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Abstract

Calibration forces the weighted estimates of certain variables to match
known or alternatively estimated population totals called benchmarks. It can
be used to correct for sample-survey nonresponse or for coverage error result-
ing from frame undercoverage or unit duplication. The quasi-randomization
theory supporting its use in nonresponse adjustment treats response as an ad-
ditional phase of random sampling. The functional form of a quasi-random
response model is assumed to be known, its parameter values estimated im-
plicitly through the creation of calibration weights. Unfortunately, calibration
depends upon known benchmark totals while the variables in a plausible model
for survey response are not necessarily the same as the benchmark variables.
Moreover, it may be prudent to keep the number of explanatory variables in a
response model small. We will address using calibration to adjust for nonre-
sponse when the model variables and benchmark variables are allowed to differ
as long as the number of benchmark variables is at least as great as the number
of model variables. Data from National Agricultural Statistical Service’s 2002
Census of Agriculture and simulations based upon that data will be used to
illustrate alternative adjustments for nonresponse. The paper concludes with
some remarks about extension of the methodology to adjustment for coverage
error.

KEY WORDS: Benchmark; Consistency; Coverage model; Back-link func-
tion; Quasi-randomization; Response model.
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1 Introduction

Calibration weighting ensures that sample-estimated totals of certain calibration or
benchmark variables match previously determined population totals. Two related
special cases of calibration, poststratification and weighting-class adjustment (see
Lohr 1999, pp. 266-267) are used extensively to adjust for survey nonresponse, a
subject of growing interest as the response rates in both government and private
surveys decline.

Oh and Scheuren (1983) provide a theoretical justification for weighting-class
adjustment by treating response as a second phase of sample selection. In this
quasi-randomization (or quasi-design-based) framework, each sampled unit within
the same weighting class has an equal and independent probability of selection into
the respondent subsample. That probability is estimated implicitly in the weighting
process. The prefix “quasi” is added to “randomization” to emphasize that inference
is not model free, but depends on an assumed response model. Like all models,
the response model can fail. Unfortunately, any method for handling nonresponse
requires some form of modelling, at least implicitly.

More complex nonresponse adjusting calibration schemes are proposed by Fol-
som (1991), Fuller, Louglin, and Baker (1994), and Kott (2004a). In each the
probability of response is assumed to be a known back-link function of an unknown
(but estimatable) linear combination of model variables. The back-link function is
the back transformation of the link function in a generalized linear model. See, for
example, McCullagh and Nelder (1989). What we have called the “back-link” is
sometimes called the “inverse link” in the generalized-linear-model literature.

In Fuller et al., the back-link function has the form p(η) = 1/(1+η). This allows
calibration to have its conventional linear form. Lundström and Särndal (1999) also
proposes using calibration in conventional linear form to adjust for nonresponse but
without specifying a back-link function.

Folsom proposes more plausible functions for the modeling of response than
p(η) = 1/(1 + η). One such is the logistic: p(η) = [1 + exp(−η)]−1. In addition,
raking is shown to be a form of calibration weighting with a back-link function of
the form p(η) = exp(η). A follow-up, Folsom and Singh (2002), proposes a class of
reasonable back-link functions.

In both Fuller et al. and Folsom the model variables used to estimate implicitly
the probabilities of response are the same as the calibration variables for which one
has benchmark totals. In Kott, that is no longer the case. This extension does not
require that model-variable totals be known. For example, one can separate respon-
dents into response groups in an analogue to poststratification based on their survey
responses. Still, Kott assumes the number of model and benchmark variables are
equal. Moreover, that paper does not demonstrate the practicality of its approach
with data.

Särndal and Lundström (2005) also treats the case where the model and bench-
mark variables can differ in definition but not in number. In addition, it allows
some of the benchmark totals to be calculable from the sample before nonresponse.
The back-link function is not specified. Moreover, the authors do not appear to
notice that calibration is possible when model-variable values are known only for
the respondents.

We will show how to use calibration to adjust for nonresponse when the number
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of benchmark variables is at least as great as the number of model variables. This
generalizes the result in Kott. In Section 2 we will introduce our notation and
motivate our approach to calibration, which is discussed in more detail in Sections
3 and 4.

In section 5 we turn to the estimation of a total for a vector of variables of interest
that typically do not include the benchmark variables (since they are either known
or previously estimated) but may include some of the model variables. We show
how to measure both the additional asymptotic variance due to the nonresponse in
a calibration-weighted estimator and the full asymptotic variance of the estimator
itself.

Section 6 contains applications of our methodology to nonresponse adjustment
for the 2002 Census of Agriculture. We show here how the probability of a farm’s
responding to the census can be assumed to be a function of its survey-reported
sales rather than its expected sales before enumeration, as is currently assumed
in practice. In section 7 we report on simulations from an artificial population
constructed from the respondents of the Census of Agriculture.

Section 8 provides some concluding remarks. Among them is a brief discussion
about extending the findings of the preceding sections to adjusting for coverage
errors, a topic of increasing interest for surveys based on incomplete frames such as
telephone and internet surveys.

2 Notation and Motivation

Suppose zi is a P -vector of calibration or benchmark variables for the i-th population
unit, and xi a Q-vector of explanatory or model variables. We will assume that the
probability of i responding (when the unit is selected for the sample) is p(x

′
iβ∗)

for some vector parameter β∗, where g(η) = 1/p(η) is a known and everywhere
monotonic and twice differentiable function, such as g(η) = (1 + exp(−η)).

If β∗ were also known, then an expansion estimator for the vector of totals of
the benchmark variables would be

t̂z(β∗) =
∑
i∈R

di

p(x′
iβ∗)

zi, (1)

where di is the sampling weight in the absence of nonresponse, and R is the set of
respondents.

If Tz is a vector of calibration target values consisting of known, or previously
estimated, population totals, then β∗ could be estimated from the data using the
calibration equation(s)

Tz =
∑
i∈R

di

p(x′
iβ̂)

zi. (2)

If the number P of benchmark variables equals the number Q of model variables,
equations (2) will usually be sufficient to determine β̂. On the other hand, if P < Q,
β̂ will be underdetermined by (2).

Realize, however, that even were β∗ known, it is unlikely that t̂z(β∗) would equal
Tz exactly due to sampling variability. The vectors t̂z(β∗) and tz should nonetheless
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be close. With this in mind, we suggest that (1), and its child (2), be viewed
heuristically as nonlinear regression-type equations

Tz = t̂z(β) + ε (3)

where

t̂z(β) =
∑
i∈R

di

p(x′
iβ)

zi (4)

and ε is a P -vector of “errors”. In the nonlinear regression paradigm, it is desirable
that P > Q and, indeed, the more calibration targets the merrier. The parameter
β can be estimated by minimizing an objective function of the form

ρ(β) = −logdet(W) + (Tz − t̂z(β))
′
W(Tz − t̂z(β)) (5)

for some appropriately chosen P × P positive definite matrix W. Note that (5) is
the log likelihood of t̂z(β) under an asymptotic normal distribution with covariance
matrix W−1. In maximum likelihood estimation, where W is estimated from the
sample, the −logdet(W) term prevents the minimization from attempting to send
W → 0. It is important to realize that when P > Q, no choice of β forces t̂z(β) to
equal Tz as in conventional P = Q calibration.

The nonlinear regression formulation of (3) suggests setting W = V−1 for some
suitably defined variance matrix V of ε. When this choice of W depends on β,
we propose an iterative procedure analogous to what would be used with a fixed
W. Given a guess β̃0 of β∗, we can linearize the regression (3) at β̃0. The solution
to the linearized regression is the next guess β̃1. This procedure is described more
thoroughly in Section 3.

An obvious candidate for V is V̂ arqr(t̂z(β)|β = β∗), an estimator for the quasi-
randomization variance of t̂z(β) assuming β = β∗. If the sampling scheme is without
replacement so that t̂z(β) of (3) is the Horvitz Thompson estimator, then one such
quasi-randomization variance estimator is

V̂ arqr(t̂z(β)|β = β∗) =
∑

i,j∈R

πij − πiπj

πijπiπjpipj
ziz

′
j +

∑
i∈R

1− pi

p2
i πi

ziz
′
i, (6)

where pi = p(x
′
iβ). Equation (6) is derived in Appendix 9.1.

In the quasi-randomization framework supporting (6) one assumes the set R
of respondents results from a two-phase sample of the target population U . In
the first phase, the sample S is drawn without replacement from the population
with inclusion probabilities πi = Pr[ i ∈ S] and πij = Pr[ i, j ∈ S]. In this case,
di = π−1

i . In the second phase, R is a Poisson subsample of S with unit selection
probabilities of the form pi = p(x

′
iβ).

If the targets Tz are themselves previously estimated population totals, then it
is reasonable to let

V = V̂ arqr(t̂z(β)|β = β∗) + V̂ ar(Tz)

where V̂ ar(Tz) is a good externally determined estimate of the variance of Tz. In
some applications V̂ ar(Tz) may be much greater than V̂ arqr(t̂z(β)|β = β∗), and it
will be reasonable to set W to (V̂ ar(Tz))−1, which is not a function of β at all.
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3 Partial Minimization

Given a guess β̃0 of β and matrix W(β̃0) we linearize (3) at β̃0 and obtain

Tz − t̂z(β̃0) ≈ Ĥ(β̃0)
(
β − β̃0

)
+ ε, (7)

where Ĥ(β̃0) is the P ×Q matrix

Ĥ(β̃0) =
∂t̂z(β̃0)

∂β
=

∑
i∈R

dig1(x
′
iβ̃0)zix

′
i, (8)

and g1(x
′
iβ̃0) is the first derivative of g(η) = 1/p(η) evaluated at x

′
iβ̃0.

The (weighted) linear regression estimate β̃1 corresponding to (7) minimizes the
objective function U

′
W(β̃0)U where U = Tz − t̂z(β̃0)− Ĥ(β̃0)(β − β̃0). It is given

by the update equation:

β̃1 = β̃0 +
[
Ĥ(β̃0)

′
W(β̃0)Ĥ(β̃0)

]−1 [
Ĥ(β̃0)

′
W(β̃0)

(
Tz − t̂z(β̃0)

)]
. (9)

For simplicity, we assume Ĥ(β) and W(β) are of full rank everywhere. This will
allow us to always be able to invert matrices when the need arises.

Iteration continues with β̃1 serving the role of β̃0 in (9), and so on until we reach
a step K, if such a step can be reached, where

Ĥ
′
W

(
Tz − t̂z(β̃)

)
= 0 (10)

with the matrices Ĥ and W evaluated at β̃ = β̃K . As the iteration starting with
(9) is a Newton-Raphson type method, it is sometimes helpful to limit the size of
the step from, say, β̃k−1 to β̃k for some k = 1, ...,K. What this means is that when[
Ĥ(β̃k−1)W(β̃k−1)Ĥ(β̃k−1)

]−1 [
Ĥ(β̃k−1)

′
W(β̃k−1)

(
Tz − t̂z(β̃k−1)

)]
is deemed too

large, it can be replaced with some fraction of itself in the update equation.
If W is the inverse of an estimate for the variance matrix of t̂z(β̃), an alterna-

tive derivation and justification of the update equation (9) follows from Thompson
(1997). Consider the equations t̂z(β)− Tz = 0 as P estimating equations for the Q
coefficients β. If A is a Q × P matrix of constants, let β̃A denote the solution to
the estimating equations

At̂z(β) = ATz. (11)

A choice for A such that β̃A has a minimum asymptotic variance is A∗ =

Ĥ(β̃A∗)
′

[V ar(t̂z(β̃A∗))]−1, where β̃A∗ results from the convergence of update equa-
tion (9).

Observe that when W = W(β) depends upon β, our suggested procedure for
estimating β∗ does not minimize the objective function (5). This is because if (5)
were differentiated with respect to β, then there would be a term for the derivative
of W which is not accounted for in the linearization (7). In other words, letting

ρ̈(β, γ) = −logdet(W(γ)) + (Tz − t̂z(β))
′
W(γ)(Tz − t̂z(β)),
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full minimization would solve the equation

0 =
∂ρ̈

∂β
(β̂, β̂) +

∂ρ̈

∂γ
(β̂, β̂) (12)

whereas the partial minimization, obtained through iterated use of (9), sets only the
first term of the right hand side of (12) to zero. In what follows we will distinguish
partial minimums from full minimums by using the notation β̃ for the former and
β̂ for the latter.

In the appendices we first discuss an example of conditions sufficient to establish
the consistency of β̂ under full minimization and then the asymptotic equivalence
of the partial minimum β̃. Full and partial minimization usually yielded very sim-
ilar results in our own empirical investigations, with the former taking longer to
compute. In fact, finding a full minimum was extremely difficult when there was
no partial-minimum solution to use as an initial guess in the iterative process to
full minimization. Given that, the asymptotic equality of the two minima, and the
reliance on an asymptotic framework in our analysis, most of the remainder of text
concerns partial-minimization results.

4 Some Choices for W

When P = Q, equation (9) reduces to

β̃1 = β̃0 + Ĥ−1
(
Tz − t̂z(β̃0)

)
. (13)

Thus, in this case, the form of W is irrelevant for the update equation. Indeed (13)
is the Newton-Raphson update equation for solving the equation Tz = t̂z(β̃), and
the solution, if it exists, will also minimize (5), at least for any W which does not
depend upon β.

When P > Q, we proposed setting W(β) to the inverse of V = V̂ ar(t̂z(β)|β =
β∗) + V̂ ar(Tz), where the latter term is provided to us from external sources (and
may be 0). If the sample S is selected without replacement, then (6) is an unbiased
estimate of V ar(t̂z(β)|β = β∗).

For a stratified multistage design with primary sampling units (PSU’s) chosen
with replacement, let h = 1, . . . ,H index the strata. Suppose nh PSU’s are chosen
with replacement in stratum h. Let nhqhi be the expected number of times PSU i
from stratum h will appear in the first stage sample

Changing the meaning of i slightly, let Rhi be the set of subsampled and then
responding elements in the i-th PSU selected from stratum h, and let dhij be the
sampling weight (before nonresponse adjustment) for element j ∈ Rhi. Define

t̂zhi(β) = nhqhi

∑
j∈Rhi

dhij

p(x′
hijβ)

zhij , and

t̂zh(β) = n−1
h

nh∑
i=1

q−1
hi t̂zhi(β).

Then t̂z(β) =
∑

h t̂zh(β) is an unbiased estimate of tz(β) =
∑

U p(x
′
β)−1p(x

′
β∗)z.

When β = β∗ its quasi-randomization variance can be unbiasedly estimated by

V̂ arwr(t̂z(β)|β = β∗) = (14)
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∑
h

[nh(nh − 1)]−1
nh∑
i=1

(q−1
hi t̂zhi(β)− t̂zh(β))(q−1

hi t̂zhi(β)− t̂zh(β))
′
.

For simplicity we are assuming in (14) that no element is selected more than once
into the sample before nonresponse (see Remark 3).

Finally, notice that when V̂ ar(Tz) = 0, the estimate β̃ is unchanged when
V arqr(t̂z(β)) is only estimated up to a multiplicative constant within W−1. This
suggests invoking the spirit of design effects (Kish 1965), that is assuming that
the true variance is proportional to the variance that would have resulted from a
with-replacement simple random sample of size r drawn from a population of size
N , where r is the respondent size. This can be estimated, taking into account the
actual unequal selection and response probabilities of the respondent sample, by:

V̂ arsrs(t̂z(β)|β = β∗) =
N2

r(N − 1)

∑
i∈R

dip
−1
i (zi − z)(zi − z)

′
,

where
z = (

∑
i∈R

dip
−1
i )−1

∑
i∈R

dip
−1
i zi,

and, as before, pi = p(x
′
iβ). In practice, the scalar multiple N2

n(N−1) can be dropped

from V̂ within W = V̂−1.

5 The Calibration-Weighted Estimator for a Popula-
tion Total and Its Quasi-randomization Variance

Let yi be a vector of variables of interest. The purpose of calibration weighting is to
estimate population totals for the components of yi or functions of those totals, like
population ratios. Typically, the components of yi will not include the benchmark
variables in zi as they are already known or have been alternatively estimated. They
may include model variables in xi. In principle, they could include both types of
variables.

Our calibration-weighted estimator for the total ty is

t̂y(β̃) =
∑
i∈R

di

p(x′
iβ̃)

yi =
∑
i∈R

dig(x
′
iβ̃)yi =

∑
i∈R

ciyi, (15)

where ci = dig(x
′
iβ̃) is the calibration weight for unit i. Define

Ĥy =
∂t̂y
∂β

(β̃) =
∑
i∈R

dig1(x
′
iβ̃)yix

′
i, and

B = Ĥy

[
Ĥ

′
WĤ

]−1
Ĥ

′
W,

where Ĥ = Ĥz is the matrix of partial derivatives (8) which, like W, is evaluated
at β̃. Note that the components of Ĥy/N are OP (1).
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Writing yi as Bzi + (yi −Bzi), we have

t̂y(β̃) = Bt̂z(β̃) +
∑
i∈R

di

p(x′
iβ̃)

(yi −Bzi)

= BTz +
∑
i∈R

dig(x
′
iβ̃)(yi −Bzi).

The latter equality follows from (10). Note that

g(x
′
iβ̃)− g(x

′
iβ∗) = g1(x

′
iβ̃)x

′
i(β̃ − β∗) +

1
2
g2(ξi)[x

′
i(β̃ − β∗)]2, (16)

for some ξi between x
′
iβ̃ and x

′
iβ∗, where g2(.) is the second derivative of g. Thus

t̂y(β̃) = BTz +
∑
i∈R

dig(x
′
iβ∗)(yi −Bzi)

+ (Ĥy −BĤ)(β̃ − β∗) +
1
2

∑
i∈R

dig2(ξi)[x
′
i(β̃ − β∗)]2(yi −Bzi) (17)

= BTz +
∑
i∈R

dig(x
′
iβ∗)(yi −Bzi) + OP (N/n),

assuming all the components of
∑

i∈R di|g2(ξi)|(x
′
ixi)|yi −Bzi| are OP (N) (where

|q| is a vector containing the absolute values of the components of q). This leads
to

(t̂y(β̃)− ty)/N = (t̂u(β∗)− tu)/N + OP (1/n), (18)

where ui = yi −Bzi.
Unfortunately, ui depends on values for responding units other than i through

B, so tu is not really a vector of population totals. By adding the mild assumption
that as n grows arbitrarily large, B−B∗ = OP (1/n1/2), where B∗ is the probability
limit of B, we can infer that (t̂z(β∗) − Tz)(B − B∗)/N = OP (1/n). Thus, we can
replace the ui in (18) by ui∗ = yi −B∗zi and still have

(t̂y(β̃)− ty)/N = (t̂u∗(β∗)− tu∗)/N + OP (1/n). (19)

This suggests estimating V arqr(N−1t̂y(β̃)) with an estimate of V arqr(N−1t̂u∗(β∗)).
Recall that t̂y(β̃) has made use of a quasi-random model to adjust for nonre-

sponse. The variance of the respondent indicator function for sampled unit i (which
is 1 if i responds and 0 otherwise) is p(x

′
iβ∗)(1−p(x

′
iβ∗)). We will make the standard

assumption that these indicator functions are independent conditionally on the xi.
Assume now that the Tz is a known vector of population totals.
The component of the randomization variance of t̂y(β̃) due to nonresponse can

be estimated by

V̂ aradd =
∑
i∈R

d2
i

p(x′
iβ̃)2

(1− p(x
′
iβ̃))(yi −Bzi)(yi −Bzi)

′
. (20)

Note that the right hand side of (20) does not have a component that accounts for
the uncertainty in estimating β∗ because the terms involving β̃−β∗ in equation (17)
are asymptotically ignorable.
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When the original sample is drawn randomly without replacement, a reasonable
estimator for the quasi-randomization variance of t̂y(β̃) can be computed using the
right hand side of (6) with pi set to p(x

′
iβ̃) and zi replaced by ui. That is to say,

V̂ arqr(t̂y(β̃)) =
∑

i,j∈R

πij − πiπj

πijπiπjpipj
uiu

′
j +

∑
i∈R

1− pi

p2
i πi

uiu
′
i, (21)

where pi = p(x
′
iβ̃). Proving V̂ arqr(t̂y(β̃)) is asymptotically unbiased is not trivial

when the right hand side of of (21) has O(n2) terms. See Kim et al. for sufficient
additional restrictions on the coefficients in that situation.

Similarly when the original sample is drawn using a stratified multi-stage routine
and the first stage drawn with replacement, one can compute the variance estimator
for t̂y under a first-stage-with-replacement design as described in Section 4, again
with pi set to p(x

′
iβ̃) and ui replacing zi.

There is an additional component in the asymptotic variance of t̂y(β̃) when Tz

is not known with certainty but is estimated from an independent external source
or sources. An obvious measure for this component is

V̂ arext = BV̂ ar(Tz)B
′
, (22)

where V̂ ar(Tz) is an externally-provided estimate for the variance of Tz.
Finally we note that when a full minimum β̂ is used, equation (10) can replaced

by equation (39). This implies that, to the order of approximation used here, the
results of this section still apply if the partial minimum β̃ is everywhere replaced
by β̂.

6 Example: the 2002 Census of Agriculture

Despite its name, it is helpful to think of the 2002 US Census of Agriculture as a
survey. Its core was indeed a census of all places with the potential of producing
$1,000 or more of annual agricultural sales - what the National Agricultural Statis-
tics Service (NASS) defines as farms. This core, however, had to be supplemented
to two directions. First, not all entities on the Census Mailing List (CML) main-
tained by NASS responded to the Census of Agriculture. Second, not all places
NASS defined as farms were on the CML.

To compensate for nonresponse and undercoverage, reweighting of Census records
was used. Unlike most surveys, the completed records in the 2002 Census of Agri-
culture had original weights of 1. These weights were adjusted first to account
for the nonresponse and then the undercoverage. How both of these were done is
explained in some detail on the NASS web site (Kott 2004b).

Our attention in this section will be focused on the adjustment for nonresponse
in the 2002 Census of Agriculture. NASS used a weighting-class/poststratification
approach to adjusting for nonresponse. The agency divided the entities receiving
Census forms into mutually exclusive response groups (weighting classes, poststrata)
based on what NASS believed to be each entity’s county of operation, its size class as
measured by expected sales, and whether or not the entity responded to an agency
survey since 1997. Potential farms above a certain expected size or without expected

9



sales information were removed from this categorization and handled separately, as
were entities whose forms were returned as undeliverable by the Post Office.

First, we parallel the within-county routines actually used by NASS and reweight
within each state using five mutually exclusive response groups:

• Z-Group 1: Expected 2002 sales less than $2,500;

• Z-Group 2: Expected 2002 sales between $2,500 and $9,999;

• Z-Group 3: Expected 2002 sales between $10,000 and $49,999 and previously
reported survey data from 1997 or later;

• Z-Group 4: Expected 2002 sales greater than or equal to $50,000 and reported
survey data from 1997 or later;

• Z-Group 5: Expected 2002 sales greater than or equal to $10,000 and no
reported survey data from 1997 or later.

All the units in each state data set belonged to one of these five groups. Mathe-
matically, zi = (zi1, zi2, · · · , zi5)′, where zih = 1 when i is in Z-Group h and zih = 0
otherwise.

Because all the di = 1, the nonresponse-adjustment (poststratification) weight
for unit i is ci = ai = Nh/rh when the unit is in Z-Group h, where Nh is the number
of entities on the CML in Z-group h and rh is the number of responding entities in
Z-group h.

Then we contrast reweighting with calibration using these five Z-group indicator
variables as benchmark variables. We present here the results from five states. Cal-
ifornia (CA) and Delaware (DE) have been chosen because they represent diametri-
cally opposite states from an agricultural standpoint. Illinois (IL), Louisiana (LA),
and South Dakota (SD) are included because they pose interesting difficulties in the
analysis as we shall see. Table 2 displays the benchmark targets t′z = (N1, · · · , N5).

In one set of calibration runs, we use as model variables the indicator variables for
five “X-groups” defined using actual sales, as reported on the Census of Agriculture
in place of the expected sales in the definition of the Z-groups.

In this case P = Q = 5 and the calibration equations (2) become

5∑
g=1

ãgrhg = Nh (23)

ãg = (p(β̂g))−1 (24)

where rhg is the number of respondents in X-group g and Z-group h. Unless the 5×5
matrix (rhg)g,h=1,···,5 is singular, (23) has a unique solution ãg, and ci = ai = ãg is
the calibration weight for respondent i in X-Group g. If all the ãg are in the range
of p(η)−1, that is, between 1 and ∞, a unique solution for the calibration equation
(2) will be found. The fitted weights ãg derived from (23), a derivation that does
not depend on the back-link function, are given in Table 1.

Notice that the calibration weight is less than 1 for respondents from X-group 1
in IL and for respondents from X-group 2 in LA and SD. These are the only states
and X-groups where this anamoly happens, which is why we are examining them
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Table 1: Fitted weights for the five x-variable calibration

ã1 ã2 ã3 ã4 ã5

CA 1.095 1.118 1.164 1.227 1.352
DE 1.153 1.136 1.531 1.151 1.431
IL 0.999 1.286 1.275 1.239 2.504
LA 1.164 0.954 1.281 1.226 1.670
SD 1.076 0.942 1.143 1.228 1.720

here. If these weights were used to estimate the number of farms in one of those X-
groups, the estimate would be less than the actual number of responding farms in the
X-group, an absurdity. It would also imply, under our assumed quasi-randomization
model, that the estimated probability of a unit in this group responding would
exceed 1, also absurd.

When such an anomaly occurs, (24) has no solution using the logistic back-link
function; in this case, p(βg) = (1 + exp(−βg))−1 for i in X-group g. As a result,
iterated use of the update equation (9) fails to converge as β̂g → ∞ for some g.
One solution is to force the calibration weights in an offending X-group to be unity
and to remove the group’s observations from the sample and the calculation of
the benchmark targets. When that is done, one has the calibration problem with
P > Q.

In a second set of calibration runs, we model response as a logistic function
of three calibration x-variables: an intercept, logsales the logarithm of the actual
annual sales in 2002, truncated to the range $1,000 to $100,000, and s97 an indicator
variable for whether or not the farm responded to a survey since the 1997 Census
of Agriculture. For these runs, the fitted benchmark totals t̂z(β̂)) differ from the
benchmark target totals in each state. Both sets are displayed in Table 2.

Table 2 shows how well calibration does at estimating the benchmark totals when
there are less model variables than benchmark variables. Recall that exact equality
is not expected in this context. This is a simple check on the appropriateness
of the model. Relative to the calculated standard errors, the four-model-variable
calibrations in the three problem states IL, LA, and SD appear to fit the data well.
The three-model-variable calibrations do not, especially in Illinois.

In the next section we perform a simulation study using this data. Our con-
clusion is that if the response model (that is, that the probability of response is
the logistic back link of a linear combination of an intercept, logsales, and s97)
is correct then calibration works well. It seems that Table 2 establishes that this
response model is, in fact, unlikely to be correct.

We now use calibration to estimate the total number of active farms. In this
context our y variable is a 0-1 variable for being an active farm. We compare the
existing NASS approach of reweighting within Z-groups, calibration using five (for
CA and DE) or four (for IL, LA, and SD) indicator variables defined by the X-
groups, and calibration using the three variable model (intercept, logsales and s97).
The results are given in Table 3, with the standard errors, calculated as in Section
5 for the calibration estimates and using (6) for the reweighting estimate. For the
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Table 2: Benchmark targets and fitted totals for three and four model variable
calibrations

N1 N2 N3 N4 N5

CA targets 21804 14622 14309 14777 4769
CA 3 var. fit 21861.5 14578.0 14273.8 14816.0 4751.6

(30.2) (34.3) (36.5) (25.7) (9.4)

DE targets 628 369 334 517 216
DE 3 var.fit 638.9 370.3 311.5 535.4 207.9

(5.9) (7.0) (6.5) (5.2) (2.5)

IL targets 20220 15959 14241 24505 6513
IL 4 var. fit 20226.4 15955.6 14241.3 24505.0 6509.7

(49.0) (26.1) (2.4) (0.3) (25.1)
IL 3 var.fit 21044.1 15597.6 13560.2 25291.4 5874.4

(35.0) (36.2) (32.3) (30.4) (23.2)

LA targets 10390 7850 4275 2638 1040
LA 4 var. fit 10375.4 7873.3 4266.0 2639.2 1039.1

(17.1) (27.3) (10.6) (1.5) (1.1)
LA 3 var. fit 10394.3 7880.7 4225.2 2664.8 1027.9

(20.9) (24.8) (19.8) (12.8) (9.3)

SD targets 5847 5304 7278 11134 2416
SD 4 var. fit 5833.7 5327.0 7270.8 11135.8 2411.7

(11.7) (20.3) (6.3) (1.6) (3.8)
SD 3 var. fit 5864.2 5322.9 7198.1 11209.4 2380.7

(15.9) (18.8) (22.2) (21.4) (10.1)

Standard errors, calculated using (21) with πi = πij = 1 and yi = zi, are given in
parentheses.
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Table 3: Estimated number of farms

calibration using calibration using
reweighting using X-groups intercept

5 Z-groups (4/5 variables) logsales, s97

CA 45312.5 (45.8) 46181.3 (165.6) 46178.8 (56.3)
DE 1390.9 (9.2) 1416.1 (18.7) 1400.6 (11.0)
IL 57332.4 (52.1) 60797.8 (1.5) 58925.7 (53.7)
LA 16139.6 (30.3) 16138.4 (50.8) 16425.3 (37.6)
SD 23260.7 (27.7) 23734.8 (42.1) 23821.1 (25.5)

Standard errors in parentheses.

latter standard error, the standard poststratification variance formula produces the
same answer. They are identical asymptotically and within roundoff error in this
application.

In interpreting Table 3, it is important to realize that the standard errors are
computed assuming the underlying model for that fit is correct. It is well known,
and simulations in the next section document, that a misspecified response model
can introduce biases that dwarf the estimated standard errors calculated in Table
3.

The the poststratification standard error assumes that response probability takes
on one of five possible values. The choice of one of these five possible values depends
upon NASS assigned expected sales and participation in surveys since 1997.

The calibration estimate using four or five X-groups also assumes that response
probability takes on one of five possible values. Here, however, actual sales is more
plausibly employed in forming the groups. As a result, the estimated farm count
turns out to be higher in 46 of the 47 states NASS used reweighting to adjust for cen-
sus nonresponse (not shown), suggesting that the agency’s nonresponse-adjustment
methodology is biased downward. The high standard errors resulting in most states
from employing actual sales in group formation may be the price one has to pay for
a systematic reduction in this bias.

Observe that the standard error for the Illinois four-X-group fit is surprisingly
small. This appears to be a ramification of assuming the probability of response in
X-group 1, the only X-group containing nonfarms, is known.

The three-variable-calibration model assumes that response probability varies
continuously with actual sales given survey participation. Although this seems
reasonable and results in estimated standard error only slightly higher than those
for poststratification, we saw in Table 2 that this model is not supported by the
data. Clearly, more research on model-fitting techniques for response modelling
through calibration is needed.
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Table 4: Benchmark targets and fitted totals for three model variable calibrations,
simulated populations

N1 N2 N3 N4 N5

CA targets 19603 13034 12502 12463 3967
CA fitted 19603.28 13033.60 12502.34 12462.83 3966.96

28.11 32.42 34.01 23.26 8.64
28.42 32.16 33.75 23.37 8.75

DE targets 537 311 259 435 167
DE fitted 537.02 310.99 259.04 434.96 166.99

5.39 6.40 6.04 4.75 2.31
5.42 6.42 5.96 4.73 2.30

IL targets 18542 14000 12048 20268 4388
IL fitted 18540.11 14001.55 12048.90 20266.67 4388.91

31.11 31.97 27.91 25.51 20.44
30.88 32.39 28.72 25.91 20.55

LA targets 9054 6938 3673 2182 806
LA fitted 9054.15 6938.15 3672.75 2182.09 805.87

19.64 22.65 18.39 11.37 8.64
19.30 22.61 18.24 11.14 8.45

SD targets 5358 4876 6499 9378 1837
SD fitted 5357.63 4876.97 6498.43 9378.30 1836.66

14.57 17.52 20.22 19.24 9.34
14.37 17.23 20.01 19.06 9.23

Based upon 1000 simulations. For each fitted model, the first line gives mean fitted
targets, the second their empirical standard deviations, and the third the square
root of the mean of the sample estimated variances calculated using (21).
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7 Simulations

As discussed in the previous section, an incorrect model is a possible explanation
for the poor fit provided by the three variable models evidenced in Table 2. To
explore this question further, we conducted simulations. Our conclusion is that, if
the form of the response model is correct, then calibration performs just fine.

Our approach was as follows. For each of the five states, assuming the fitted
three-variable response model is correct, response probabilities were calculated for
each of the respondents to the Census. Then a synthetic state was created using
only the respondents to the Census, together with their response probabilities. In
particular, new target benchmarks were calculated as sizes of the Z-groups within
the synthetic state populations, that is the respondents within the original states.

Each Monte Carlo replication consisted of creating respondents within the syn-
thetic states using the assigned response probabilities and fitting a calibration model
to the synthetic state using these respondents. 1000 Monte Carlo simulations were
done for each state. Table 4 gives for each of the synthetic state simulations, the
mean of the fitted targets and their sample standard deviation, together with square
root of the mean estimated variance given by equation (21).

Examining Table 4, all mean fitted targets are within two standard errors of
their benchmarks; in CA, DE, and LA they are well within one standard error. It
should be noted that in CA, DE, and LA the maximum of the assigned response
probabilities is 0.925, 0.859, and 0.917 respectively. By contrast, 21.5% of the
synthetic IL population has an assigned probability in excess of 0.95. In SD the
corresponding percentage is 23.2%. Nonlinearities in the response probability link
function are most severe for probabilities close to 1 or to 0. Thus the biases in the
fitted targets that possibly exist for these two populations are likely due to the large
proportion of these synthetic populations with high response probabilities.

When W(β) =
[
V̂ar(t̂z(β))

]−1
, equations (40) and (41) from Appendix 9.3

suggest estimating V ar(β̂) and V ar(β̃) by
[
Ĥ

′
WĤ

]−1
(where Ĥ and W are eval-

uated at β̂ and β̃ respectively). Table 5 gives, for each synthetic state, the true β∗,
the mean of the fitted β̃, their sample standard deviations, and the square root of
the mean of the variance estimates.

Table 5 also gives the results for each state, the total number of farms ty and
its estimate t̂y(β̃) given by equation (15). The sample estimate of the variance of
t̂y(β̃) is given by equation (21).

Table 5 in general shows good fit.
We also fit two misspecified models to the synthetic states. In the first of these,

the model variables used were the five X-group variables defined in the previous
section. In the second, poststratification/reweighting using the five Z-groups was
used, that is the five Z-group variables were used for both the model variables and
the benchmark variables.

Recall that in the synthetic states, the response probability was constructed to
depend upon actual sales and participation in a previous survey. The three variable
calibrations, whose results are given in Tables 4 and 5, hypothesize the correct
functional form for the dependence of the response probability on these two variables
(but fit the coefficients). The five X-group calibrations use the correct variables to
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Table 5: Coefficients β∗ and total number of farms ty, together with estimates β̂

and t̂y(β̂), three model variable calibrations on simulated populations

Coefficients

int logsales s97 Number of Farms

CA β∗ and ty 3.7478 -0.2341 0.3841 39568
CA fitted β̂ and t̂y(β̂) 3.7433 -0.2335 0.3835 39565.53

0.1051 0.0132 0.0510 52.81
0.1062 0.0132 0.0507 53.57

DE β∗ and ty 2.3161 -0.0964 0.1543 1147
DE fitted β̂ and t̂y(β̂) 2.3292 -0.0957 0.1379 1146.61

0.4934 0.0638 0.2227 10.63
0.4908 0.0628 0.2230 10.16

IL β∗ and ty 5.2025 -0.4548 1.1894 48608
IL fitted β̂ and t̂y(β̂) 5.2009 -0.4545 1.1886 48605.32

0.1193 0.0152 0.0525 48.59
0.1207 0.0154 0.0540 48.30

LA β∗ and ty 3.5327 -0.2617 0.6822 13944
LA fitted β̂ and t̂y(β̂) 3.5277 -0.2609 0.6813 13944.63

0.1899 0.0269 0.0958 35.56
0.1898 0.0269 0.0952 35.21

SD β∗ and ty 6.0846 -0.5188 1.2285 20231
SD fitted β̂ and t̂y(β̂) 6.0915 -0.5193 1.2281 20230.13

0.2287 0.0272 0.0846 24.20
0.2316 0.0276 0.0856 23.95

Based upon 1000 simulations. For each state, the first line contains the true values,
the second contains the means fitted values, the third their empirical standard

deviations, and the fourth the square root of the mean of the estimated variances.
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Table 6: Estimated number of farms, simulated populations

Reweighting: 5 Z-groups Calibration: 4/5 X-variables

standard error standard error

No. farms mean empirical eqn (21) mean empirical eqn (21)

CA 39568 38815.03 39.62 42.86 39365.00 154.60 156.68
DE 1147 1138.96 8.01 8.41 1145.66 15.97 16.91
IL 48608 47369.47 37.58 45.38 48133.22 73.04 79.66
LA 13944 13708.36 26.03 27.92 13713.93 81.04 91.46
SD 20231 19766.06 19.51 25.17 20081.41 43.86 51.50

Based upon 1000 simulations.

model the response probability but implicitly hypothesize an incorrect functional
form for its dependence upon these variables. By contrast, poststratification models
response probability using the wrong variables (NASS expected sales instead of
actual sales).

Another difference between the five X-group variable calibration fit and the
poststratification fit is that in the former case, the unique solution to equation (23)
might not satisfy equation (24). That is, the unique solution to (23) corresponds to
response probabilities outside the range (0, 1). This leads to the fitted targets not
matching the preset targets. As discussed in the previous section, this anomaly can
be handled by setting the response probabilities in the offending X-group to one.
This anomaly occurred for 0%, 26.3%, 89.3%, 24.5%, and 48.8% of the runs in CA,
DE, IL, LA, and SD respectively. This anomaly is mathematically impossible with
poststratification.

For these two response models, Table 6 gives the total number of farms, and the
mean of the sample estimates, their empirical standard deviation, and the square
root of the mean of the sample estimates of their variance as calculated using equa-
tion (21). Examining these two misspecified models, it is clear that total empirical
error is almost always dominated by bias. Although both models produced down-
ward biased estimates, the bias is in most cases substantially reduced when the
appropriate variables are used for modelling the response mechanism. This pro-
vides a strong argument for separating the calibration variables from the response
model variables.

8 Some Concluding Remarks

8.1 Calibration

Quasi-randomization modelling of nonresponse (also known as “response-propensity
modelling”) assumes that each element in a sample has an independent, condition-
ally on the model variables, probability of survey response. Conventionally, the
functional form of the model is assumed known even if the parameters of the model
are not. Moreover, the values of the model variables need to be known for all sam-
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pled elements, respondents and nonrespondents alike. This allows the fitting of
the response model directly to the full-sample data treating response/nonresponse
as a binary dependent variable. Alternatively, if a benchmark population (or full-
sample) total is known for each of the model variables, the model can be fit implicitly
through calibration, as shown by Folsom and Singh (2000) among others.

We have shown how to extend the theory and practice of calibration to fitting
a response function with Q model variables given P≥Q benchmark (calibration)
variables. Although population totals, which can be estimates from external sources,
need to be known for the benchmark variables, they do not need to known for model
variables. In fact, it is not even necessary to know the model-variable values for
sampled nonrespondents.

When P > Q, calibration-weighted estimates of benchmark-variable aggregates
will not generally equal externally-provided benchmark totals (as they will when
P = Q). This is paradoxically advantageous because it allows statistically testing
of the difference between these two quantities (as was done in Tables 4 and 6). This
provides one means for assessing the validity of the response model.

8.2 Partial minimization

Appendix 9.2 establishes conditions under which a minimum exists for the objec-
tive function (equation (5)) given a large-enough sample. This solution serves as
a consistent estimator for the response-model parameter. In our own empirical in-
vestigations, we found it much simpler to reach an iterative “partial-minimization”
solution to equation (10). The two solutions were generally close. Appendix 9.3
shows when they are, in fact, asymptotically identical.

In our experience, whenever we found a minimum for equation (5), our iterative
algorithm for locating a partial minimum numerically converged. We recommend
statisticians use the partial-minimization approach in practice.

The two approaches differ only when the matrix W is itself a function of β, for
example, when it is be the inverse of the variance of t̂z(β). We found in simulations
(not shown) that using the identity matrix in place of W in (10) decreased the
efficiency of the resulting estimates when derived under the correct response model.
Nevertheless, these estimates were consistent, as our theory anticipated.

By setting W equal to the inverse of a quasi-randomization with-replacement
variance estimator for t̂z(β) in Appendix 9.2, we established sufficient conditions
for the existence of a minimum of the objective function given a large-enough sam-
ple. In practice, we recommend using the without-replacement variance estimator
in this context when practical (e.g., for single-stage original samples with known
joint selection probabilities). Recomputing W assuming a with-replacement origi-
nal sample and n = N in our simulations did not appreciably change the results for
the estimators or their variances.

8.3 Coverage error

It is a simple matter to adapt most of the results in this paper to the situation where
calibration is used to adjust for coverage errors, whether from frame undercoverage
or unit duplication. In this context, pi is the expected number of times population
unit i is in the frame. Under the assumed quasi-randomization model this value is
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independent of the actual sample drawn and of how many times other elements of
the population are in the frame.

The possibility a unit appearing more than once on a frame does cause some
small differences in variance estimation. When there is no possibility of unit dupli-
cation, the variance of the function indicating whether population unit i is in the
frame is p(x

′
iβ∗)(1− p(x

′
iβ∗)), paralleling the situation with survey response. When

the frame contains potential duplication, however, the variance of the expected
number of times a population unit is no longer p(x

′
iβ∗)(1− p(x

′
iβ∗)). Consequently,

its value will need to be assumed for the analogue of (20), a measure of the added
variance due to frame errors, to be derived.

When using calibration to adjust for coverage errors, it is likely that the compo-
nents of Tz will be estimates coming from external sources. If the (internal) sample
size is fairly large, it may be reasonable to set W = (V̂ ar(Tz))−1, where V̂ ar(Tz) is
externally provided.

8.4 Final remarks

Returning to response modelling, although the following applies equally well to
coverage modelling, much work is needed in determining how to select model and
benchmark variables in practice and assessing the usefulness of an asymptotic theory
on finite samples. Additional complication arise when the targets of the benchmark
variables are themselves potentially subject to sampling and measurement errors.
Nevertheless, by allowing a separation between the model and benchmark variables,
the approach to calibration developed here may open the door to more plausible
modelling of the response mechanism.

Avoiding response and coverage modelling as much as possible remains a prudent
policy. Even the cleverest model assumptions are difficult to test and prone to
failure. Unfortunately, eschewing models will not be viable option as surveys based
on incomplete frames or suffering from small response rates become increasingly
common.

9 Appendix

9.1 Proof of variance formula (6)

Let t̂z denote t̂z(β∗). Then

V arqr(t̂z) = V ar(E(t̂z|S)) + E(V ar(t̂z|S))

Using Särndal et al.(1992)Result 9.3.1

V ar(E(t̂z|S)) =
∑
i,j∈U

πij − πiπj

πiπj
ziz

′
j

E(V ar(t̂z|S)) =
∑
i∈U

1− pi

piπi
ziz

′
i.

and the sample estimates of these variance components are

V̂ ar(E(t̂z|S)) =
∑

i6=j∈R

πij − πiπj

πijπiπjpipj
ziz

′
j +

∑
i∈R

1− πi

π2
i pi

ziz
′
i
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Ê(V ar(t̂z|S)) =
∑
i∈R

1− pi

p2
i π

2
i

ziz
′
i. (25)

Combining these two yields equation (6). 2

9.2 Quasi-randomization consistency of the full minimum β̂

The estimate β̂ minimizes the slightly redefined objective function

n−1ρ(β) = (26)

−n−1logdet(
N2

n
W(β)) +

[
N−1Tz −N−1t̂z(β)

]′ [N2

n
W(β)

] [
N−1Tz −N−1t̂z(β)

]
where n denotes the sample size before nonresponse, N the population size, and Tz

the vector of calibration targets. Now

t̂z(β) =
∑
i∈R

di

p(x′
iβ)

zi (27)

has expected value under the quasi-randomization model

tz(β) =
∑
i∈U

p(x
′
iβ∗)

p(x′
iβ)

zi. (28)

Conditionally on S, the expected value of t̂z(β) is

t̂zS(β) = E(t̂z(β)|S) =
∑
i∈S

π−1
i

p(x
′
iβ∗)

p(x′
iβ)

zi. (29)

Assumption 1 We assume that xi and β are constrained to lie in compact sets
and that these compact sets are such that p(xT β) is bounded away from 0.

Assumption 2 The limits lim N−1tz(β) and lim N−1Tz converge, with the former
limit converging uniformly in β. These limits satisfy

lim N−1tz(β∗) = lim N−1Tz

lim N−1tz(β) 6= lim N−1Tz

for β 6= β∗.

Let

ρ0(β) = (lim N−1Tz − lim N−1tz(β))
′
W0(β)(lim N−1Tz − lim N−1tz(β)),

where W0(β) is a positive definite symmetric matrix to be specified shortly.
If Assumption 2 is true, then ρ0(β) is uniquely minimized at β = β∗. Wald’s

proof of the consistency of the MLE (see, for example, Silvey (1975)) can be used
to show the consistency of β̂ if it can be established that

n−1ρ(β) →P ρ0(β)
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uniformly in β. In other words, we need to establish that, uniformly in β,

N−1t̂z(β)−N−1tz(β) →P 0
N2

n
W(β) →P W0(β), (30)

where →P refers to convergence in probability with respect to both the sampling
design and the response model.

Wald’s proof establishes that for large enough samples, the minimum β̂ to equa-
tion (26) exists.

A formal asymptotic structure must postulate a sequence of populations and
sampling designs, indexed in what follows by r, so that the population size Nr

can grow along with the sample size nr. Several examples of such asymptotic
structure can be found in Fuller and Isaki (1981). This paper can be applied to
many useful fixed sample size without replacement designs. Lemma 1 of Fuller
and Isaki (1981) would apply, for example, if the sampling design is a stratified
two stage cluster sample in which the number of strata is fixed (in r), the number
of PSUs in each stratum increases as r → ∞, the first stage sampling fraction
within each stratum of PSU’s is bounded away from 0 and 1, and the second stage
sampling fractions are bounded away from 0. We will establish consistency of β̂
within this asymptotic framework, using Fuller and Isaki type assumptions on the
original sampling scheme. Although not all designs of interest can be accommodated
within this asymptotic framework, we offer these proofs to illustrate the reasoning
that might apply elsewhere.

Let the inclusion probabilities for the r-th universe and design be denoted by
πi(r) and πij(r), so that di = π−1

i(r). We require that the original element sample size
nr be fixed, but the respondent sample size is random. Assumption 3 is a special
case of the assumptions in Fuller and Isaki’s Lemma 1.

Assumption 3 Assume that for all r and all i 6= j

πi(r)πj(r) − πij(r) ≤ αn−1
r πi(r)πj(r)

N−2
r nr

∑
i∈Ur

πi(r)

[
π−1

i(r)zi − n−1
r tz(r)(β∗)

] [
π−1

i(r)zi − n−1
r tz(r)(β∗)

]′

� M2

where α is a fixed constant, M2 a fixed positive definite symmetric matrix, tz(r)(β) is
defined using equation (28) from the r-th universe Ur, and, for symmetric matrices
A and B, A � B means B−A is positive semi-definite.

Proposition 1 Under assumptions 1, 2, and 3,

N−1t̂z(β)−N−1tz(β) = OP (n−.5)

uniformly in β.

Proof: We denote the r-th sample and respondents by Sr and Rr respectively.
Similarly we introduce the index r in (27) and (29) using the notation t̂z(r)(β) and
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t̂zS(r)(β). Let ui = p(x
′
iβ)−1p(x

′
iβ∗)zi. Using Assumption 1, p(x

′
iβ)−1p(x

′
iβ∗) < C

for all β and all xi. Thus since nr =
∑

i∈Ur
πi(r),

N−2
r nr

∑
i∈Ur

πi(r)

[
π−1

i(r)ui − n−1
r tz(r)(β)

] [
π−1

i(r)ui − n−1
r tz(r)(β)

]′

= N−2
r nr

∑
i∈Ur

π−1
i(r)uiu

′
i −N−2

r tz(r)(β)tz(r)(β)
′

� C2N−2
r nr

∑
i∈Ur

π−1
i(r)ziz

′
i

� C2
[
M2 + N−2

r tz(r)(β∗)tz(r)(β∗)
′
]
.

Examining the proof of Lemma 1 in Fuller and Isaki (1981), it follows that N−1
r t̂zS(r)(β)−

N−1
r tz(r)(β) is OP (n−.5

r ), uniformly in β.
Notice also that the above establishes that N−2

r

∑
i∈Ur

π−1
i(r)ziz

′
i is O(n−1

r ). Let

Tr = N−1
r t̂z(r)(β)−N−1

r t̂zS(r)(β). Then E(Tr|Sr) = 0 and

V ar(Tr|Sr) = N−2
r

∑
i∈Sr

π−2
i(r)

p(x
′
iβ∗)− p(x

′
iβ∗)

2

p(x′
iβ)2

ziz
′
i

E[V ar(Tr|Sr)] = N−2
r

∑
i∈Ur

π−1
i(r)

p(x
′
iβ∗)− p(x

′
iβ∗)

2

p(x′
iβ)2

ziz
′
i,

which is O(n−1
r ), uniformly in β. Thus Tr = OP (n−.5

r ), uniformly in β which
establishes the Proposition. 2

We now turn to establishing (30), that is N2

n W(β) →P W0(β), where W0(β)
is positive definite symmetric. First of all we note that W(β) can be scaled by a
constant without changing β̂. Thus if cNW(β) converges uniformly to a positive
definite symmetric matrix, we can redefine W(β) so that (30) holds. Thus, for

example, if W(β) =
[
V̂ ar(Tz)

]−1
and V̂ ar(Tz) is externally defined, one has to

assume the existence of a cN which makes (30) true.
Here we will show that if W(β) is the inverse of a with replacement estimated

covariance matrix, then (30) will often hold (under the original design).

Proposition 2 If an element sample S is drawn with replacement and expected
counts πi, then the variance V arwr(t̂z) of t̂z =

∑
i∈S π−1

i zi is

V arwr(t̂z) =
∑
i∈U

πi

[
π−1

i zi − n−1tz
] [

π−1
i zi − n−1tz

]′
+

∑
i∈U

1− pi

πipi
zizT

i . (31)

It can be unbiasedly estimated by

V̂ arwr(t̂z) =
n

n− 1

∑
i∈R

[
(πipi)−1zi − n−1t̂z

] [
(πipi)−1zi − n−1t̂z

]′
(32)

Remark 3 Recall our intention is to use equation (32) to define a suitable W(β)
for estimating β with a nonreplacement sample. Consequently we felt free to take
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certain liberties in the statement of Proposition 2. Formally, we require that S =
(j1, ..., jn) is an ordered sample with Pr[jr = i] = n−1πi for all r = 1, . . . , n and
that R is an ordered Poisson subsample with Pr[jr ∈ R] = pjr . In particular it is
assumed that the events jr ∈ R and js ∈ R are independent, conditionally on S.
Although this independence assumption is dubious when jr = js in the interpretation
of R as respondent set, this contingency does not arise in a nonreplacement sample.

The proof of the proposition is well known.

Assumption 4 Write pi = p(x
′
iβ∗) and let

Vz(r)(β) =
∑
i∈Ur

πi(r)pi

[
zi

πi(r)p(x′
iβ)

− n−1tz(r)(β)

] [
zi

πi(r)p(x′
iβ)

− n−1tz(r)(β)

]′

Assume that for some positive definite symmetric matrix V0(β),

nr

N2
r

Vz(r)(β) → V0(β),

uniformly in β.

Assumption 5 Write zi = [zi1 · · · zik · · ·]
′
and tz(β) = [tz(β)1 · · · tz(β)k · · ·]. As-

sume that for all k1, . . . , k4

N−3
r n2

r

∑
i∈Ur

{
πi(r)

3∏
s=1

[
π−1

i(r)ziks − n−1
r tz(r)(β∗)ks

]}
≤ M3

N−4
r n3

r

∑
i∈Ur

{
πi(r)

4∏
s=1

[
π−1

i(r)ziks − n−1
r tz(r)(β∗)ks

]}
≤ M4

for some constants M3,M4.

Proposition 4 Let the sample S be chosen without replacement and with inclusion
probabilities πi and πij. Let

V̂z(β) =
n

n− 1

∑
i∈R

[
(πip(x

′
iβ))−1zi − n−1t̂z(β)

] [
(πip(x

′
iβ))−1zi − n−1t̂z(β)

]′

.

That is V̂z(β) is defined using equation (32) with z replaced by p(x
′
β)

−1
piz.

Under Assumptions 1, 2, 3, and 5

V̂z(β) = Vz(β) + OP (
N2

n1.5
) (33)

uniformly in β. Hence, assuming in addition Assumption 4,

n

N2
V̂z(β) →P V0(β)

uniformly in β.
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Proof: For simplicity of notation, we assume that z is univariate. In addition, as in
Proposition 1, Assumption 1 yields uniformity in β as long as we can establish the
proposition for β = β∗. Thus we will suppress the β in what follows.

Furthermore, it is easily checked that Assumptions 1, 2, 3, and 5 imply

N−4n3
∑
i∈U

πipi

[
zi

πipi
− n−1tz

]4

≤ M0

for some constant M0.
With a little algebra and using Proposition 1

V̂z =
(
1 + O(n−1)

) [∑
i∈R

(
zi

πipi
− n−1tz)2 − n−1(t̂z − tz)2

]

=
(
1 + O(n−1)

) [∑
i∈R

(
zi

πipi
− n−1tz)2 + OP (N2/n2)

]
.

Let

Ṽz =
∑
i∈R

(
zi

πipi
− n−1tz)2. (34)

Now

E(Ṽz) =
∑
i∈U

πipi(
zi

πipi
− n−1tz)2 = Vz

which can be shown to be O(N2/n) using Assumptions 1 and 3.
Furthermore

E(Ṽz|S) =
∑
i∈S

pi(
zi

πipi
− n−1tz)2

V ar(E(Ṽz|S)) =
−1
2

∑
i,j∈U

(πij − πiπj)
[
pi(

zi

πipi
− n−1tz)2 − pj(

zj

πjpj
− n−1tz)2

]2

≤ α

n

∑
i,j∈U

πiπj

[
p2

i (
zi

πipi
− n−1tz)4 − pipj(

zi

πipi
− n−1tz)2(

zj

πjpj
− n−1tz)2

]
= α

∑
i∈U

πip
2
i (

zi

πipi
− n−1tz)4 −

α

n
V 2

z = O(N4/n3)

V ar(Ṽz|S) =
∑
i∈S

(pi − p2
i )(

zi

πipi
− n−1tz)4

E(V ar(Ṽz|S)) =
∑
i∈U

πi(pi − p2
i )(

zi

πipi
− n−1tz)4 = O(N4/n3),

where we have applied Assumption 5 and noted that p2
i < pi. Equation (33) follows.

2
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9.3 Quasi-randomization consistency of the partial minimum β̃

In Section 3, we defined

ρ̈(β, γ) = −logdet(W(γ)) + (Tz − t̂z(β))
′
W(γ)(Tz − t̂z(β)).

The partial minimum β̃ solves the equation

∂ρ̈

∂β
(β̃, β̃) = 0 (35)

whereas the full minimum β̂ satisfies

∂ρ̈

∂β
(β̂, β̂) +

∂ρ̈

∂γ
(β̂, β̂) = 0.

We rely on the following lemma whose proof is routine.

Lemma 5 Suppose fr(β) = f1r(β) + f2r(β) where for some function f(β)

f2r(β) → f(β)

uniformly in β. Assume furthermore

f1r(β) → 0.

Suppose roots β∗ of f(β) (i.e., f(β∗) = 0) and β̂r of fr(β) satisfy

β̂r → β∗.

Suppose furthermore each f2r(β) has at least one root and pick the root β̃r closest
to β̂r. Then

β̃r → β∗.

To use Lemma 5, we need

N−1 dt̂z
dβ

(β) → N−1 dtz
dβ

(β) (36)

N2

n

dW
dβ

(β) → dW0

dβ
(β) (37)

uniformly in β. Although uniform convergence does not imply convergence of deriva-
tives, equation (4) and Assumption 1 imply (36). Similarly if W is defined using
Proposition 4, then Assumption 1 implies (37). Thus assuming, (35) has a root,
and letting β̃ be the root closest to the full minimum estimate β̂, β̃ consistently
estimates β∗. Recall that in our simulations, at least, the partial minimization al-
gorithm does numerically converge to a solution of (35) that is close to β̂ when the
sample size is large enough that β̂ exists.

Assume the correctness of the targets, that is

Tz = tz(β∗).
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Having established the consistency of β̂, the usual series argument implies that
β̂ − β∗ is OP (n−0.5). Thus

n−1ρ
′
(β) = −n−1 d logdetN2

n W (β)
dβ

− 2N−1

[
dt̂z(β)

dβ

]′ [
N2

n
W(β)

] [
N−1Tz −N−1t̂z(β)

]
(38)

+
[
N−1Tz −N−1t̂z(β)

]′ dN2

n W(β)
dβ

[
N−1Tz −N−1t̂z(β)

]
.

Since

N−1
[
Tz − t̂z(β)

]
= N−1

[
tz(β∗)− t̂z(β∗) + Ĥ(β̂)(β∗ − β̂)

]
+ OP (n−1)

= OP (n−0.5),

when evaluated at β̂, the first and third terms of the right hand side of (38) are
OP (n−1). Hence

Ĥ(β̂)
′
W(β̂)

[
Tz − t̂z(β̂)

]
= OP (1) (39)

On the other hand, the partial minimum satisfies (see equation (10))

Ĥ(β̃)
′
W(β̃)

[
Tz − t̂z(β̃)

]
= 0.

Finally we have

β̂ = β∗ +
[
Ĥ(β̂)

′
W(β̂)Ĥ(β̂)

]−1
Ĥ(β̂)

′
W(β̂)

[
Tz − t̂z(β∗)

]
+ OP (n−1) (40)

β̃ = β∗ +
[
Ĥ(β̃)

′
W(β̃)Ĥ(β̃)

]−1
Ĥ(β̃)

′
W(β̃)

[
Tz − t̂z(β∗)

]
+ OP (n−1) (41)

Thus β̃ − β∗ is OP (n−0.5).
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