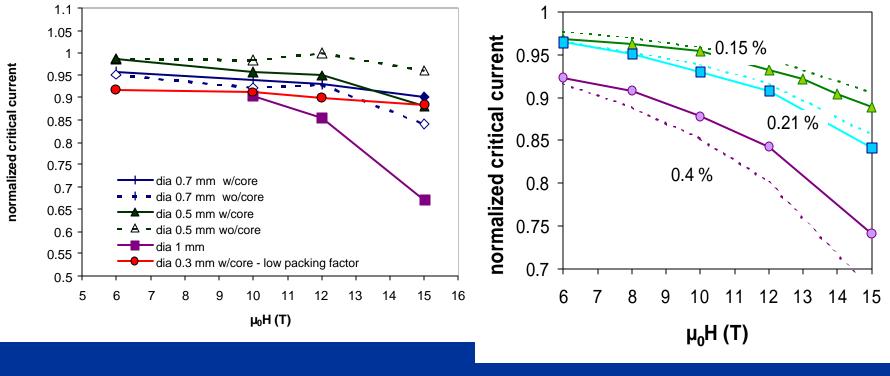
HTS Coils


Bi-2212 Coils made with Rutherford cable (IGC/Showa/LBNL) Early results show no degradation


10/17/00

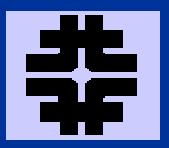
11

Nb₃Sn Coils



92% Short Sample ITER Conductor

Nb₃Sn Degradation Studies



Cabling Degradation

Bending Degradation

10/17/00

S. Gourlay VLHC Annual Meeting

React & Wind

Early results are promising ...

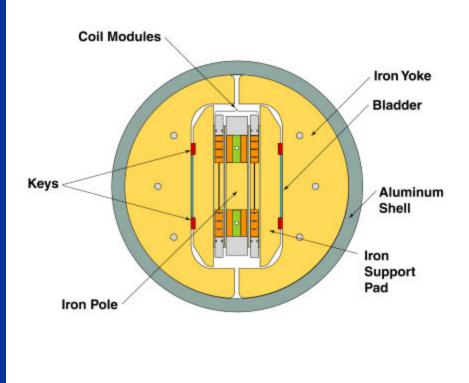
but there is much more work to be done

- Cable degradation
- Design variations cables and magnets
- Coil testing in magnet environment

Coil Design

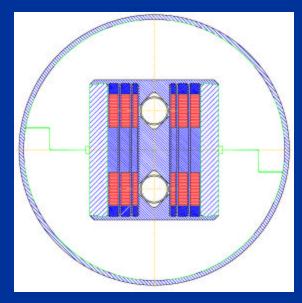
• Many, many options exist

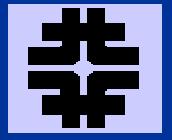
- Really depends on parameters one wants to optimize


- Some combination of these plus others
 - Field
 - Field Quality
 - Aperture

And . . . Simplicity - low cost

High Field

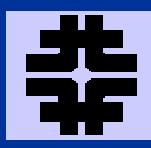

- RD-3
 - 14 Tesla
- High stress
- Support structure
- Fabrication methods

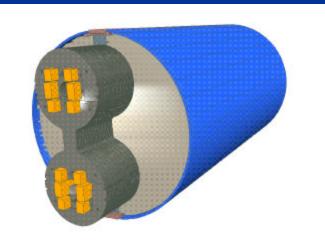

High Field

- 12.5 Tesla background field for insert tests
 - 2-Layer Nb₃Sn outer
 - Add inner HTS layer
 - Independently operate outer/inner

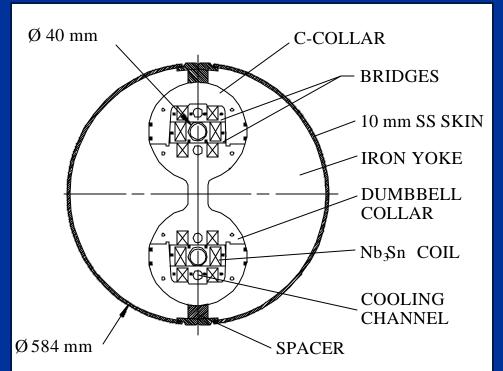
- Geometric
 - Many options exist
- Saturation
 - Same old problem, same solutions

10/17/00

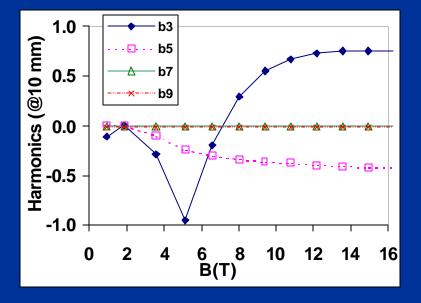

- Magnetization
 - Common problem for all high field magnets using Nb₃Sn/HTS
 - Large filament diameter and high J_c

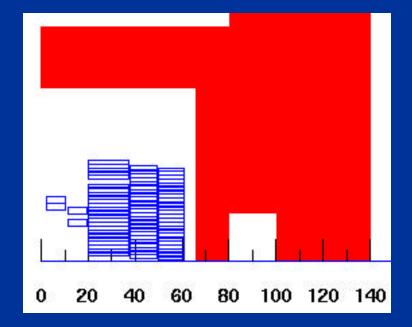

Several methods are being studied to mitigate the problem

- Coil Geometry


- Coil geometry can be optimized to alter or minimize the effect
- Inserts
 - Several options for introducing iron into cross section

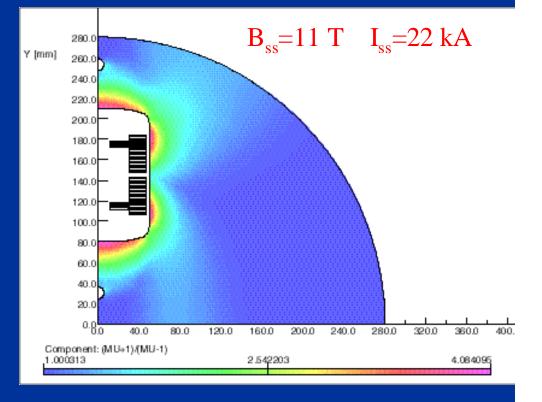
Still, AP must cope with it




- 11 Tesla
- Single-layer Coils
- Intrinsically low magnetization

• Low saturation harmonics

12.5 T Nb₃Sn and Nb₃Sn/NbTi hybrid

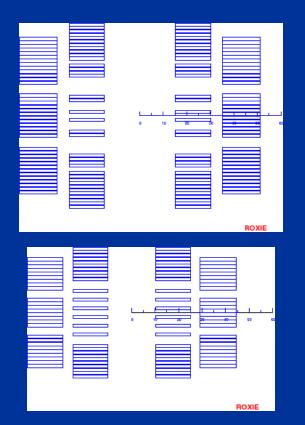


RD-5 $B_{ss} = 14 \text{ T}$ $I_{ss} = 11.6 \text{ kA}$ 300.0 Y [mm] 12 280.0 260.0 * Saturation b₃ * ♦ Magnetization b₃ 8 240.0 \odot ⊖ Total b_a θ 220.0 200.0 4 Units (10⁴ @ 1 cm) 180.0 160.0 0 ÷¥ 140.0 I 120.0 -4 100.0 80.0 -8 60.0 40.0 -12 0 2 4 6 8 10 12 20.0 Current (kA) 0.8 40.0 80.0 120.0 160.0 200.0 240.0 280.0 320. Component: (MU+1)/(MU-1) 6.382179 1.000316

S. Gourlay VLHC Annual Meeting

- VLHC Prototype
- Large Bore (> 35 mm)
- Based on $< 2,000 \text{ A/mm}^2$

S. Gourlay VLHC Annual Meeting


24

Small Aperture

Simple and efficient

- 30 mm
 - 11.5 Tesla
 - Flat coils
- 20 mm
 - 11.5 Tesla
 - Flat coils
 - One third less conductor

Support Structures

• Minimize conductor displacement under Lorentz loads

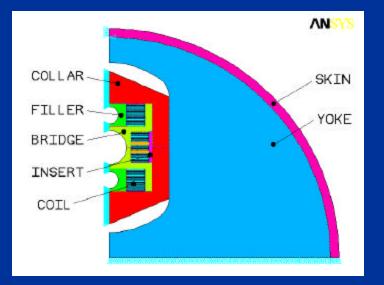
- One of the more important aspects of high field magnet design

- Three issues
 - Compressive Stress
 - Bending strain

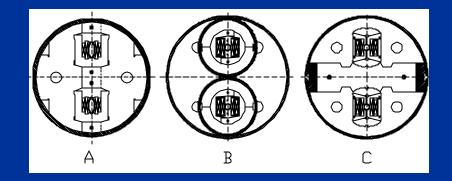
How conservative do we need to be?

- Field quality (conductor displacement)

Support Structures


BNL Support Structure for 10-turn test coils

• Simple - fast turn-around



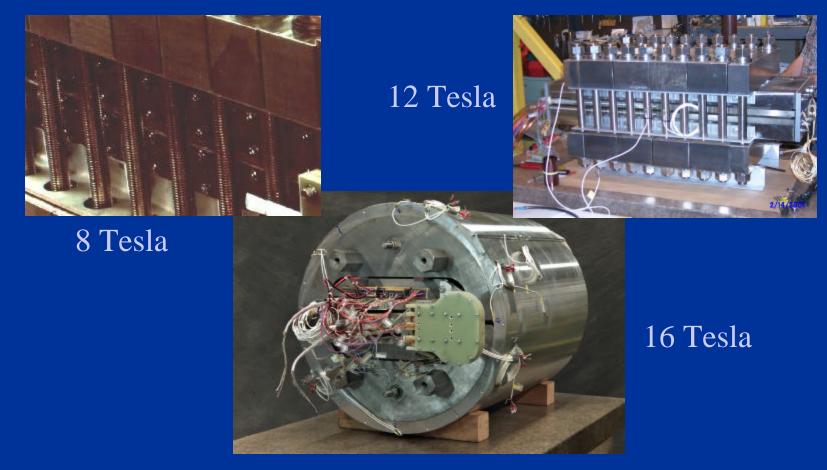
华

Support Structures

- Single-layer designs
- Al vs SS collars
- Fixed vs sliding coil/collar interface

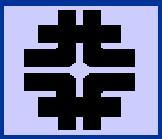
- Two-layer designs
- Vertically split
- Horizontally split

Support Structures


Pressurized Bladder System (Internal press)

- Minimizes coil displacement
- Easily control distribution of prestress
- Low RT stress

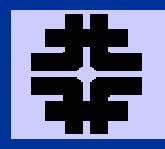
Support Structures


S. Gourlay VLHC Annual Meeting

Fabrication/Infrastructure

- Fabrication
 - Cost and Performance Related Issues
 - Insulation
 - R&W vs W&R
 - Basic fabrication methods
- Infrastructure
 - Existing infrastructure at BNL and LBNL for Nb₃Sn
 - FNAL has recently augmented their facilities

10/17/00


Fabrication/Infrastructure

- Power supplies > 25kA
- Tooling and Facilities for long magnets

BNL Common Coil R&D

- Primary Goal
 - 12.5 Tesla Common Coil
 - React and Wind
 - HTS insert
- 10-Turn Coil R&D Program in progress
 - Nb₃Sn cable and tapes
 - HTS cable and tapes

FNAL Common Coil R&D

- 11 Tesla Accelerator Quality Common Coil Dipole
 - React and Wind
 - Single layer coils
 - Good field quality
 - Large bore
- Continued Studies
 - Design
 - React and wind cable issues
 - Fabrication methods

LBNL Common Coil R&D

- High Field Common Coil Dipoles
 - Fields greater than 14 Tesla (RD-3)
- Field Quality
 - 13+ Tesla (multi-layer) (RD-4)
 - 11 Tesla (single-layer)
- Continued Studies
 - Design
 - Fabrication methods

Common Coil R&D Status and Plans

- Common Coil R&D is well underway and making progress
 - Most, if not all the important issues for this stage are being worked on
 - The tools exist to form the basis of a development program
 - The programs are *very* complementary
 - That's good, because the parameter space is huge
- By this time next year, several magnets will have been tested

Common Coil R&D Addendum

- Considering that we are just beginning, we're doing great
 - but projected progress is still way below the level of a true development program
- Looking at the long term, let's put the situation in perspective by looking at the LHC dipole development program

LHC Dipole Development

20 years from start to turn-on

Began in 1987

- Phase I
 - Design trials
 - 5 years @ > 3 magnets/year

Total of over 80 short models

- Phase II
 - Second generation
 - 7 years @ 9 magnets/year

And it was all based on existing, well-developed technology

10/17/00