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SUMMARY

A new numerical method for solving the inverse problem of in-
ternal dosimetry is described. The new method uses Markov Chain
Monte Carlo and the Metropolis algorithm. Multiple intake amounts,
biokinetic types, and times of intake are determined from bioas-
say data by integrating over the Bayesian posterior distribution.
The method appears definitive, but its application requires a large
amount of computing time.
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1 Introduction

Internal dosimetry is concerned with the problem of determining the radiation
dose to workers caused by forms of radiation that cannot be measured directly
(as with a dosimetry badge). If, for example, the α-emitting nuclide Pu-239
is inhaled, it will impart radiation dose to the lungs, and after dissolving will
be absorbed to blood and deposited in the bone and liver, imparting dose to
these organs. Monitoring for exposure to Pu-239 is done by making bioassay
measurements (for example, urine, fecal, lung count, etc.).

The measurements are interpreted using biokinetic models that describe how
Pu-239 is transported through the body. The biokinetic models describe how
a unit amount of material taken into the body in a certain way (for example,
inhalation) will later in time appear in various bioassay compartments (for ex-
ample, the lungs, urinary excretion) and how radiation dose will be accumulated
in the course of time in the different body organs and tissues. Standard bioki-
netic models have been proposed by the International Commission on Radiation
Protection (ICRP) (e.g., ICRP publications 30, 54, 66, and 78)[1, 2, 3, 4, 5].

Given a set of agreed-upon biokinetic models, the inverse problem of internal
dosimetry is to use the bioassay measurements to infer if and when intakes may
have occurred and the magnitude of the resultant radiation dose to the worker.
In using intake-based biokinetic models we are required to determine the time
and amount of intakes and to assess the 50-yr effective whole body dose to the
worker (the CEDE) associated with each intake. The process obviously entails
considerable uncertainty, so quantitatively assessing uncertainty is also of great
importance. We have been pursuing a Bayesian statistical approach to this
problem.[6, 7, 8, 9, 10, 11] The present work describes a method that extends
our previous work and appears to be deÞnitive.

2 Formulation of the Problem

In the problem of internal dosimetry there areM bioassay data yj taken at times
tj for j = 1,M . From these data we seek to determine N possible intakes with
amounts ξi, biokinetic types li, times of intake ti, for i = 1, N . The intake times
are ordered, so that t1 < t2 < . . . tN . The domain of time ti is the time interval
∆ti. That is, ti is in the interval ∆ti. The intervals ∆ti cover the time domain
of all possible intakes in a non-overlapping and ordered way. The time intervals
are often chosen to be the times between successive bioassay measurements, in
which case N = M − 1. The time intervals are chosen to be sufficiently small
so that multiple intakes are unlikely in any interval.

Using the notation

Y ≡ {y1, y2, . . . yM} (1)

Ξ ≡ {ξ1, l1, t1, . . . ξN , lN , tN}, (2)
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the problem is to determine the parameters Ξ from the data Y . Using Bayes
theorem, the Probability distribution of Ξ given Y can be immediately written
down as

P (Ξ|Y ) ∝ P (Y |Ξ)P (Ξ), (3)

that is, the probability of particular values of the parameters given the data is
proportional to the probability of the measured values of the data given the pa-
rameters (the likelihood function) times the prior probability of the parameter
values. The calculational problem is then to integrate (or sum) over the full de-
tailed posterior probability distribution function in order to determine the mar-
ginal probability distribution of quantities of interest. The multi-dimensional
integration problem is well suited to the Markov Chain Monte Carlo Method[12]
using the Metropolis algorithm (see Appendix A ).[13]

The likelihood function P (Y |Ξ) is of the form

P (Y |Ξ) ∝ exp
 MX
j=1

Lj(Ξ)
 (4)

because of the assumed independence of the M measurements, where Lj(Ξ) is
the log-likelihood function for the jth measurement.

The prior probability distribution P (Ξ) is taken to be of the form

P (Ξ) dΞ =

NY
i=1

P (ξi) dξi P (li)P (ti) dti. (5)

The prior probability distribution of biokinetic types l is a discrete proba-
bility distribution over {l1, l2, . . . lni}, usually uniform except that the ICRP-
recommended default model is given a higher probability.

The prior probability distribution for ξi and ti depends on whether or not
a known incident has occurred in the intake time interval ∆ti. Two cases are
considered, an incident reported in the time interval (incident) and no report of
an incident (non-incident).

incident The prior probability distribution over intake time P (ti) is assumed
to be

P (ti) = δ(ti − t(inc)i ), (6)

where δ(.) is the delta function, and t
(inc)
i is the known time of the incident.

The prior probability distribution over intake amount ξi is assumed to be
a broad log normal (standard deviation of the log of ξi equal to 3) with
median determined by incident indicators (for example, nose swipe results,
air monitor readings) as discussed in Ref. [11].

non-incident If no incident has occurred in the intake interval ∆ti, the prior
probability distribution of intake time ti is assumed to be uniform in the
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interval ∆ti, and the distribution of intake amount ξi is assumed to be
given by the following (a special case of the gamma distribution),

P (ξi) dξi =
αi∆ti
ξi

Ã
ξi

ξ
(max)
i

!αi∆ti

, (7)

which we have called the �alpha distribution�.[11] The parameter ξ
(max)
i

speciÞes the maximum intake allowed and otherwise is unimportant. The
parameter αi, which can be interpreted as the �intake� probability per unit
time in the ith time interval, is meant to be determined empirically using
population averages. Using Los Alamos plutonium historical data from
1980 to the present α was found to be very small, 0.001 yr−1 or less.[11].
The smallness of α shows that the internal dosimetry problem for non-
incident-related intakes is a �needle-in-the-haystack� problem of detecting
very rare events. In such cases Bayesian methods avoid an inordinate
number of false positives.

The likelihood function P (Y |Ξ) gives the probability of measuring data val-
ues Y given parameters Ξ, considered as a function of Ξ. In this paper it is
assumed that the Gaussian approximation for the likelihood function is applica-
ble. In this case

Lj(Ξ) = −1
2

Ã
(yj − ψ(l)j )2

σ2j
+ log(σ2j )

!
, (8)

Here yj is measurement value, ψ
(l)
j is the calculated value based on the para-

meters, in particular the biokinetic type l, and σj is the uncertainty standard
deviation associated with the jth measurement. The calculated value is given
by

ψ
(l)
j =

NX
i=1

ξif
(l)(tj − ti), (9)

where ξi is the magnitude of the i
th intake, f (l)(t) is the biokinetic retention

fraction for biokinetic type l at time t after the intake, and tj and ti are the
times of the jth measurement and the ith intake. Note that f (l)(tj − ti) = 0

for tj < ti. The uncertainty σj is composed of measurement uncertainty σ
(m)
j

and a multiplicative factor uncertainty σ
(f)
j (for example, for a lung count, the

measurement uncertainty would be the counting statistics uncertainty, while
the multiplicative factor uncertainty would be the estimated uncertainty of the
calibration factor, which is mostly associated with chest wall absorption uncer-
tainty).

σ2j = (σ
(m)
j )2 + (σ

(f)
j ψ

(l)
j )

2. (10)
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3 Numerical Algorithm

Using the Metropolis algorithm[13] a Markov chain of the parameter values Ξ is
generated that has as its stationary distribution the joint posterior distribution
(a multivariate distribution, because Ξ is a vector) of Eq. 3 (see Appendix A).[12]
A Markov chain is a sequence of random variables Ξk such that Ξk+1 depends
on Ξk and does not depend further on the history of the chain. Given such a
chain we can effectively integrate over the posterior distribution by using the
relation Z

f(Ξ)P (Ξ|Y ) dΞ→ 1

Nk

NkX
k=1

f(Ξk) (11)

for Nk →∞, where f(.) is an arbitrary function of Ξ.
We lump together the three parameters (ξi, li, ti) of intake i as the i

th compo-
nent of the intake vector Ξ and chain update these components one by one. The
intake components are selected for updating probabilistically, with probability
given by

Pi ∝ Max(CEDEi,CEDEmin), (12)

that is, the attention given to the ith component is proportional to the current
CEDE associated with the ith intake. However, for CEDE�s below the lower limit
CEDEmin, all components are given equal attention. The lower limit CEDEmin
is usually chosen to be 0.1 mSv (0.01 rem).

The components Ξi are updated using a probabilistic random walk scheme,
where with some given probability (a parameter of the code) the new value is
selected within a small neighborhood of the current value (random walk), or,
with the complement of that probability, the new value is generated from the
entire domain.

The chain has a starting value Ξ0 that inßuences to some extent average
values obtained from Eq. 11 for Þnite numbers of trials Nk. The pseudo-random
numbers used to generate the chain also have a seed value that determines the
sequence. Our approach to convergence of results is to compare results from
two chains with different random number seeds, one starting from the minimum
allowed value of Ξ and the other starting from the maximum allowed value.

A code validation test case is described in Appendix B.

4 Example Using Actual Data

In Fig. 1 are shown actual Los Alamos urine data for Pu-238 urine excretion
from a single individual over a number of years. The error bars represent plus
or minus one standard deviation of the measurement uncertainty. In addition,
it is known that this person was involved in an incident on 31-October-1980.
The incident classiÞcation indicates a relatively low probability of an inhala-
tion intake resulting from the incident. This case was discussed in Ref. [14] as
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Figure 1: Actual Pu-238 urine excretion data.

example 3, and the data is available in the Þle BIOASSAY.333 downloadable
from our web site[15] (in the software package BayesII). In interpreting these
data, the �wing-9 accident� biokinetic model[9] was used in addition to the six
standard ICRP-30 biokinetic models (class W and class Y, 0.2, 1.0, and 5.0 µm
AMAD particle size).

In Fig. 2 is shown the urine excretion data together with the calculated
expected value. The median of the log-normal prior for the 1980 incident was
chosen to be 37 Bq (1 nCi). There is actually only one �positive� intake, using
the deÞnition of �positive�

P (CEDE > 1mSv(0.1rem)|data) > 0.95. (13)

The most probable biokinetic type for this intake is the special wing-9 type
(IEE) with 55 % probability.

In Fig. 3 are shown the year-by-year CEDE�s lumping together all intakes
occurring in a given year. The square dots represent the magnitude of the
expected CEDE for each year while the shaded bars show the 90% credible
interval (5% to 95%) for those cases where the upper limit exceeds 1 mSv (0.1
rem). For 1980, we do not have conÞdence that the CEDE exceeds 1 mSv since
the lower credible limit does not exceed 1 mSv. The total expected CEDE for
all years is 520 mSv (52 rem) with 5% and 95% credible limits of 410 to 620
mSv.
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Figure 2: Urine data and calculated expected value of urine excretion.

The error bars in Fig. 2 are larger than those in Fig. 1 because they include
multiplicative uncertainty in addition to measurement uncertainty. The quan-
tity σ(f) in Eq. 10 was assumed to have the value 0.3, which is the value we
normally assign for simulated 24-hour urine samples.

In Fig. 3 note that in some cases the expected value of CEDE exceeds 1
mSv while the 95% limit does not. This is possible for distributions mostly
concentrated at small values but having a tail extending to large values.

If the incident information is not used to analyze the data, a very similar
year-by-year intake scenario is calculated, as shown in Fig. 4. However, when
the incident information is not used, no single intake is �positive� (however the
sum of all intakes in 1980 is �positive�).

The prior probability parameter α representing a worker�s intake probability
per unit time for non-incident situations was assumed to be 0.001 per year in the
foregoing (acute intake situation). If the example data are analyzed assuming
a value of α 100 times larger (chronic intake situation), the results shown in
Figs. 5 and 6 are obtained. Many more intakes are now possible, although
no individual intake is actually �positive�. That is, it seems likely that many
intakes have occurred, but it is not possible to identify with certainty the times
of these intakes.

The total CEDE from all intakes is well determined by the data in all of
these cases. For example, Fig. 7 shows the result assuming the normal small
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Figure 3: Calculated year-by-year expectation value of CEDE�s. The shaded
bars represent the 90% credible interval (5% to 95%) for those cases where the
upper limit exceeds 1 mSv.

7



1980 1985 1990 1995

0.01

0.1

1

10

100

1000

C
ed

e(
m

Sv
)

Year

Figure 4: Calculated year-by-year expectation value of CEDE�s when prior infor-
mation about incident is not used. The shaded bars represent the 90% credible
interval (5% to 95%) for those cases where the upper limit exceeds 1 mSv.
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Figure 5: Urine data and calculated expected value of urine excretion when prior
probability of intake per unit time 100 times larger than normal is assumed
(α → 100 × α). Larger α corresponds to a chronic rather than acute intake
situation.
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Figure 6: Calculated year-by-year expectation value of CEDE�s when prior prob-
ability of intake 100 times larger is assumed. The shaded bars represent the 90%
credible interval (5% to 95%) for those cases where the upper limit exceeds 1
mSv. Many more intakes are now possible, however the intake dates are not
identiÞed with certainty.
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Figure 7: Calculated cumulative distribution of total CEDE.

value of α without using the incident information.
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5 Discussion

The Markov Chain algorithm appears to provide a deÞnitive solution of the
inverse problem of internal dosimetry, that of calculating the intake scenario
given the bioassay data and an agreed-upon set of biokinetic models. By a
deÞnitive solution we mean an exact solution of the problem without simplifying
assumptions.

The Bayesian method allows us to directly address the question of inter-
est (�what is the dose?�) and to quantify the uncertainties. The quantitative
assessment of uncertainty, which is based on calculation of the probability dis-
tribution of intake parameters given the data-an inherently Bayesian entity-is
not possible using non-Bayesian methods. Not surprisingly, it is simply not
possible to identify the times of intakes with certainty in many cases, although
other quantities, such as annual dose or total CEDE are usually relatively well
determined by the data.

The drawback of this method is that it requires a large amount of computer
time. Our rule of thumb for convergence is at least 1 million to 10 million
chain iterations per possible intake, which translates to a 1 to 10 hour run for
a case such the example discussed here (about 50 possible intakes) using a 1
Ghz Pentium processor. Population studies involving thousands of cases, such
as those carried out to determine the prior parameter α[11] are then not prac-
tical on a desktop workstation. Our future plans are to use massively parallel
supercomputers to carry out such studies.

A Appendix—Markov Chain Monte Carlo using
the Metropolis-Hasting Algorithm

Suppose we are interested in making statistical inference about a parameter
(possibly vector valued) Ξ. We characterize our information (or lack of infor-
mation) about the distribution of Ξ = {ξ1, ξ2, . . . , ξn} as P (Ξ) (prior distrib-
ution). Data are collected and represented by the likelihood or P (Y |Ξ). In
any Bayesian analysis, inference on the parameters depends on the calculated
posterior distribution

P (Ξ|Y ) = P (Ξ)P (Y |Ξ)R
Ξ
P (Ξ)P (x|Ξ) dΞ . (14)

In many situations, use of the posterior distribution given by (14) requires nu-
merical calculation. Monte Carlo integration evaluates the expectation value of
an arbitrary function f(.) of Ξ, E[f(Ξ)], by drawing samples {Ξk, k = 0, . . . , Nk}
from the posterior distribution and then approximating

E[f(Ξ)] ≈ 1

Nk

NkX
k=0

f(Ξk). (15)
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So the population mean of f(Ξ) is estimated by a sample mean. Markov Chain
Monte Carlo method is a powerful tool in such cases.

The following description of the Metropolis-Hastings algorithm[13, 16] closely
follows that given in Ref. [12]. Using the Metropolis-Hastings algorithm, for each
state k, the next state Ξk+1 is chosen by Þrst sampling a candidate point Ξ0

from a proposal distribution q(.|Ξk). Note that the proposal distribution may
depend on the current point Ξk. The candidate point Ξ

0 is then accepted with
probability α(Ξk,Ξ

0) where

α(Ξ,Ξ0) = min
µ
1,
P (Ξ0)q(Ξ|Ξ0)
P (Ξ)q(Ξ0|Ξ)

¶
. (16)

If the candidate point is accepted, the next state becomes Ξk+1 = Ξ0. If the
candidate is rejected, the chain does not move, i.e. Ξk+1 = Ξk.

Thus the Metropolis-Hastings algorithm is extremely simple:

1 Initialize Ξ0 and set k = 0.

2 Generate an observation Ξ0 from a candidate distribution q(Ξ0|Ξk).
3 Generate a uniform (0,1) random variable u.

4 If u ≤ α(Ξk,Ξ0) set Ξk+1 = Ξ0, otherwise set Ξk+1 = Ξk.
5 Increment k, go to step 2

Remarkably, the proposal distribution q(.|.) can have practically any form
and the stationary distribution of the chain will be P (.|Y )

The Metropolis [13] algorithm considers only symmetric proposals, having
the form q(Ξ|Ξ0) = q(Ξ0|Ξ) for all Ξ and Ξ0. A special case of the Metropolis
algorithm is random-walk Metropolis, for which q(Ξ0|Ξ) = q(|Ξ−Ξ0|). Typically
q(Ξ0|Ξ) is a constant for Ξ0 within some given prescribed neighborhood of Ξ.

Typical implementation of the algorithm generates an initial �large� num-
ber of iterations (called the burn-in) until the inßuence of the initial value of
the chain has subsided. The burn-in samples are discarded, and the samples
generated thereafter are used as samples from the posterior distribution of Ξ.

B Appendix—Code Validation

Several test cases where the correct result is known were used to validate the
computer code (ID1.1).

single measurement In the case of a single measurement, we know from
previous work[10] that for a prior probability distribution describing rare
non-incident-related intakes, an intake is �positive� only when the mea-
surement is about 4 or more standard deviations from zero. Figure 8

13



1 10 100 1000 10000

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

(C
ED

E<
C

ED
E 1)

CEDE1(mSv)

Figure 8: Cumulative posterior distribution of CEDE for a single measurement
4.6 standard deviations above zero.

shows the cumulative posterior probability distribution of CEDE for a
measurement of Pu-239 urinary excretion of 1.7 ± 0.37 mBq/d (0.046 ±
0.01 pCi/d) assuming α = 0.001/yr. The distribution is slightly positive
using the deÞnition of Eq. 13. This agrees with the result obtained using
the unfolding algorithm UF3.5 (described in Ref. [9] and downloadable
from our web site[15] as the BayesII software package). The UF3.5 cal-
culation should be exact in this case. The ID1.1 and UF3.5 calculations
assumed a set of six ICRP-30 inhalation models (class Y and class W, 0.2,
1, and 5 µm AMAD) and an intake time interval of one year preceding the
measurement. Using only a single biokinetic model rather than a set of six
produces a simpler looking cumulative posterior distribution, but does not
change the number of standard deviations required for �positive�. Simi-
larly, using a Þxed intake date of 6 months preceding the measurement (as
is done in the UF3.5 code) rather than allowing intake date to be variable
(the ID1.1 code allows both possibilities) does not change the number of
standard deviations required for �positive�.

calculated data In this case we use calculated urine bioassay data for nine
samples in an eight-month period following an intake of 370 Bq (10 nCi)
of class Y, 1µm AMAD Pu-239 (this data is in the Þle BIOASSAY.TST in
the BayesII software package[15]). There are a number of possibilities for
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running the code, for example: 1) the data can be treated as resulting from
a known incident, in which case the median of the log normal prior needs
to be speciÞed (the parameter a shown in Table 1), 2) the data can be
treated as non-incident related (α = 0.001 yr−1 assumed for nonincident
intake time intervals), and 3) the measurement uncertainty of the data
(σ(m) in Eq. 10) can be decreased, which makes the urine excretion pattern
more signiÞcant. The UF3.5 code does not allow a variable intake date,
but otherwise treats these cases exactly. Table 1 shows results for the
calculated CEDE for various run parameters.

Table 1: Calculation results using simulated test data corresponding to single
28.7 mSv CEDE intake.

run CEDE(mSv)

parameters ID1.1 UF3.5

incident

a = 370 Bqa 21 (1.6, 35)b 21 (1.9, 34)

a = 0.37 Bq 10 (1.2, 32) 9.1 (1.4, 31)

σ(m) → σ(m) × 1
10

c
27 (5.2, 33) 26 (3.7, 33)

non incident

18 (1.4, 38.5)

σ(m) → σ(m) × 1
10 28 (21, 37)

a median of the log-normal prior�see text
b expectation value and 5% and 95% credible limits
c σ(m) is standard deviation of measurement uncertainty�see text

The CEDE results are the calculated expectation value and the 5% and
95% credible limits of the posterior distribution, given the data. The
calculated result misses the mark in some cases (as it should) because the
excretion pattern from the data is not well enough determined to rule out
class W material. In the small measurement uncertainty cases the data
are clearly consistent only with class Y, and the posterior probability of
the correct biokinetic model is over 90 %.

In the two non-incident cases, the calculated expectation value of the
intake date matches the correct intake date exactly. The UF3.5 code does
not determine the date of intake from the data (but uses the midpoint of
the preceding bioassay data interval), so it is not expected to reproduce the
correct CEDE in these cases. The data and calculated expectation value
of urine excretion for the Þrst non-incident case appearing in Table 1 is
shown in Fig. 9.
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Figure 9: Test data and ID1.1 calculation result.
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