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Abstract

Calibration forces the weighted estimates of the certain variables to match
known or alternatively estimated population totals called benchmarks. It can
be used to correct for sample-survey nonresponse or for coverage error resulting
from frame undercoverage or unit duplication. The quasi-randomization theory
supporting these increasingly important uses treats response or coverage as an
additional phase of random sampling, one that takes place before the sample
is drawn in the case of coverage errors or after in the case of nonresponse. The
functional form of a quasi-random response or coverage model is assumed to be
known, while its parameter values are estimated implicitly through the creation
of calibration weights. Unfortunately, the variables in a plausible quasi-random
model are not necessarily the same as the variables for which benchmark totals
are available, as must be commonly be assumed when calibration is used in
this manner. Moreover, it may be prudent to keep the number of explanatory
variables in a model small. We will address using calibration to adjust for non-
reponse or coverage error when the model variables and benchmark variables
are allowed to differ as long as the number of benchmark variables is at least
as great as the number of model variables. Data from National Agricultural
Statistical Service’s 2002 Census of Agriculture and simulations based upon
that data will be used to illustrate alternative adjustments for nonresponse.

KEY WORDS: Benchmark; Consistency; Coverage model; Back-link func-
tion; Quasi-randomization; Response model.

1



1 Introduction

Calibration weighting ensures that sample-estimated totals of certain calibration or
benchmark variables match previously determined population totals. Two related
special cases of calibration, poststratification and weighting-class adjustment (see
Lohr 1999, pp. 266-267) are used extensively to adjust for survey nonresponse, a
subject of growing interest as the response rates in both government and private
surveys decline.

Oh and Scheuren (1983) provide a theoretical justification for weighting-class
adjustment by treating response as a second phase of sample selection. In this
quasi-randomization (or quasi-design-based) framework, each sampled unit within
the same weighting class has an equal and independent probability of selection into
the respondent subsample. That probability is estimated implicitly in the weighting
process. The prefix “quasi” is added to “randomization” to emphasize that inference
depends on an assumed response model.

More complex calibration weighting schemes are proposed by Folsom (1991),
Fuller, Louglin, and Baker (1994), and Kott (2004a). In each the probability of
response is assumed to be a known back-link function of an unknown (but esti-
matable) linear combination of model variables. The back-link function is the back
transformation of the link function in a generalized linear model. See, for example,
McCullagh and Nelder (1989). What we have called the “back-link” is sometimes
called the “inverse link” in the generalized-linear-model literature.

In Fuller et al., the back-link function has the form p(η) = 1/(1+η). This allows
calibration to have its conventional linear form. Lundström and Särndal (1999) also
proposes using calibration in conventional linear form to adjust for nonresponse but
without specifying a back-link function.

Folsom proposes more plausible functions for the modeling of response than
p(η) = 1/(1 + η). One such is the logistic: p(η) = [1 + exp(−η)]−1. In addition,
raking is shown to be a form of calibration weighting with a back-link function of
the form p(η) = exp(η). A follow-up, Folsom and Singh (2002), proposes a class
of reasonable back-link functions and points out that calibration can also be used
to adjust for coverage errors due to frame undercoverage and/or duplication by
assuming a quasi-random coverage model in which the expected number of times
a population unit is in the sampling frame is a function of a linear combination
of model variables. Although coverage errors takes place before the random sam-
ple is drawn and nonresponse after, the same theory applies because the response
(coverage) mechanism is assumed to be independent of the sampling mechanism.

In both Fuller et al. and Folsom the model variables used to estimate implicitly
the probabilities of response are the same as the calibration variables for which one
has benchmark totals. In Kott, that is no longer the case. This extension does not
require that model-variable totals be known. For example, one can separate respon-
dents into response groups in an analogue to poststratification based on their survey

responses. Still, Kott assumes the number of model and benchmark variables are
equal. Moreover, that paper does not demonstrate the practicality of its approach
with data.

Särndal and Lundström (2005) also treats the case where the model and bench-
mark variables can differ in definition but not in number. In addition, it allows
some of the benchmark totals to be calculable from the sample before nonresponse.
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The back-link function is not specified. Moreover, the authors do not appear to
notice that calibration is possible when model-variable values are known only for
the respondents.

We will show how to use calibration to adjust for nonresponse, and by easy
inference coverage error, when the number of benchmark variables is at least as
great as the number of model variables. In Section 2 we will introduce our notation
and motivate our approach to calibration, which is discussed in more detail in
Sections 3 and 4.

In section 5 we turn to the estimation of a total for a vector of variables of interest
that typically do not include the benchmark variables (since they are either known
of previously estimated) but may include some of the model variables. We show
how to measure both the additional asymptotic variance due to the nonresponse in
a calibration-weighted estimator and the full asymptotic variance of the estimator
itself. Section 6 relates our analysis to the existing literature.

Section 7 contains applications of our methodology to nonresponse adjustment
for the 2002 Census of Agriculture. We show here how the probability of a farm’s
responding to the census can be assumed to a function of its survey-reported sales
rather than its expected sales before enumeration, as is currently assumed in prac-
tice. In section 8 we report on simulations from an artificial population constructed
from the respondents of the Census of Agriculture.

Section 9 offers some concluding remarks with a particular emphasis on extend-
ing the analysis of the preceding sections to adjusting for coverage errors. This is a
topic of increasing interest for the analysis of surveys based on incomplete frames
such as telephone and internet surveys.

2 Notation and Motivation

Suppose zi is a P -vector of calibration or benchmark variables for the i-th population
unit, and xi a Q-vector of explanatory or model variables. We will assume that the
probability of i responding (when the unit is selected for the sample) is p(x

′

iβ∗)
for some vector parameter β∗, where g(η) = 1/p(η) is a known and everywhere
monotonic and twice differentiable function, such as g(η) = (1 + exp(−η)).

If β∗ were also known, then an expansion estimator for the vector of totals of
the benchmark variables would be

t̂z(β∗) =
∑

i∈R

di

p(x
′

iβ∗)
zi, (1)

where di is the sampling weight in the absence of nonresponse, and R is the set of
respondents.

If tz is a vector of calibration target values consisting of known, or previously
estimated, population totals, then β∗ could be estimated from the data using the
calibration equation(s)

tz =
∑

i∈R

di

p(x
′

iβ̂)
zi. (2)

If the number P of benchmark variables equals the number Q of model variables,
equations (2) will usually be sufficient to determine β̂. On the other hand, if P < Q,
β̂ will be underdetermined by (2).
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Realize, however, that even were β∗ known, it is unlikely that t̂z(β∗) would equal
tz exactly due to sampling variability. The vectors t̂z(β∗) and tz should nonetheless
be close. With this in mind, we suggest that (1), and its child (2), be viewed as
nonlinear regression-type equations

tz = t̂z(β) + ε (3)

where

t̂z(β) =
∑

i∈R

di

p(x
′

iβ)
zi

and ε is a P -vector of “errors”. In the nonlinear regression paradigm, it is desirable
that P > Q and, indeed, the more calibration targets the merrier. The parameter
β can be estimated by minimizing an objective function of the form

ρ(β) = (tz − t̂z(β))
′

W(tz − t̂z(β)) (4)

for some appropriately chosen P × P positive definite matrix W. We show in the
next section that minimizing the objective function will yield consistent estimators
for the parameters no matter what one chooses for W under mild conditions. Nev-
ertheless, it stands to reason that some choices will lead to more efficient estimators
than others.

The nonlinear regression formulation of (3) suggests setting W = V−1 for some
suitably defined variance matrix V of ε. When this choice of W depends on β,
we propose an iterative procedure analogous to what would be used with a fixed
W. Given a guess β̂0 of β∗, we can linearize the regression (3) at β̂0. The solution
to the linearized regression is the next guess β̂1. This procedure is described more
thoroughly in Section 3.

An obvious candidate for V is V̂ arqr(t̂z(β)|β = β∗), an estimator for the quasi-
randomization variance of t̂z(β) assuming β = β∗. If the sampling scheme is without
replacement so that t̂z(β) of (3) is the Horvitz Thompson estimator, then one such
quasi-randomization variance estimator is

V̂ arqr(t̂z(β)|β = β∗) =
∑

i,j∈R

πij − πiπj

πijπiπjpipj
ziz

′

j +
∑

i∈R

1 − pi

p2
i πi

ziz
′

i, (5)

where pi = p(x
′

iβ).
In the quasi-randomization framework supporting (5) one assumes the set R

of respondents results from a two-phase sample of the target population U . In
the first phase, the sample S is drawn without replacement from the population
with inclusion probabilities πi = Pr[ i ∈ S] and πij = Pr[ i, j ∈ S]. In this case,
di = π−1

i . In the second phase, R is a Poisson subsample of S with unit selection
probabilities of the form pi = p(x

′

iβ).
If the targets tz are previously estimated population totals, then it is be reason-

able to compute
V = V̂ arqr(t̂z(β)|β = β∗) + V̂ ar(tz)

where V̂ ar(tz) is a good estimate of the variance of tz. In some applications V̂ ar(tz)

may be much greater than V̂ arqr(t̂z(β)|β = β∗), and it will be reasonable to set W

to (V̂ ar(tz))
−1, which is not a function of β at all.
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A common procedure correcting for nonresponse is poststratification. As we
noted previously, poststratifcation is a special case of calibration weighting. Let
P = Q be the number poststrata and let z = x be P -vectors of indicator variables
for the P poststrata. In this case tz = [N1 · · ·NP ]

′

, where Nh is the population size
of stratum h. Equation (2) has the exact solution

p(β̂h) = (
∑

i∈Rh

di)/Nh

ai = 1/p(β̂h) when i ∈ Rh

β̂ = [β̂1 · · · β̂P ]
′

,

where Rh is the set of respondents in stratum h, ai is the (calibration) adjustment
factor for unit i, and ci = aidi is the unit’s calibration weight. If the sampling
design is a simple random sample, then di = N/n for all sampled units, and the
calibration weight is ci = aidi = Nh/nh for i ∈ Rh.

We are assuming when using poststratication to adjust for nonresponse that
all units in the h-th poststratum or response group have an equal probability of
responding. In many situations, however, a more reasonable response model would
employ a vector x of variables different from the vector z of benchmark variables
when forming these groups. Moreover, the variables in x need not have known or
alternatively estimated population totals. This is the case in the example discussed
in Section 7.

3 Some Details

Given a guess β̂0 of β and matrix W(β̂0) we linearize (3) at β̂0 and obtain

tz − t̂z(β̂0) ≈ Ĥ(β̂0)
(
β − β̂0

)
+ ε, (6)

where Ĥ(β̂0) is the P × Q matrix

Ĥ(β̂0) =
∂t̂z(β̂0)

∂β
=

∑

i∈R

dig1(x
′

iβ̂0)zix
′

i, (7)

and g1(x
′

iβ̂0) is the first derivative of g(η) = 1/p(η) evaluated at x
′

iβ̂0.

The (weighted) linear regression estimate β̂1 corresponding to (6) minimizes the
objective function U

′

W(β̂0)U where U = tz − t̂z(β̂0) − Ĥ(β̂0)(β − β̂0). It is given
by the update equation:

β̂1 = β̂0 +
[
Ĥ(β̂0)

′

W(β̂0)Ĥ(β̂0)
]−1 [

Ĥ(β̂0)
′

W(β̂0)
(
tz − t̂z(β̂0)

)]
. (8)

For simplicity, we assume Ĥ(β) and W(β) are of full rank everywhere. This will
allow us to always be able to invert matrices when the need arises.

Iteration continues with β̂1 serving the role of β̂0 in (8), and so on until we reach
a step K, if such a step can be reached, where

Ĥ
′

W
(
tz − t̂z(β̂)

)
= 0 (9)
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with the matrices H and W evaluated at β̂ = β̂K . As the iteration starting with
(8) is a Newton-Raphson type method, it is sometimes helpful to limit the size of
the step from, say, β̂k−1 to β̂k for some k = 1, ...,K. What this means is that when[
Ĥ(β̂k−1)W(β̂k−1)Ĥ(β̂k−1)

]−1 [
Ĥ(β̂k−1)

′

W(β̂k−1)
(
tz − t̂z(β̂k−1)

)]
is deemed too

large, it can be replaced with some fraction of itself in the update equation.
If W is the inverse of an estimate for the variance matrix of t̂z(β̂), an alterna-

tive derivation and justification of the update equation (8) follows from Thompson
(1997). Consider the equations t̂z(β) − tz = 0 as P estimating equations for the Q
coefficients β. If A is a Q × P matrix of constants, let β̂A denote the solution to
the estimating equations

At̂z(β) = Atz. (10)

A choice for A such that β̂A has a minimum asymptotic variance is A∗ =

Ĥ(β̂A∗)
′

[V ar(t̂z(β̂A∗))]−1, where β̂A∗ results from the convergence of update equa-
tion (8).

Observe that when W = W(β) depends upon β, our suggested procedure for
estimating β∗ does not minimize the objective function (4). This is because if (4)
were differentiated with respect to β, then there would be a term for the derivative
of W which is not accounted for in the linearization (6). In other words, letting

ρ0(β, γ) = (tz − t̂z(β))
′

W(γ)(tz − t̂z(β)),

full minimization would solve the equation

0 =
∂ρ0

∂β
(β̂, β̂) +

∂ρ0

∂γ
(β̂, β̂) (11)

whereas the partial minimization obtained through iterated use of (8) sets only the
first term of the right hand side of (11) to zero.

We have adopted a partial minimization approach here because employing an
estimator for β∗ that solves (9) plays a crucial role in measuring the added variance
from nonresponse in a calibration-estimated total as we will see in Section 5. For
now, we show that our choice for β̂ is consistent given the quasi-random model
under mild conditions.

Since g(η) = 1/p(η) is everywhere monotonic and twice differentiable, there is a
θi between x

′

iβ̂ and x
′

iβ∗ such that g(x
′

iβ̂) − g(x
′

iβ∗) = g1(θi)x
′

i(β̂ − β∗). Thus, we
can derive the following equality from (9):

β̂ = β∗ +
[
Ĥ

′

WĤθ

]−1 [
Ĥ

′

W
(
tz − t̂z(β∗)

)]
, (12)

where

Ĥθ =
∑

i∈R

dig1(θi)zix
′

i.

For simplicity, we assume Ĥθ, like Ĥ = Ĥ(β̂) and W = W(β̂), has full rank.
An asymptotic structure is required to analyze the large-sample behavior of

β̂. Formally, one must postulate a sequence of populations and sampling designs
so that the population size N can grow along with the sample size n. For some
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designs, the realized sample size is random and hence n must be interpreted as an
expected sample size.

From (12), it is not hard to see that if

1. Ĥ/N , Ĥθ/N , and W or a multiple of W - such as (N 2/n)W - converge in
probability, at the rate n−1/2, to matrices of full rank, and if

2.
√

(n)(tz − t̂z(β∗))/N converges in probability,

then β̂ converges in probability to β∗. Furthermore

g(x
′

iβ̂) − g(x
′

iβ∗) = g1(x
′

iβ̂)x
′

i(β̂ − β∗) +
1

2
g2(ξi)[x

′

i(β̂ − β∗)]
2, (13)

for some ξi between x
′

iβ̂ and x
′

iβ∗, where g2(.) is the second derivative of g. This
equality will prove helpful in Section 5.

To see the reasonableness of these conditions, it is helpful to remember that
Ĥ and Ĥθ are estimates of population totals. Proofs of these assumptions require
rather technical conditions on the sequence of populations and sampling designs.

An example of suitable conditions can be found in Fuller and Isaki (1981). This
paper can be applied to many useful without replacement designs. In their notation
the inclusion probabilities for the r-th universe and design are denoted by πi(r)

and πij(r). In our context, these are probabilities for inclusion in the respondent
sample R. Retaining our notation of πi and πij as the inclusion probabilities for the
full sample S, and ignoring in this notation the dependence of these probabilities
on r, the Fuller-Isaki inclusion probabilities are related to those of this paper by
πi(r) = πip(x

′

iβ∗) and πij(r) = πijp(x
′

iβ∗)p(x
′

jβ∗).

4 Some Choices for W

When P = Q, equation (8) reduces to

β̂1 = β̂0 + Ĥ−1
(
tz − t̂z(β̂0)

)
. (14)

Thus, in this case, the form of W is irrelevant for the update equation. Indeed (14)
is the Newton-Raphson update equation for solving the equation tz = t̂z(β̂), and
the solution, if it exists, will also minimize (4).

When P > Q, we proposed setting W(β) to the inverse of V = V̂ ar(t̂z(β)|β =

β∗) + V̂ ar(tz), where the latter term is provided to us from external sources (and
may be 0). If the sample S is selected without replacement, then (5) is an unbiased
estimate of V ar(t̂z(β)|β = β∗). This is an immediate consequence of equation
(9.3.7) in Särndal et al.(1992).

For a stratified multistage design with primary sampling units (PSU’s) chosen
with replacement, let h = 1, . . . ,H index the strata. Suppose nh PSU’s are chosen
with replacement in stratum h. Let nhqhi be the expected number of times PSU i
from stratum h will appear in the first stage sample

Changing the meaning of i slightly, let Rhi be the set of subsampled and then
responding elements in the i-th PSU selected from stratum h, and let dhij be the
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sampling weight (before nonresponse adjustment) for element j ∈ Rhi. Define

t̂zhi(β) = nhqhi

∑

j∈Rhi

dhij

p(x
′

hijβ)
zhij , and

t̂zh(β) = n−1
h

nh∑

i=1

q−1
hi t̂zhi(β).

Then t̂z(β) =
∑

h t̂zh(β) is an unbiased estimate of tz. When β = β∗ its quasi-
randomization variance can be unbiasedly estimated by

V̂ arqr(t̂z(β)|β = β∗) = [nh(nh−1)]−1
nh∑

i=1

(q−1
hi t̂zhi(β)− t̂zh(β))(q−1

hi t̂zhi(β)− t̂zh(β))
′

.

This follows from assuming response is additional phase of subsampling, one
that is independent across all sampled elements.

Finally, notice that when V̂ ar(tz) = 0, the estimate β̂ is unchanged when
V arqr(t̂z(β)) is only estimated up to a multiplicative constant within W−1. This
suggests invoking the spirit of design effects (Kish 1965) and using the estimated
quasi-randomization variance of what would have resulted from a with-replacement
simple random sample of size n drawn from a population of size N :

V̂ arsrs(t̂z(β)|β = β∗) =
N2

n(N − 1)

∑

i∈R

dip
−1
i (zi − z)(zi − z)

′

,

where
z = (

∑

i∈R

dip
−1
i )−1

∑

i∈R

dip
−1
i zi,

and, as before, pi = p(x
′

iβ). In practice, the scalar multiple N2

n(N−1) can be dropped

from V̂ within W = V̂−1.

5 The Calibration-Weighted Estimator for a Popula-

tion Total and Its Quasi-randomization Variance

Let yi be a vector of variables of interest. The purpose of calibration weighting is to
estimate population totals for the components of yi or functions of those totals, like
population ratios. Typically, the components of yi will not include the benchmark
variables in zi as they are already known or have been alternatively estimated. They
may include model variables in xi. In principle, they could include both types of
variables.

Our calibration-weighted estimator for the total ty is

t̂y(β̂) =
∑

i∈R

di

p(x
′

iβ̂)
yi =

∑

i∈R

dig(x
′

iβ̂)yi =
∑

i∈R

ciyi, (15)

where ci = dig(x
′

iβ̂) is the calibration weight for unit i. Define

Ĥy =
∂t̂y
∂β

(β̂) =
∑

i∈R

dig1(x
′

iβ̂)yix
′

i, and

B = Ĥy

[
Ĥ

′

WĤ
]−1

Ĥ
′

W,
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where Ĥ = Ĥz is the matrix of partial derivatives (7) which, like W, is evaluated
at β̂. We assume that the components of Ĥy/N are OP (1).

Writing yi as Bzi + (yi −Bzi), we have

t̂y(β̂) = Bt̂z(β̂) +
∑

i∈R

di

p(x
′

iβ̂)
(yi −Bzi)

= Btz +
∑

i∈R

dig(x
′

iβ̂)(yi −Bzi).

The latter equality follows from (9). Continuing by applying the equality in (13),
we have

t̂y(β̂) = Btz +
∑

i∈R

dig(x
′

iβ∗)(yi −Bzi)

+ (Ĥy −BĤ)(β̂ − β∗) +
1

2

∑

i∈R

dig2(ξi)[x
′

i(β̂ − β∗)]
2(yi −Bzi)

= Btz +
∑

i∈R

dig(x
′

iβ∗)(yi −Bzi) + OP (N/n),

assuming all the components of
∑

i∈R di|g2(ξi)|(x
′

ixi)|yi −Bzi| are OP (N) (where
|q| is a vector containing the absolute values of the components of q). This leads
to

(t̂y(β̂) − ty)/N = (t̂u(β∗) − tu)/N + OP (1/n), (16)

where ui = yi −Bzi.
Unfortunately, ui depends on values for responding units other than i through

B, so tu is not really a vector of population totals. By adding the mild assumption
that as n grows arbitrarily large, B−B∗ = OP (1/n1/2), where B∗ is the probability
limit of B, we can infer that (t̂z(β∗) − tz)(B − B∗)/N = OP (1/n). Thus, we can
replace the ui in (16) by ui∗ = yi −B∗zi and still have

(t̂y(β̂) − ty)/N = (t̂u∗(β∗) − tu∗)/N + OP (1/n). (17)

That is to say, V arqr(N
−1 t̂y(β̂)) = V arqr(N

−1 t̂u∗(β∗)) + O(n−3/2).

Recall that t̂y(β̂) has made use of a quasi-random model to adjust for nonre-
sponse. The variance of the respondent indicator function for sampled unit i (which
is 1 if i responds and 0 otherwise) is p(x

′

iβ∗)(1 − p(x
′

iβ∗)). It is not difficult to see
from (17) that under the quasi-random model and other mild assumptions we have
made, the component of the randomization variance of t̂y(β̂) due to nonresponse
can be estimated in an asymptotically unbiased manner by

V̂ aradd =
∑

i∈R

d2
i

p(x
′

iβ̂)2
(1 − p(x

′

iβ̂))(yi −Bzi)(yi −Bzi)
′

. (18)

when tz is a known vector of population values. (Note that there is no asymptotic
effect from our using β̂ and B in place of β∗ and B∗ in (18).)

The right hand side of (18) does not have a component that accounts for the
uncertainty in estimating β∗. This is because the way β∗ is estimated (i.e., through
(9)) and B is calculated leads to (16), where the additional error caused estimating
β∗ by β̂ is asymptotically ignorable.
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When the original sample is drawn randomly without replacement, and tz is a
known vector of population totals, a reasonable estimator for the quasi-randomization
variance of t̂y(β̂) can be computed using the right hand side of (5) with pi set to

p(x
′

iβ̂) and zi replaced by ui. That is to say,

V̂ arqr(t̂y(β̂)) =
∑

i,j∈R

πij − πiπj

πijπiπjpipj
uiu

′

j +
∑

i∈R

1 − pi

p2
i πi

uiu
′

i, (19)

where pi = p(x
′

iβ̂). Proving V̂ arqr(t̂y(β̂)) is asymptotically unbiased is not trivial
when the right hand side of of (19) has O(n2) terms. See Kim et al. for sufficient
additional restrictions on the coefficients in that situation.

Similarly, when tz is a known vector of population values and the original sam-
ple is drawn using a stratified multi-stage routine and the first stage drawn with

replacement one can compute the variance estimator for t̂y under a first-stage-with-

replacement design as described in Section 4, again with pi set to p(x
′

iβ̂) and ui

replacing zi.
There is an additional component in the asymptotic variance of t̂y(β̂) when tz is

not known with certainty but is estimated from independent external sources. An
obvious measure for this component is

V̂ arext = BV̂ ar(tz)B
′

, (20)

where V̂ ar(tz) is an externally-provided estimate for the variance of tz.

6 Discussion

It is not unreasonable to conclude from (18) and (19) that ui plays the role of a
regression residual in variance estimation. Following that train of thought, B can
be viewed as the generalization of a sample-weighted linear regression coefficient.

This is exactly what b = B
′

is in the special case explored by Fuller et al. (1994)
where yi is a scalar, xi = zi, and g(η) = 1 + η. In that paper, the weights in the
weighted linear regression coefficient are the sampling weights before nonresponse
adjustment (that is, the di). Generalizing to a possibly nonlinear g(η) merely affects
those weights as can be seen in Folsom and Singh (2000), where

b = (
∑

i∈R

dig1(x
′

iβ̂)xix
′

i)
−1

∑

i∈R

dig1(x
′

iβ̂)xiyi. (21)

Observe that g1(η) in (21) is unity in Fuller et al.. Moreover, when the compo-
nents of xi are indicators of mutually-exclusive group membership (as in poststrat-
ification), the g1(x

′

iβ̂) terms can be shown to effectively drop out of the equation.
Lundström and Särndal (1999) computes b with the function g(.) replacing g1(.)

above. Unfortunately, with this b the derivation of (16) fails for most back-link
functions. To be fair, in Särndal and Lundström (2005) the authors only claim to
provide a “rationale” for their variance-estimation approach not a proof (p. 139).
Moreover, they argue that getting the form of the back-link function right is rarely
important. See the discussion of raking on p. 318 of Lundström and Särndal or p.
75 of Särndal and Lundström.
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By severing the connection between the benchmark and model variables while
keeping P=Q, the b in Kott (2004a) becomes

b = (
∑

i∈R

dig1(x
′

iβ̂)xiz
′

i)
−1

∑

i∈R

dig1(x
′

iβ̂)xiyi, (22)

a weighted instrumental-variable regression coefficient. In the implicit prediction

model of the linear regression, yi remains the variable of interest, the components of
zi are the explanatory variables, and the components of xi serve as the instruments.
This role reversal for the benchmark and model variables can plainly be seen in
ui = ui = yi − b

′

zi. Remember, however, that justification for calibration given
here rests entirely on a response model governing which units respond rather than
a prediction model linking the behavior of any component of yi to either zi or xi.

Kott also develops a jackknife for use with a stratified multi-stage sampling
routine that avoids iteration in the creation of replicate weights. It is not hard
to show using the reasoning in the text that this jackknife retains its asymptotic
properties in the P > Q case when the Q-vector z̃i = Ĥ

′

Wzi replaces the original
vector of benchmark variables. Accordingly, t̂ez(β̂) = tez, while ui = yi − b̃

′

z̃i, and b̃

is computed using (22) with z̃i replacing zi.
The availability of relative simple quasi-randomization variance estimators is

one advantage of the calibration approach over an alternative weight-adjustment-
for-nonresponse scheme in which a response propensity model is estimated directly
from the full sample (respondents and nonrespondents) and then the estimated unit
response probabilities treated as Poisson probabilities of response in an expansion
estimator aggregated only over the respondents. A more important advantage of
the calibration approach developed here is that the response model can include
variables with values unknown for the nonrespondents, as we will demonstrated in
the next section.

7 Example: the 2002 Census of Agriculture

Despite its name, it is helpful to think of the 2002 US Census of Agriculture as a
survey. Its core was indeed a census of all places with the potential of producing
$1,000 or more of annual agricultural sales - what the National Agricultural Statis-
tics Service (NASS) defines as farms. This core, however, had to be supplemented
to two directions. First, not all entities on the Census Mailing List (CML) main-
tained by NASS responded to the Census of Agriculture. Second, not all places
NASS defined as farms were on the CML.

To compensate for nonresponse and undercoverage, reweighting of Census records
was used. Unlike most surveys, the completed records in the 2002 Census of Agri-
culture had original weights of 1. These weights were adjusted first to account
for the nonresponse and then the undercoverage. How both of these were done is
explained in some detail on the NASS web site (Kott 2004b).

Our attention in this section will be focused on the adjustment for nonresponse
in the 2002 Census of Agriculture. NASS used a weighting-class/poststratification
approach to adjusting for nonresponse. The agency divided the entities receiving
Census forms into mutually exclusive response groups (weighting classes, poststrata)
based on what NASS believed to be each entity’s county of operation, its size class as

11



measured by expected sales, and whether or not the entity responded to an agency
survey since 1997. Potential farms above a certain expected size or without expected
sales information were removed from this categorization and handled separately, as
were entities whose forms were returned as undeliverable by the Post Office.

Under the quasi-randomization model implicit when reweighting by response
group, every unit in a group is assumed to be equally likely to respond, irrespective
of its Census item values. This assumption has one obvious defect when used in the
Census of Agriculture. Groups are defined using expected 2002 sales as assigned by
NASS before enumeration rather than the actual sales reported on the US Census
of Agriculture. It is more reasonable to assume similar behavior from farms in the
same actual-sales group than from entities in the sample expected-sales group. An
obvious example: two farms in the sample expected-sales group but in different
actual-sales groups can have vastly different actual sales, a Census item.

The single most important Census item is whether an entity meets the definition
of a farm (the item value is 1 if it does, 0 otherwise). Here, again, actual sales is a
much better predictor for the item value than expected sales.

Why then did NASS use expected sales in creating response groups? The answer
applies to all surveys currently using a weighting-class approach to nonresponse
adjustment not just the Census of Agriculture. In order to apply reweighting the
entire sample, or in this case the entire categorizable population, must be assigned
to response groups. Since NASS only knew the actual sales for respondents, it could
not use actual sales in creating groups.

NASS actually created response groups within counties. When too few potential
farms responded in a putative group, collapsing rules were followed. In order to
focus on the repercussions of using expected-sales in response-group formation and
to avoid sticky small-group problems, the analysis here forms groups at the state
level.

Paralleling the within-county routines actually used by NASS, reweighting is
first done within each state by creating five mutually exclusive response groups:

• Z-Group 1: Expected 2002 sales less than $2,500;

• Z-Group 2: Expected 2002 sales between $2,500 and $9,999;

• Z-Group 3: Expected 2002 sales between $10,000 and $49,999 and previously
reported survey data from 1997 or later;

• Z-Group 4: Expected 2002 sales greater than or equal to $50,000 and reported
survey data from 1997 or later;

• Z-Group 5: Expected 2002 sales greater than or equal to $10,000 and no
reported survey data from 1997 or later.

All the units in each state data set belonged to one of these five groups. Mathe-
matically, zi = (zi1, zi2, · · · , zi5)

′, where zih = 1 when i is in Z-Group h and zih = 0
otherwise.

Because all the di = 1, the nonresponse-adjustment (poststratification) weight
for unit i is ci = ai = Nh/nh when the unit is in Z-Group h, where Nh is the number
of entities on the CML in Z-group h and nh is the number of responding entities in
Z-group h.
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Table 1: Fitted weights for the five x-variable calibration

ã1 ã2 ã3 ã4 ã5

CA 1.095 1.118 1.164 1.227 1.352
DE 1.153 1.136 1.531 1.151 1.431
IL 0.999 1.286 1.275 1.239 2.504
LA 1.164 0.954 1.281 1.226 1.670
SD 1.076 0.942 1.143 1.228 1.720

We contrast reweighting with calibration using these five Z-group indicator vari-
ables as benchmark variables. We will present here the results from five states. Cal-
ifornia (CA) and Delaware (DE) have been chosen because they represent diametri-
cally opposite states from an agricultural standpoint. Illinois (IL), Louisiana (LA),
and South Dakota (SD) are included because they pose interesting difficulties in the
analysis as we shall see. Table 2 displays the benchmark targets t′z = (N1, · · · , N5).

In one set of calibration runs, we use as model variables the indicator variables
for five groups defined using actual sales, as reported on the Census of Agriculture.
These five groups are:

• X-Group 1: Actual 2002 sales less than $2,500;

• X-Group 2: Actual 2002 sales between $2,500 and $9,999;

• X-Group 3: Actual 2002 sales between $10,000 and $49,999 and previously
reported survey data from 1997 or later;

• X-Group 4: Actual 2002 sales greater than or equal to $50,000 and reported
survey data from 1997 or later;

• X-Group 5: Actual 2002 sales greater than or equal to $10,000 and no reported
survey data from 1997 or later.

In this case P = Q = 5 and the calibration equations (2) become

5∑

g=1

ãgnhg = Nh (23)

ãg = (p(β̂g))
−1 (24)

where nhg is the number of respondents in X-group g and Z-group h. Unless the 5×5
matrix (nhg)g,h=1,···,5 is singular, (23) has a unique solution ãg, and ci = ai = ãg is
the calibration weight for respondent i in X-Group g. If all the ãg are in the range
of p(η), a unique solution for the calibration equation (2) will be found. The fitted
weights ãg derived from (23), a derivation that does not depend on the back-link
function, are given in Table 1.

Notice that the calibration weight is less than 1 for respondents from X-group 1
in IL and for respondents from X-group 2 in LA and SD. These are the only states
and X-groups where this anamoly happens, which is why we are examining them
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here. If these weights were used to estimate the number of farms in one of those X-
groups, the estimate would be less than the actual number of responding farms in the
X-group, an absurdity. It would also imply, under our assumed quasi-randomization
model, that the estimated probability of a unit in this group responding would
exceed 1, also absurd.

When such an anomaly occurs, (24) has no solution using the logistic back-link
function; in this case, p(βg) = (1 + exp(−βg))

−1 for i in X-group g. As a result,

iterated use of the update equation (8) fails to converge as β̂g → ∞ for some g.
One solution is to force the calibration weights in an offending X-group to be unity
and to remove the group’s observations from the sample and the calculation of
the benchmark targets. When that is done, one has the calibration problem with
P > Q.

In fact, the calibration program we have written accomplishes this automatically
in a different fashion. The update equation (8) requires two matrix inversions:
the first to calculate W and the second to invert Ĥ

′

WĤ. These matrices can
become numerically singular for a variety of reasons. When inverting a positive
definite matrix G, we calculate its spectral decomposition G =

∑
r λrere

′

r, where
λ1 ≥ λ2 ≥ · · · and eliminate eigenvalues/vectors for which λr < ελ1 for some
small ε (we use ε = .0000001). Then we use a ‘numerical generalized inverse’
G− =

∑
r λ−1

r ere
′

r where the sum is taken over the remaining eigenvalues/vectors.
Thus for IL, LA, and SD when the X-groups are used to define model variables, we
effectively end up with four model variables and five benchmark targets.

It should be noted, however, that in principle the appropriate way to approach
nonresponse calibration in these states is to treat the probability of response in
X-group 1 in IL (and X-group 2 in LA and SD) as if it has a known value, 1
and to treat the problem as a four model variable calibration. Otherwise, our
underlying assumptions fail since otherwise neither W nor Ĥ is of full rank. The
‘numerical generalized inverse’ approach achieves the same numerical results and
can be viewed as an automated method to reduce the number of model variables
when that becomes necessary.

In a second set of calibration runs, we model response as a logistic function
of three calibration x-variables: an intercept, logsales the logarithm of the actual
annual sales in 2002, truncated to the range $1,000 to $100,000, and s97 an indicator
variable for whether or not the farm responded to a survey since the 1997 Census
of Agriculture. For these runs, the fitted benchmark totals t̂z(β̂)) differ from the
benchmark target totals in each state. Both sets are displayed in Table 2.

Table 2 shows how well calibration does at estimating the benchmark totals
when there are less model variables than benchmark variables. This is a simple
check on the appropriateness of the model. Relative to the calculated standard
errors, the four-model-variable calibrations in the three problem states IL, LA, and
SD appear to fit the data well. Sadly, the three-model-variable calibrations do not,
especially in Illinois.

In the next section we perform a simulation study using this data. Our conclu-
sion is that if the response model (that is, that the probability of response is the
logistic back link of a linear combination of an intercept, ntercept, logsales, and
s97) is correct then calibration works well. It seems that Table 2 establishes that
this response model is, in fact, unlikely to be correct.
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Table 2: Benchmark targets and fitted totals for three and four model variable
calibrations

N1 N2 N3 N4 N5

CA targets 21804 14622 14309 14777 4769
CA 3 var. fit 21861.5 14578.0 14273.8 14816.0 4751.6

(30.2) (34.3) (36.5) (25.7) (9.4)

DE targets 628 369 334 517 216
DE 3 var.fit 638.9 370.3 311.5 535.4 207.9

(5.9) (7.0) (6.5) (5.2) (2.5)

IL targets 20220 15959 14241 24505 6513
IL 4 var. fit 20226.4 15955.6 14241.3 24505.0 6509.7

(49.0) (26.1) (2.4) (0.3) (25.1)
IL 3 var.fit 21044.1 15597.6 13560.2 25291.4 5874.4

(35.0) (36.2) (32.3) (30.4) (23.2)

LA targets 10390 7850 4275 2638 1040
LA 4 var. fit 10375.4 7873.3 4266.0 2639.2 1039.1

(17.1) (27.3) (10.6) (1.5) (1.1)
LA 3 var. fit 10394.3 7880.7 4225.2 2664.8 1027.9

(20.9) (24.8) (19.8) (12.8) (9.3)

SD targets 5847 5304 7278 11134 2416
SD 4 var. fit 5833.7 5327.0 7270.8 11135.8 2411.7

(11.7) (20.3) (6.3) (1.6) (3.8)
SD 3 var. fit 5864.2 5322.9 7198.1 11209.4 2380.7

(15.9) (18.8) (22.2) (21.4) (10.1)

Standard errors, calculated using (19) with πi = πij = 1 and yi = zi, are given in
parentheses.
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Table 3: Estimated number of farms

calibration using calibration using
reweighting using X-groups intercept

5 Z-groups (4/5 variables) logsales, s97

CA 45312.5 (45.8) 46181.3 (165.6) 46178.8 (56.3)
DE 1390.9 (9.2) 1416.1 (18.7) 1400.6 (11.0)
IL 57332.4 (52.1) 60797.8 (1.5) 58925.7 (53.7)
LA 16139.6 (30.3) 16138.4 (50.8) 16425.3 (37.6)
SD 23260.7 (27.7) 23734.8 (42.1) 23821.1 (25.5)

Standard errors in parentheses.

We now use calibration to estimate the total number of active farms. In this
context our y variable is a 0-1 variable for being an active farm. We compare the
existing NASS approach of reweighting within Z-groups, calibration using five (for
CA and DE) or four (for IL, LA, and SD) indicator variables defined by the X-
groups, and calibration using the three variable model (intercept, logsales and s97).
The results are given in Table 3, with the standard errors, calculated as in Section
5 for the calibration estimates and using (5) for the reweighting estimate. For the
latter standard error, the standard poststratification variance formula produces the
same answer. They are identical asymptotically and within roundoff error in this
application.

In interpreting Table 3, it is important to realize that the standard errors are
computed assuming the underlying model for that fit is correct. Thus the post-
stratification standard error assumes that response probability takes on one of five
possible values. The choice of one of these five possible values depends upon NASS
assigned expected sales and participation in surveys since 1997.

The calibration estimate using four or five X-groups also assumes that response
probability takes on one of five possible values. Here, however, actual sales is more
plausibly employed in forming the groups. As a result, the estimated farm count
turns out to be higher in 46 of the 47 states NASS used reweighting to adjust for cen-
sus nonresponse (not shown), suggesting that the agency’s nonresponse-adjustment
methodology is biased downward. The high standard errors resulting in most states
from employing actual sales in group formation may be the price one has to pay for
a systematic reduction in this bias.

Observe that the standard error for the Illinois four-X-group fit is surprisingly
small. This appears to be a ramification of assuming the probability of response in
X-group 1, the only X-group containing nonfarms, is known.

The three-variable-calibration model assumes that response probability varies
continuously with actual sales given survey participation. Although this seems
reasonable and results in estimated standard error only slightly higher than those
for poststratification, we saw in Table 2 that this model is not supported by the
data. Clearly, more research on model-fitting techniques for response modelling
through calibration is needed.
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8 Simulations

As discussed in the previous section, an incorrect model is a possible explanation
for the poor fit provided by the three variable models evidenced in Table 2. To
explore this question further, we conducted simulations. Our conclusion is that, if
the form of the response model is correct, then calibration performs just fine.

Our approach was as follows. For each of the five states, assuming the fitted
three-variable response model is correct, response probabilities were calculated for
each of the respondents to the Census. Then a synthetic state was created using
only the respondents to the Census, together with their response probabilities. In
particular, new target benchmarks were calculated as sizes of the Z-groups within

the synthetic state populations, that is the respondents within the original states.
Each Monte Carlo replication consisted of creating a respondents within the

synthetic states using the assigned response probabilities and fitting a calibration
model to the synthetic state using these respondents. 1000 Monte Carlo simulations
were done for each state. Table 4 gives for the each of the synthetic state simulations,
the mean of the fitted targets and their sample standard deviation, together with
square root of the mean estimated variance given by equation (19).

Examining Table 4, all mean fitted targets are within two standard errors of
their benchmarks; in CA, DE, and LA they are well within one standard error. It
should be noted that in CA, DE, and LA the maximum of the assigned response
probabilities is 0.925, 0.859, and 0.917 respectively. By contrast, 21.5% of the
synthetic IL population has an assigned probability in excess of 0.95. In SD the
corresponding percentage is 23.2%. Nonlinearities in the response probability link
function are most severe for probabilities close to 1 or to 0. Thus the biases in the
fitted targets that possibly exist for these two populations are likely due to the large
proportion of these synthetic populations with high response probabilities.

When W(β) =
[
V̂ar(t̂z(β))

]−1

, equation (12) yields the estimate

V̂ ar(β̂) =
[
Ĥ

′

WĤ
]−1

. (25)

Table 5 gives, for each synthetic state, the true β∗, the mean of the fitted β̂, their
sample standard deviations, and the square root of the mean of the sample estimates
calculated using (25).

Table 5 also gives the results for each state, the total number of farms ty and

its estimate t̂y(β̂) given by equation (15). The sample estimate of the variance of

t̂y(β̂) is given by equation (19).
Table 5 in general also shows good fit.
We also fit two misspecified models to the synthetic states. In the first of these,

the model variables used were the five X-group variables defined in the previous
section. In the second, poststratification/reweighting using the five Z-groups was
used, that is the five Z-group variables were used for both the model variables and
the benchmark variables.

Recall that in the synthetic states, the response probability was constructed to
depend upon actual sales and participation in a previous survey. The three variable
calibrations, whose results are given in Tables 4 and 5, hypothesize the correct
functional form for the dependence of the response probability on these two variables
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Table 4: Benchmark targets and fitted totals for three model variable calibrations,
simulated populations

N1 N2 N3 N4 N5

CA targets 19603 13034 12502 12463 3967
CA fitted 19603.28 13033.60 12502.34 12462.83 3966.96

28.11 32.42 34.01 23.26 8.64
28.42 32.16 33.75 23.37 8.75

DE targets 537 311 259 435 167
DE fitted 537.02 310.99 259.04 434.96 166.99

5.39 6.40 6.04 4.75 2.31
5.42 6.42 5.96 4.73 2.30

IL targets 18542 14000 12048 20268 4388
IL fitted 18540.11 14001.55 12048.90 20266.67 4388.91

31.11 31.97 27.91 25.51 20.44
30.88 32.39 28.72 25.91 20.55

LA targets 9054 6938 3673 2182 806
LA fitted 9054.15 6938.15 3672.75 2182.09 805.87

19.64 22.65 18.39 11.37 8.64
19.30 22.61 18.24 11.14 8.45

SD targets 5358 4876 6499 9378 1837
SD fitted 5357.63 4876.97 6498.43 9378.30 1836.66

14.57 17.52 20.22 19.24 9.34
14.37 17.23 20.01 19.06 9.23

Based upon 1000 simulations. For each fitted model, the first line gives mean fitted
targets, the second their empirical standard deviations, and the third the square
root of the mean of the sample estimated variances calculated using (19).
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Table 5: Coefficients β∗ and total number of farms ty, together with estimates β̂

and t̂y(β̂), three model variable calibrations on simulated populations

Coefficients

int logsales s97 Number of Farms

CA β∗ and ty 3.7478 -0.2341 0.3841 39568

CA fitted β̂ and t̂y(β̂) 3.7433 -0.2335 0.3835 39565.53
0.1051 0.0132 0.0510 52.81
0.1062 0.0132 0.0507 53.57

DE β∗ and ty 2.3161 -0.0964 0.1543 1147

DE fitted β̂ and t̂y(β̂) 2.3292 -0.0957 0.1379 1146.61
0.4934 0.0638 0.2227 10.63
0.4908 0.0628 0.2230 10.16

IL β∗ and ty 5.2025 -0.4548 1.1894 48608

IL fitted β̂ and t̂y(β̂) 5.2009 -0.4545 1.1886 48605.32
0.1193 0.0152 0.0525 48.59
0.1207 0.0154 0.0540 48.30

LA β∗ and ty 3.5327 -0.2617 0.6822 13944

LA fitted β̂ and t̂y(β̂) 3.5277 -0.2609 0.6813 13944.63
0.1899 0.0269 0.0958 35.56
0.1898 0.0269 0.0952 35.21

SD β∗ and ty 6.0846 -0.5188 1.2285 20231

SD fitted β̂ and t̂y(β̂) 6.0915 -0.5193 1.2281 20230.13
0.2287 0.0272 0.0846 24.20
0.2316 0.0276 0.0856 23.95

Based upon 1000 simulations. For each fitted model, the first line gives mean fitted
values, the second their empirical standard deviations, and the third the square
root of the mean of the sample estimated variances calculated using (25) or (19).
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Table 6: Estimated number of farms, simulated populations

Reweighting: 5 Z-groups Calibration: 4/5 X-variables

standard error standard error

No. farms mean empirical eqn (19) mean empirical eqn (19)

CA 39568 38815.03 39.62 42.86 39365.00 154.60 156.68
DE 1147 1138.96 8.01 8.41 1145.66 15.97 16.91
IL 48608 47369.47 37.58 45.38 48133.22 73.04 79.66
LA 13944 13708.36 26.03 27.92 13713.93 81.04 91.46
SD 20231 19766.06 19.51 25.17 20081.41 43.86 51.50

Based upon 1000 simulations.

(but fit the coefficients). The five X-group calibrations use the correct variables to
model the response probability but implicitly hypothesize an incorrect functional
form for its dependence upon these variables. By contrast, poststratification models
response probability using the wrong variables (NASS expected sales instead of
actual sales).

Another difference between the five X-group variable calibration fit and the
poststratification fit is that in the former case, the unique solution to equation (23)
might not satisfy equation (24). That is, the unique solution to (23) corresponds to
response probabilities outside the range (0, 1). This leads to the fitted targets not
matching the preset targets. As discussed in the previous section, this anomaly can
be handled by setting the response probabilities in the offending X-group to one,
or equivalently, by the variable-dropping technique described there. This anomaly
occurred for 0%, 26.3%, 89.3%, 24.5%, and 48.8% of the runs in CA, DE, IL, LA, and
SD respectively. This anomaly is mathematically impossible with poststratification.

For these two response models, Table 6 gives the total number of farms, and the
mean of the sample estimates, their empirical standard deviation, and the square
root of the mean of the sample estimates of their variance as calculated using equa-
tion (19). Examining these two misspecified models, it is clear that although both
of them produced downward biased estimates, the bias is in most cases substantially
reduced when the appropriate variables are used for modelling the response mecha-
nism. This provides a strong argument for separating the calibration variables from
the response model variables.

9 Concluding Remarks

As noted in the introduction, it is a simple matter to adapt most of the results in
this paper to the situation where calibration is used to adjust for coverage errors,
whether from frame undercoverage or unit duplication. In this context, pi is the
expected number of times population unit i is in the frame. Under the assumed
quasi-randomization model this probability is independent of the actual sample
drawn and of how many times other elements of the population are in the frame.
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The possibility a unit appearing more than once on a frame does cause some
small differences in variance estimation. When there is no possibility of unit du-
plication, the variance of the function indicating whether population unit i is in
the frame is p(x

′

iβ∗)(1 − p(x
′

iβ∗)), paralleling the situation with survey response.
When the frame contains potential duplication, however, the variance of the ex-
pected number of times a population unit is no longer p(x

′

iβ∗)(1 − p(x
′

iβ∗)) and
its value will need to be assumed for the analogue of (18), a measure of the added
variance due to frame errors, to be derived.

In the section 7, we described how NASS used poststratification, a special case
of calibration, to adjust for nonresponse in the 2002 Census of Agriculture. NASS
also used calibration to adjust for undercoverage. It did this by treating the re-
spondent sample as the original survey sample with “sample weights” equal to
the nonresponse-adjustment weights. A single set of variables served as both the
model and benchmark variables. The population totals for some benchmarks were
wholly derived from independent NASS surveys. For other benchmark variables,
nonresponse-adjusted Census aggregates were added to estimates from an indepen-
dent area sample of farms not on the Census frame.

Obviously, there is a lot of improvement possible in this methodology as there
is in the nonresponse adjustment. The main point we want to make here, however,
is that although the Census of Agriculture used calibration techniques to adjust for
both nonresponse and undercoverage, these adjustments were done separately. In
fact, some of the coverage benchmarks could only be determined after the nonre-
sponse adjustment.

Suppose one wanted to calibrate simultaneously for nonresponse and coverage
errors. Let x1 be the vector of variables to be used to model coverage and x2 the
vector to model response. Let β1 and β2 be the corresponding coefficients. If we
let x = [x

′

1 x
′

2]
′

, β = [β
′

1 β
′

2]
′

, and p(x, β) = p1(x
′

1β1)p2(x
′

2β2), then most of our
results can be extended with little effort.

It is important in this setup that the variables used to model response be different
from those used to model coverage. Indeed the pair (x1,x2) should not be close to
collinear. Otherwise

p1(x
′

1β1)p2(x
′

2β2) ≈ p1(x
′

1β1∗)p2(x
′

2β2∗)

+ p1(x
′

1β1∗)p
′

2(x
′

2β2∗)x
′

2(β2 − β2∗)

+ p
′

1(x
′

1β1∗)p2(x
′

2β2∗)x
′

1(β1 − β1∗)

As a result, (β1, β2) cannot be nearly estimated with a first-order approximation. In
practice what would happen will be a breakdown of the asymptotic approximations
used here as well as slow numerical convergence in the calculation of (β̂1, β̂2).

An example where response and coverage calibration has been done simultane-
ously can be found in Crouse and Kott (2004). Rather than assuming the compo-
nents of the response and coverage models are distinct, however, that paper supposes
that the components are, or could be, exactly the same. This is accomplished by
assuming both models have the form p(.) = exp(.) so that pi = p1(x

′

i1β1)p2(x
′

i2β2)
is also of that form. The adjustments for nonresponse and coverage errors can not
separated, but as the real goal of calibration is the estimation of totals (or functions
of totals), that need not be considered a problem.
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Much work is needed in determining how to select model and benchmark vari-
ables in practice, especially when the targets of the benchmark variables are them-
selves potentially subject to sampling and measurement errors. Nevertheless, by
allowing a separation between the model and benchmark variables, the approach to
calibration developed here may open the door to more plausible modelling of the
response and coverage mechanisms.

Avoiding response and coverage modelling as much as possible remains a prudent
policy. Even the cleverest model assumptions are difficult to test and prone to
failure. Unfortunately, eschewing models will not be viable option as surveys based
on incomplete frames or suffering from small response rates become increasingly
common.
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