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Clustering to Improve Matched Filter Detection of
Weak Gas Plumes in Hyperspectral Thermal Imagery
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Abstract—The use of matched filters on hyperspectral data
has made it possible to detect faint signatures. This study uses
a modified -means clustering to improve matched filter per-
formance. Several simple bivariate cases are examined in detail,
and the interaction of filtering and partitioning is discussed. We
show that clustering can reduce within-class variance and group
pixels with similar correlation structures. Both of these features
improve filter performance. The traditional -means algorithm
is modified to work with a sample of the image at each iteration
and is tested against two hyperspectral datasets. A new “extreme”
centroid initialization technique is introduced and shown to
speed convergence. Several matched filtering formulations (the
simple matched filter, the clutter matched filter, and the saturated
matched filter) are compared for a variety of number of classes
and synthetic hyperspectral images. The performance of the
various clutter matched filter formulations is similar, all are
about an order of magnitude better than the simple matched
filter. Clustering is found to improve the performance of all
matched filter formulations by a factor of two to five. Clustering in
conjunction with clutter matched filtering can improve fifty-fold
over the simple case, enabling very weak signals to be detected in
hyperspectral images.

Index Terms—Clustering, endmember decomposition, gas
plumes, hyperspectral, image classification, image partitioning,
matched filter, signal detection, spectral mixture analysis, trace
element detection.

I. INTRODUCTION

H YPERSPECTRAL imagery has the potential of pro-
viding new and unique ways of identifying land-cover,

detecting pollution, mapping trace elements, and retrieving
surface temperatures. Recent research has demonstrated the ap-
plicability of thermal infrared radiation imagery to problems of
pollution detection (oil slicks [1] and trace gases from aircraft
engines [2]), as well as temperature/emissivity retrieval [3]–[6].
Thermal hyperspectral imaging systems are currently being
deployed that will allow researchers to use the information
contained in these wavelengths [7]. The approaches to using the
increased information contained in these hyperspectral datasets
can be divided into two classes: endmember decomposition
techniques and trace element detection methods. While we
briefly review both classes of techniques below, this paper
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focuses on improving trace element detection in hyperspectral
thermal data. These techniques can be used to locate any
unique thermal spectra, such as plumes of acetone [17] or other
gases with distinct emission bands , and ).
When satellite or airplane-based hyperspectral thermal imagery
becomes available, the methods examined here should be able
to quantify the presence of these pollutants.

A. Endmember Decomposition or Spectral Mixture Analysis

Endmember decomposition techniques attempt to determine
the relative amounts of the various constituents that make
up the surface area of a given pixel. The radiance signal of
a pixel is typically divided among some small number of
potential endmembers. There are two basic approaches to
doing this. One class of techniques is based on geometric or
statistical analyses, the other on physical reasoning. Geometric
techniques such as Boardmanet al.’s [8] pixel purity index
(PPI) or Winter’s N-FINDR [9] sample the dataset, looking
for, respectively, points that have extreme values or define a
simplex of maximum volume. The statistical approaches, such
as that of Cutler and Breiman’s [10] Archetypal Analysis,
generally attempt to find a set of linear combinations of the
original data that minimize a quadratic cost function subject
to the constraint that the weights of the linear combination are
positive and sum to one. The extreme centroid initialization
scheme discussed later in this paper bears some similarities to
these statistical approaches.

Physical reasoning and empirical data may also be used
to unmix a pixel. This is the approach taken by multiple
endmember spectral mixture analysis (MESMA) [11], [12].
MESMA begins with a library of observed spectral signatures.
Atmospheric effects are then either added to these endmem-
bers or removed from the scene. Each pixel is subsequently
described by the set of weighted combinations of the signatures
that best fit the data. MESMA, in the thermal, is complicated
by the strong influence of temperature on radiance and surface
emissivity. One recent approach has been to use a two-stage
process in which temperature effects on radiance are modeled
using a “virtual cold endmember” [13] and a look-up table to
account for nonlinear mixing followed by temperature con-
strained unmixing to map surface composition and abundance
[14].

B. Trace Element or Anomaly Detection

Another class of hyperspectral analysis techniques, which in-
cludes matched filtering, divides the at-sensor radiance received
from a pixel into desired and undesired components. These com-
ponents correspond to the “signal” and “noise” or “clutter.” The
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signal is the desired spectral pattern (signature) scaled by some
scalar that represents its actual radiance in some pixel. Every-
thing else is the undesired part of the image, and is termed noise
if assumed to have a constant mean and no cross-spectral corre-
lation, and clutter otherwise.

Signal identification methods generally calculate the sigma
value associated with a given signature in a given pixel, with the
sigma value denoting the number of standard deviations a given
pixel is from zero. Since filtered images will have a mean of 0
and standard deviation of 1, pixels with high values are likely to
contain the faint signal. For Gaussian distributions, these sigma
values will scale linearly with the amount of material present,
providing an approximate quantitative estimate of trace material
amount as well. Several similar approaches to signal identifica-
tion in the cluttered case have been advanced: orthogonal sub-
space projection (OSP) [15], [16], orthogonal background sup-
pression (OBS) [17], and recent variants of the matched filter
[18]–[20].

OBS, OSP, and matched filters can all be viewed as different
weightings of the inverse of the principal components of the
covariance matrix of the image. The weights associated with
the OBS technique are 0 or 1. Givenbands and eigenvalues,
the weights of the first eigenvalues are set to zero, while the
weights of the remaining components are set to 1. OBS thus
projects out the first principal components, where most of the
clutter is concentrated. The clutter matched filter (CMF) sets the
weights to the inverse of the eigenvalues . The CMF thus
rotates the data cloud so that the projected signal vector will be
most readily detected (see Section III-B of [18] and Section II
here for graphic examples). In theory, if the eigenvalues are ac-
curately known, the performance of the CMF exceeds that of the
OBS filter. In practice, the eigenvalues must be estimated from
the sample covariance of the data. The CMF weighting scheme
may therefore inappropriately inflate the variance of low-eigen-
value PCs, compromising performance [20]. The CMFsat algo-
rithm, which combines an inverse weighting for the firstPCs
with a flat (OBS-style) weighting for the to PCs, has been
advanced as a best-of-both-worlds synthesis between these two
approaches [20].

CMF, OBS, and OSP are all significant improvements over
the simple matched filter (SMF) since they take advantage of
the correlation structure of multivariate data. The SMF is pro-
portional to the signal itself (i.e., matched) the idea being that
in an image composed of a faint signal and white noise, a filter
proportional to the signal will be the optimal filter, in the sense
that it will optimize the SNR. Most realistic cases have corre-
lations between bands, and thus the background is not white
noise, but clutter. CMF, OBS, and OSP use the internal structure
of this clutter data to maximize the desired signal while mini-
mizing the variance of the unwanted portion of the dataset. We
express this objective quantitatively as the signal to clutter ratio
(SCR). This paper explores an approach that is complementary
to CMF, OBS, and OSP. We show that partitioning the data be-
fore applying the matched filter effectively reduces the clutter,
improving the signal to clutter ratio and detector performance.

The paper is structured as follows. Section I lays out the math-
ematical formulation of the CMF and describes the clustering
technique used (sampled-means). Section II contains three

TABLE I
SYMBOLS USED IN THIS PAPER

simple bivariate examples, by which we clarify some of the
benefits of clustering in a comprehensible number of dimen-
sions (i.e., two-dimensional [2-D] as opposed to 128-dimen-
sional [128-D]). Section III describes the synthetic images used
in our testing procedure. Section IV and Section V describe the
clustering and matched filtering results.

C. Matched Filter

Each pixel in a passive multispectral imaging sensor contains
a vector of radiances in spectral channels (see Table I for a
list of symbols used in this paper). A full image containssuch
pixels, denoted . In this data, we are searching for ev-
idence of a (possibly weak) spectral signaturesuperimposed
on a background of sensor noise and in-scene clutter.

The linear approach restricts consideration to a single-di-
mensional vector , which is applied as a dot product to each
pixel in the multispectral image to produce a scalar image which
both suppresses the background clutter and enhances this signa-
ture. This vector is the “matched filter,” and the choice of
depends on both the desired signature and on the statistics of the
background clutter.

If we model the scene as a linear combination of signal
multiplied with strength and a background, then we can
write the radiance for a pixel as the sum.

If we model the scene as a linear combination of signal
multiplied with strength and a background that consists of a
constant (mean radiance of the background, averaged over the
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entire image) and a zero-mean noise or clutter term, then we
can write the radiance for a pixel as the sum

(1)

The nonconstant background termcorresponds both to noise
in the sensor and to clutter in the scene. In either case,repre-
sents the undesirable part of the hyperspectral image. Applying
a linear filter to the multispectral radianceproduces a scalar
expression with two terms

(2)

The first term is proportional to the signature strength, the
second term is a constant that can be subtracted out, and the
third term has variance equal to . So the SNR (or SNC,
if we accept as a model of clutter) for the filter is given by

(3)

If the background is uncorrelated (i.e., white) with a standard
deviation of , then the SNR is

(4)

In this instance, the optimal matched filter is directly propor-
tional (or “matched”) to the target signature. In other words,
for an uncorrelated background, the optimal filter is the simple
matched filter, which is just the target itself scaled so that the
resulting filtered image has a variance of one.

A more realistic model of the background clutter admits cor-
relations between spectral channels. If we know the correlation
matrix of the background clutter then the optimal filter

is “matched” both to the signature and to the background, and
we call this the CMF

(5)

In this case, is normalized such that when the signal is absent,
the matched filter image (theth pixel of which is given by )
will have a variance of one. Values of much larger than one can
be interpreted as significant evidence for the presence of the sig-
nature, with the significance quantified as a “number of sigmas.”
To trust these sigmas as literal probabilities requires the assump-
tion that the matched filter image values are Gaussian. This
would hold, for instance, if the clutter itself were Gaussian. The
signal to clutter ratio for the optimally matched filter is obtained
by combining (5) with (3) to yield

(6)

If the covariance matrix of the clutter is precisely known,
then (5) is the optimal matched filter and will maximize (6). In
practice, however, this covariance is rarely knowna priori and
is often estimated from the data. A natural estimate is to average
the outer product of the mean-subtracted radiance over all pixels

(7)

If the signal is weak, or if it is present in only a few pixels, then
the effect of the signal on this estimate of the background is
often negligible. If the desired signal is strong, then one can try
to identify those pixels, and remove them from the estimate of

. A more pernicious problem, however, is that the best esti-
mate of , as defined in (7), does not necessarily translate into
a good estimate of , as used in (6). For this reason, the sat-
urated clutter matched filter (CMFsat) was developed [20]. In
the CMFsat approximation, the covariance matrixis initially
approximated by (7), but then a singular value decomposition
is performed, and the smallest eigenvalues are artificially raised
to a saturation level. Since this only affects the smallest eigen-
values, the overall influence on the matrixis small. However,
the effect on the estimate of is substantial. Since all eigen-
values of the estimated are above a fixed saturation level, it
follows that the eigenvalues of the estimated are below a
fixed saturation value. This makes the estimate of more
robust and has been shown to improve the performance of the
resulting matched filter [19]. We implement both the CMF and
the CMFsat filters in this paper, and show that they can both be
improved by clustering the image.

D. Matched Filtering and -means Clustering

In this section, we extend the CMF to incorporate a clustered
image with a set of classes. For each class a separate mean
and covariance matrix are computed, and within each class a
different matched filter is employed. Let denote the mean of
the th class, and let denote its covariance. Then

(8)

(9)

where we use the shorthand to indicate that the th pixel
is a member of the th class, and to indicate the number of
pixels in the th class. In this case, the matched filter for the

th class is given by

(10)

where
inverted covariance matrix of class;
target signal;
mean of the th class.

We use a modified version of the-means algorithm
[21]–[24] to segment the image into distinct classes. The

-means algorithm was chosen because of its computational
efficiency and simplicity. For this application, our first concern
is minimizing the within-class variance, which after all is the
denominator in the signal to clutter ratio, and-means provides
a simple and direct way to achieve that goal. This-means is
assured to do. The-means algorithm is iterative.

1) Begin with an initial clustering.
2) Reassign each pixel to the nearest class.
3) Recalculate centroids as the mean of all assigned pixels.
4) Repeat steps 2–3 until convergence.
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The algorithm converges when each pixel is assigned to the cen-
troid closest to it. The -means algorithm is guaranteed to con-
verge, though sometimes slowly. In general, the converged so-
lution as well as the speed of convergence itself depends on the
initial clustering. In Section IV we explore a new means of ini-
tializing the centroids to extreme values.

This study investigated the use of-means clustering to im-
prove the performance of matched filters for weak signal detec-
tion. Partitioning the image into homogeneous subsets reduces
the associated clutter within the denominator of the signal to
clutter ratio. The approach is straightforward.

1) Divide the image into classes, each with a lower vari-
ance than the original.

2) Apply the matched filter to each individual class.
3) Recompose the filtered pixels into a final output image.

The speed of the-means algorithm makes it well-suited to re-
mote sensing applications, but any reasonable clustering tech-
nique should replicate the results found here. Just as the CMF
works whether or not the principal components correspond to
physical reality, so will -means improve the SCR in so far as
it reduces the within class variance of the image. Clustering re-
duces the within-class variance by breaking one population into
many, each with its own mean. We show that these means and
the first few eigenvectors of the image (Section IV-A) provide
similar information. Both represent the coarse structure of the
hyperdimensional data cloud. Clustering, therefore, is quite dif-
ferent from CMF, which emphasizes information in the higher
eigenvalues. Combining both these methods together in a two
step “divide and filter” process thus uses both the information
in the lower and higher eigenvectors to detect the desired signa-
ture.

This study uses a sample-based variant of the traditional
-means. Traditional -means uses the entire original dataset.

At each iteration, the distance between each pixel and each
cluster centroid is calculated, the minimum distance selected,
pixels reassigned, and at the end of the iteration, the centroid
locations are updated by taking the mean of all the points in that
cluster. Assuming that is the number of pixels, the algorithm
operates as follows.

1) Generate centers for each of the-classes.
2) Randomly sample a fraction of pixels from the original

image.
3) Reassign each of the sample pixels to the class whose

centroid it is nearest.
4) Recalculate centroids based on reassignments of sampled

pixels.
5) Repeat steps 2–4 until convergence.
6) Make a final assignment of all pixels in the original image

to the nearest class.

II. HEURISTIC EXAMPLE: DAISYWORLD

The high dimensionality of hyperspectral data makes it diffi-
cult to understand why and how matched filters work. In order
to illustrate the potential benefits and pitfalls associated with
our divide and filter approach, we have constructed several ex-
tremely simple examples. These examples are based on 600
pixel, two bands samples of a hypothetical Daisyworld [25].

Fig. 1. Scatterplots of simulated dark and bright daisies. The arrows drawn on
the figures represent the directions of matched filters for the entire population.
(Upper right) bright daisies and (lower left) dark daisies. These vectors have
been normalized to a length of three.

Band one is referred to as red and band two as blue. The 600
pixels are derived from two classes: dark and bright daisies.
Dark daisies have a class mean of (3,3) and bright daisies have a
class mean of (9,9). The target signature is assumed to be blue:

, so a pixel that is pure signal will have a radiance of
0 in band 1 (red) and a radiance of 1 in band 2 (blue). Schemat-
ically this is represented as a vertical vector of unit length.

We present three scenarios.

1) No Correlation: aside from different means, dark and
bright daisies are statistically the same. There is no
correlation between band 1 and band 2 [Fig. 1(a) and
(d)].

2) Same Correlation: aside from different means, dark and
bright daisies are statistically the same. In both classes,
band 1 and band 2 are highly correlated [Fig. 1(b) and
(e)].

3) Different Correlations: dark daises and bright daisies have
different means and different cross-spectral correlations
[Fig. 1(c) and (f)].

The scatterplots of these tests are shown below (Fig. 1). In each
plot, the bright daisies are in the upper right, the dark daisies
in the lower left. The matched filter vectors, normalized to a
length of three, have been plotted at the class centroids. The
matched filter at the center of the each image is that obtained
for the entire sample (both dark and bright daisies). The clutter
matched filter results are shown in the top row [Fig. 1(a)–(c)].
The simple matched filters are shown in the three bottom plots
[Fig. 1(d)–(f)].

A. No Correlation Case [Fig. 1(a) and (d)]

This example shows how clustering can reduce the within-
class variance, improving the performance of both simple and
clutter-matched filter. Both filters perform poorly on the com-
bined dataset, with a SCR of 0.3 for the SMF and 0.7 for the
CMF. The CMF performs better because it rotates the data away
from the first principal component, which connects the means
of the bright and dark daisies. Separating the daisies into two
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TABLE II
INITIAL LOCATIONS FORTHE EXTREME CENTROID INITIALIZATION . THE CLASS

CENTROIDS AREPOSITIONED AT +=� Z STANDARD DEVIATIONS ALONG

DIFFERENTCOMBINATIONS OF THE FIRST FOURPRINCIPAL COMPONENTS

classes improves the performance. In this case, since there is no
correlation between band one and band two within each class,
the CMF and SMF perform the same. The superimposed signal
is blue, represented as a vertical vector . For a signal
superimposed on white noise, the target itself is proportional to
the optimal filter , and the SCR is 1.0. Thus, clustering
can utilize patterns within data to reduce the within-class vari-
ance and improve the SCR of both simple and matched filters.

B. Both Dark and Bright Daisies Show Positive Correlations
[Fig. 1(b) and (e)]

Both dark and bright daisies have strong correlations between
bands 1 and 2. The orientation of the principal components are
similar for the dark, bright and combined sets of daisies. The
combined dataset, having a higher variance, has a lower SCR
(2.0, as opposed to 2.2). The covariance structures of the dark,
bright and combined datasets are similar in shape, but not mag-
nitude (Table II), resulting in nearly identical inverted covari-
ance matrices and matched filter vectors . The
matched filter rotates the data cloud, essentially projecting out
the first principal component, which would connect the means
of the two classes. Thus, CMF performs very well for mixed
classes that share the same covariance structure. This case could
realistically occur for pixels affected by shading or angle effects,
which influence the strength of an observed radiance signal, but
not the relations between its bands.

C. Dark and Bright Daisies Have Different Correlations
[Fig. 1(c) and (f)]

The CMF applied to unclassified data performs poorly in this
case. The estimated covariance structure is dominated by the
between-class variance, and the resulting filter does not perform
well (SCR 0.9). Clustering removes this problem, more than
doubling the SCR values.

As a cautionary note, consider how you would handle a pixel
located at (6,6) in Fig. 1(c) equidistant from the class means.
The sigma assigned by the matched filter would vary dramati-
cally depending on which class the pixel was assigned to. If the
pixel at (6,6) were assigned to the dark cluster, it would generate
a high MF value. If it were assigned to the bright cluster, it would
receive a low MF value. Using Mahalanobis distance instead of
Euclidean to assign pixels to clusters might reduce the number
of potential false alarms. Calculating a separate covariance ma-
trix for each cluster enhances the sensitivity of the MF, but in-

Fig. 2. This figure illustrates how the combined operations of clustering and
matched filtering can identify pixels that contain a weak spectral signature that
might otherwise go undetected. In this example, there are only two spectral
channels, red and blue, and the signature of interest is entirely in the blue
channel. The open circles represent the pixels that comprise the background
clutter. In this case, that background is naturally expressed in terms of two
distinct clusters in the spectral space. The filled circle represents a pixel from
the dark daisies in the lower-left cluster to which a small amount of blue
signal has been added. Three projections of the data are shown. (a) The simple
matched filter projects the data along the axis parallel to the direction of the
gas plume signature. This is adequate if the signature is strong, but a more
efficient projection is given by (b) the clutter matched filter described in (5). If
the clutter were well described by a single gaussian distribution, then this is the
projection that would optimize the signal to clutter ratio. (c) Clustered clutter
matched filter is the projection that is optimal for the gaussian cloud of dark
daisies in the lower-left quadrant of the figure. We see that in this projection,
the pixel with the weak blue signal now stands out as highly significant.

creases the chance that outliers within each class may be inap-
propriately detected. Using a clustering method that respected
second-order information would make class assignments more
statistically meaningful and the matched filtering process more
robust. This is an important aspect of this approach that warrants
further research.

D. Scatter and Density Plots

We have constructed a graphical representation of the SMF,
CMF, and clustered CMF applied to our set of daisies (Fig. 2).
Clustering helps us in two ways: it reduces the within class vari-
ance and can increase within-class correlation. This allows the
rotation performed by the CMF to be more successful at sepa-
rating the background clutter from the signal. This narrows the
histogram of the filtered data. Thus, clustering in combination
with the CMF can rotate groups of pixels such that the pixels
with small amounts of added signal will fall several standard
deviations (sigmas) away from the class mean [Fig. 2(c)]. The
following section describes the synthetic images that allow us to
demonstrate this hypothesis under more realistic circumstances.

III. SYNTHETIC IMAGES

Synthetic images provide a useful testing ground for new an-
alytical methods. Since the signal, noise and clutter components
are known, the new method’s effectiveness may be objectively
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Fig. 3. Layout of synthetic images: combinations of water and
nonphotosynthetic vegetation (NPV). Temperature varies horizontally
across the image from 280 K on the left to 330 K on the right. The fraction of
water (NPV) varies from 100% on the top to 0% on the bottom.

and quantitatively measured under controlled conditions. To test
the matched filters, we have used one simple and one complex
synthetic image. Both images contained 128 thermal bands. The
simple test image was constructed from mixtures of selected
ASTER library spectra at varying temperatures. The complex
image was the result of a simulation carried out using a 3d geo-
metric model, ray-tracing software and a finite-difference heat
transfer model [26]. Both synthetic images contain a faint sulfur
dioxide plume and artificially added Gaussian noise. These im-
ages are described more completely in the following sections.

A. Simple Synthetic Images

The simple synthetic image was generated by mixing two
distinct simulated spectra: water and nonphotosynthetic vege-
tation (NPV), at a range of temperatures from 280 to 330K.
The spectra were simulated using MODTRAN [27] in combi-
nation with emissivity values derived from the ASTER spectral
library [28]. The ASTER library spectra were resampled to 128
thermal bands between 7.8 and 13.5 micrometers. These emis-
sivity values were combined with atmospheric contributions,
calculated with MODTRAN, assuming a standard continental
summer with a winter water vapor profile. The sensor eleva-
tion was assumed to be 3 km, and the surface elevation was 1
km. Thus the data could represent a flight over flat terrain. The
resulting images are 255 255 pixels. Temperature increased
horizontally across the image, while the water/NPV mixture ra-
tios varied from 100% water at the top of the image to 100%
NPV at the bottom (Fig. 3).

Signal and noise components were then linearly superim-
posed on this image. The signal was a faint sulfur dioxide
spectra, which was subtracted from the main image along a
regular lattice of grid cells. The regular lattice allowed the
relative influence of temperature and endmember purity to be
compared across the face of the image. The standard deviation
of the sulfur dioxide absorption spectra was set to 0.1% of the

standard deviation of the background image. A small noise
fraction of (0.2%) was added to all pixels.

These synthetic images are simplifications of real hyperspec-
tral imagery, in at least four ways.

1) The mixed pixels are produced as linear combinations of
the endmembers. Thus, effects such as multiple emission
are neglected. We are not producing the most physically
realistic scene possible. Our aim is just to provide a simple
model for clutter with which to compare different algo-
rithms.

2) The clutter is uniformly distributed in spectral space;
there are no natural or distinct classes. More realistic
images would be expected to be more “clumpy” and so
any benefits of the clustering seen in this uniform data
might be enhanced for real data.

3) The plume and background interact linearly. A real plume
of sulfur dioxide will react in complex ways with its sur-
roundings, depending on the temperatures, emissivities
and transmissivities of it, the ground cover and the atmos-
phere. The low concentration of signal, though, means
that the linear approximation should be fairly accurate.

4) A white Gaussian noise fraction (0.2% of the standard
deviation of the underlying image) is added to the im-
ages. This is not realistic, since noise in real world often
not Gaussian. All the linear filters effectively assume a
Gaussian distribution for the noise.

It should also be noted that the temperature variations in this
image has been explicitly exaggerated over what might be found
in a typical scene, especially one taken at night. Schmuggeet
al. [29] have analyzed thermal infrared multispectral scanner
(TIMS) data from the HAPEX experiment in France and found
little variation over fully vegetated fields, a lake and a coniferous
forest, and considerable variation (5–10C) over dry soils. This
range is also typical of the complex synthetic image, described
in the next section.B.

B. Complex Synthetic Image

The complex test image used in this paper was generated by
the following steps [26]. A three-dimensional (3-D) model of
a factory and its surroundings was created in AC3D CAD pro-
gram. Shade fractions were then generated by a raytracing soft-
ware package (persistence of vision). Statistical and finite-dif-
ference models were then used to compute the ground surface
temperature. The mean temperature of the scene was 18.8C
with a standard deviation of 6.6C. The minimum and max-
imum temperatures were 3.6C and 66 C. The mean emis-
sivity of the scene was 0.95, with a standard deviation of 0.027.
The minimum and maximum emissivities were 0.83 and 0.99.
A faint 3-D sulfur dioxide plume produced by multiple time-de-
pendent fractals was placed above the ground. The plume was
10 K warmer than the ambient air with a density of 100 ppm at
the densest pixels. MODTRAN was used to calculate a radiance
image at a resolution of 320 320 pixels, which was binned to
a 160 160 pixel image with 619 bands. The cube was then
convolved with a Gaussian kernel weighting function to the 128
thermal bands used in this study.
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Fig. 4. (a) Principal components 1–4 of the simple water-NPV image with
superimposed artificialSO signal. Hues indicate loadings on temperature
(horizontal axis) and percent of surface covered by water/nonphotosynthetic
vegetation (vertical axis). PC1 corresponds to temperature. PC2 corresponds
to cover type. (b) Principal components 1–4 of the complex synthetic image
including SO plume. Note that the first four components are still largely
keyed to temperature variations (hot smokestacks, metal trucks). No principal
component in either image corresponded to the sulphur dioxide plume.

IV. I MAGE CLASSIFICATION VIA -MEANS

This section presents the classification results obtained from
the -means algorithm. We compare three different clustering
variations: clustering based on the data, clustering based on the
principal components of the data, and clustering based on the
principal components using an extreme centroid initialization.
The first four principal components of each image are displayed
below (Fig. 4). The plume was included in the data when
the principal components were calculated. The first component
of the simple image [Fig. 4(a)] corresponds roughly to temper-
ature, which increases horizontally across the image from 280
to 330 K. PC 2 appears to distinguish between water and non-
photosynthetic vegetation. Higher components are difficult to
interpret.

The components of the complex image [Fig. 4(b)] are, not
surprisingly, more complex. They correspond to cover type and
temperature, which are highly correlated due to the physics of
the heat transfer model used. Most of the variance of both im-
ages is contained within the first eigenvector (Fig. 5) of both im-
ages. This implies that temperature is the dominant component
of thermal imagery, not surprising. The faint plume does not ap-
pear in any of the principal components. We will show that in
scenes with considerable variation in background temperature,
detecting faint signals is much simpler if roughly isothermal re-
gions are identified first. A modified form of-means may be
used to do this quickly, as we describe next.

A. Extreme Centroid Initialization

The -means algorithm is iterative and the number of steps to
convergence depends on the initialization. Our original initial-
ization followed the traditional approach of randomly assigning
pixels to classes. Unfortunately, this method tends to place the
first set of centroids near the overall mean of the data, and a
number of iterations are required to achieve well separated cen-
troids. We experimented with an approach that initialized the
original cluster centroids to extreme locations as defined by the

Fig. 5. Eigenvalues of the water-NPV (solid line) and simulated (dashed
line) scenes. The first component in both cases explains more than 90% of the
variance of each image.

Fig. 6. Mean/random initialization method compared to extreme allocation
method. Both methods are based on a 10% sample at each iteration. The
mean/random method initialized centroids to the mean of randomly selected
pixels. The extreme initialization initialized centroids to extreme principal
component values. Results based on the simple image.

first few principal components. The algorithm assumes that the
variables are ranked according to their variance contributions
(as principal components are). Note that geometric methods of
estimating extreme or pure pixels could be also be used [8],
[9]. Another logical choice might be the empirical spectra of
the dominant materials of the analyzed scene. The extreme data
values of the first one to eight variables are then used to ini-
tialize the centroids. Standard deviations and means of the each
of the first eight variables are calculated. Two possible starting
locations along each variables are possible: standard de-
viations, where is parameter set by the user, and the stan-
dard deviation is independently calculated for each variable. A
value of was used in this study, placing the initial class
centroids near the edge of the data cloud. Higher values of
might be justified when analyzing data with large numbers of
extreme values. The 256 permutations of the first eight variables
are then used as needed, while all other centroid variables are set
to the variable mean. The first variable changes most quickly,
the second variable next quickly, etc. (Table II).

The -means program converged much more rapidly using
this extreme initial allocation scheme (Fig. 6). It also generated
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Fig. 7. K-means classifications of the water-NPV image. The left column
shows the results based on the raw 128–band image. The central column shows
the results based on the 128 principal components of this data, the right column
shows the results using the extreme initialization method. This technique
produced an even spacing of centroids. TheSO plume was included in the
data.

clusters that were more evenly distributed throughout the tem-
perature range of the simple synthetic image (Fig. 7).

B. Clustering Results

The test images were clustered into four through 40 classes, at
intervals of three. A sample size of 10% was used in all runs of
the -means routine. A new 10% sample of the image was taken
at each iteration of the algorithm. Twenty iterations were used
for the mean/random initialization methods, while only ten it-
erations were used for the extreme initialization classifications.
In all cases, the -means heuristic reached termination (sam-
pled pixels no longer moved between classes). Classifications
obtained with the raw data and the principal components of the
raw data were equivalent, but the extreme initialization method
produced clusters that were more evenly spaced across the tem-
perature range of the image.

The clusterings obtained are visually similar to the principal
component images displayed in the previous section: both cor-
respond to the gross structure of the analyzed scenes. Tem-
perature, in both images, plays a highly significant role, and
is clearly the key physical quantity being represented by the
classification. In the simple case, which does not take into ac-
count the relationship between a material’s specific heat ca-
pacity, thermal equilibrium, and subsequent temperature, clas-
sification proceeds with almost no reference to the underlying
groundcover. The temperature signal also dominates the classi-
fication of the complex simulation Fig. 8, note for example that
the effects of shade versus no shade (the sun is coming from the
bottom of the image) play a more significant role than the un-
derlying material.

It bears remarking that, as with the principal components, the
faint plume is not apparent from the clustering itself.

Fig. 8. Thek-means classifications of the complex simulated image. The
SO plume was included in the data. Note the similarity to the principal
components (Fig. 4). The high-frequency texture visible in the images is
due to adding temperature variations to the surface to simulate clutter from
temperature.

V. MATCHED FILTER COMPARISON

This section applies clustering and matched filter techniques
to our simple and complex test images. The three matched filters
tested are

1) SMF: the simple matched filter;
2) CMF: the traditional algorithm described Stockeret al.

[18];
3) CMFsat: The “saturated” clutter matched filter developed

by Villeneuveet al. [20].

A. SMF

Clustering improved the SMF, up to a point. For both data
sets, the SNR of the unclustered data began around 0.2. The
SNR increased with and quickly saturated at a low value,
about 0.5 for the water-NPV image, about 0.3 for the complex
synthetic datacube (not shown). Further increases indid not
increase the SNR, because the noise level is roughly equivalent
to the within-class variance. In other words, clustering removed
the variance associated with the clutter, but enough noise re-
mained to foil the SMF.

B. Unclustered CMF and CMFsat

The clutter matched filters performed about an order of mag-
nitude better than the simple matched filter. The SCR goes from
0.26 to 4.38 for the simple scene and from 0.23 to 3.03 for the
complex. A back of the envelope calculation can explain this
increase. The temperature component (PC1) of both images ac-
counts for around 90% of the variance. Projecting out this vari-
ance decreases the clutter by an order of magnitude, increasing
the SCR by the same amount.

The importance of the temperature component of the signal
was reinforced by experiments made with the CMFsat filter.
CMFsat filters were calculated at all possible thresholds, and the
minimum and maximum SCR’s located for each value of. For
both the simple and complex test case, the difference between
the minimum and maximum SCRs was small: about 16% for the
unclustered simple image and 1% for the complex. The differ-
ences between minimum and maximum values for the clustered
cases was often less (Figs. 9 and 10). The similar performance
between these methods is likely due to the relative simplicity of
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Fig. 9. Average SCR for the simple water-NPV hypercube. SCR values are
calculated independently for each cluster and areal means computed. Shows
that the increasing the number of clusters increases the SCR, but that all the
matched filters perform similarly.

Fig. 10. Average SCR for the complex hyperspectral scene. SCR values are
calculated independently for each cluster, and areal means computed. The
increase due to clustering in this scene is greater than the increase in the simple
case (about 5� and opposed to about 2�), presumably because the underlying
scene is more complicated. The CMF and CMFsat SCRs were so similar that it
is difficult to distinguish the lines on the plot.

these hyperspectral scenes. Temperature dominates the image,
and once removed the various methods perform about the same.

Following a suggestion in Villeneuveet al. [20], the number
of signals used as the threshold for the CMFsat algorithm was
also determined by minimizing the minimum description length
(MDL) of the covariance matrix. A method for determining
the MDL of the covariance matrix was developed by Wax and
Kailath [30] and slightly modified by Williams [31]. The SCR
of the min-CMFsat, max-CMFsat, and mdl-CMFsat SCRs are
comparable to the results obtained from the CMF for the simple
and complex images (Figs. 9 and 10).

C. Clustered CMF Better Than CMF

Clustering enhances the SCR by roughly a factor of two for
the simple (4.38 to 7.09) and a factor of five for the complex
thermal scenes (3.03 to 14.20). The improvement due to
clustering is greater than the difference between the various
clutter matched filters. Increasing narrows the temperature
range within each class, decreasing the within-class variance
and improving performance. CMF applied to the unclustered

Fig. 11. CMF results for the simple and complex thermal hypercubes.
The grid lines on the simple images correspond to areas with a very faint
superimposed sulfur dioxide plume. In both the simple and complex case,
clustering the image into 22 partitions makes the CMF perform better, allowing
the location of the plumes to be identified. Increasing the numder of partitions
to 40 increases the SCR, without visually improving the performance of
the CMF. This suggests caution in both setting the number of clusters at an
unreasonable value (in which the number of pixels in each class is too small
to define an adequate sample) and in putting too much faith in a performance
metric based on statistical assumptions about the underlying data.

data fails to reveal the faint sulfur dioxide signal in either the
simple or complex hyperspectral scenes (Fig. 11). Increasing
brings out the signal in both these images. Note that although
the SCR increases as goes from 22 to 40, the distinction
between signal and background does not necessarily become
more visually distinct. The SCR alone may not be the proper
statistic to detect the best. As grows sample size diminishes
and the assumption that Var(signal) Var(image) becomes
weaker and the problem of estimating the ‘true’ covariance
matrix becomes greater. For example, setting for the
water-NPV image generates a SCR of 93, but visual inspection
of the filtered field shows that the field now contains large
artifacts. Similar results were obtained for the complex image.
Caution and common sense should be used in setting the
maximum number of clusters.

VI. DISCUSSION ANDSUMMARY

Clutter matched filters can dramatically improve the chances
of faint signal detection when applied to highly correlated data,
such as thermal imagery. We have demonstrated that clustering
can further improve CMF performance. Our heuristic example
(Daisyworld, Section II) suggested that this performance in-
crease can arise both by reducing the within-class variance and
by creating clusters that are more highly correlated. Clustering
certainly achieves the first goal and possibly the second. In
general, the effects of clustering the data seemed more signifi-
cant than varying the specification of the clutter-matched filter
formulation. The strong relevance of clustering for detection
warrants more research into how different clustering methods
might impact the sensitivity and robustness of the matched
filter. Specifically, using second order statistical information
(such as the Mahalanobis distance) could reduce the number of
false alarms.
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Clustering data and removing the mean values can be seen
as another type of automatic background suppression. Since
the background, in the thermal, corresponds strongly with tem-
perature, clustering could be useful in other applications such
as endmember decomposition, in which a quantity rather than
a probability is of interest. The magnitude of the differences
between the black body spectra and spectra of most materials
in the thermal is generally small compared to the variation of
the black body spectra itself over moderate temperature ranges.
Thus, many problems in the thermal are similar to that of faint
signal detection, and clustering should be of potential benefit.
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