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Project Goals

> Construction and testing of 3 sub-scale, core 
modules that demonstrate:
– Improved (radiant) heat transfer
– High-efficiency/high-power-density performance as 

close to 650oC as possible 
– Up to 2000 hrs of operation with minimal voltage 

degradation
> A conceptual design of a 10-kW plant based on 

testing of the sub-scale module 



Variation in Available Stack Heat with 
Electrical Efficiency
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Radiant Heat Transfer to Air Pre-
heater Panels
> Heat transfer outside the 

cathode compartment
> Conduct heat to cell edge
> Radiate to panel (RAP)
> Convect to air in RAPs

> Post burner is remote to 
power module 

> Reduces:
> Airflow
> Pressure drop 
> HX size and cost
> Blower size and cost
> Blower parasitic power
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Stack/RAP Approach Offers Multiple 
Benefits for Cell/Stack Operation

> Higher power density operation
– Due to faster heat removal and/or thinner airflow 

channels
> More flexible operation

– By maintaining stable, low airflow and hot-zone 
temperature during load changes 

– By compensating for internal reforming heat-
transfer effects at low and high power density

> More uniform in-plane and/or axial temperature 
distribution 

> Reduced pressure drop in the cells
– Improved seal durability



Stack/RAP Approach May Facilitate 
Compactness, Modularization, and Scale-Up

> Stack and air pre-heater are 
modularized

> Module arrays have particular 
advantages: 
– Fewer pre-heater panels
– Better thermal management 

(stacks “share” heat)
– Fewer pre-heater manifolds

> “Active” insulation
– Assists thermal self-

sustainability in small 
systems

– Improves compactness



Technologix Model
• Oriented towards configuration design
• ~102 - 103 times faster than CFD
• Performs reliably
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RAP Model Validation 
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RAP Panel Design

Oxidant Inlet to RAP

RAP panel #2

RAP inlet manifold

RAP panel  wall #2

RAP panel  wall #1

Gap between stack
& RAP panel 

Stack

Oxidant Outlet from RAP

RAP outlet manifold
(internally manifolded stack)

RAP outlet manifold
(externally manifolded stack)

Gap between RAP 
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First CEC Stack/RAP 
Module Design

RAP Panel #2RAP Panel #1

> Internally manifolded, 
cross-flow stack

> Stack-generated heat 
radiates to two air pre-
heater panels
– Panels are opposite the 

fuel inlet and outlet sides 
of the stack

> Panel airflow:
– Perpendicular to the 

stacking direction
– Counter to airflow in 

the cells



Stack/Air Pre-heater Operation
Configuration: Two integrated air pre-heaters 
with airflow horizontal and counter to flow in 
stack.  Stack thermal management: 40% IR + 
37% RAD + 23% AIR
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RAP Performance with Heat Loss to 
the Surroundings

2-panel design, 7 cpi
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First Module Development
> U-Utah cell development
> MSRI tested multiple 5, 10, 

20, 25, and 40-cell stacks on 
H2, simulated reformate, and 
CH4/steam at 650-800oC

> GTI designed the RAPs and 
plenum



GTI Stack Testing Facility

> Designed for individual, un-
insulated  stacks at a 
constant, uniform temperature
– Location of the furnace 

heating elements affected the 
results

> Diagnostic capabilities
– Blended gases simulate 

different fuels
– GC for seal efficiency and 

blending accuracy 
– Individual cell voltages
– Stack internal resistance 

measurement capability



First Sub-Scale Module Test

> 40-cell, 100-cm2 stack
– Measurements were made with modified seals on 50/50 H2/N2 at 

~750oC and constant flow and without insulation

> Power output:  550W
– 1.2 kW peak power measured in Salt Lake City

> Obtained I-V curves
– Power density ~100 mW/cm2

> Demonstrated RAP concept
– ~105oC air temperature rise with only ~120 delta T between 

stack and RAP

> Operated unit ~3-4 weeks through ~5 thermal cycles



Second Module Design

> Stack/RAP module is 
– Thermally isolated from 

surroundings
> Avoids interference 

from a secondary 
heat source

– Thermally self-
sustained

> Inlet temperature to the 
RAPs is adequately 
controlled

> External hydraulic 
compression removes 
minimal heat



Stack/RAP Test Module Design (from Above)
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Stack/RAP Test Module Design (from Below)
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MSRI/GTI Stack/RAP Test Module
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Temperature Rise 
in Fuel Outlet 
RAP: 340oC Temperature 

Rise in Fuel Inlet 
RAP: 408oC



Third Power Module 

Aurora hot power module
without RadHEX

Aurora hot power module
with RadHEX



Aurora Thermocouple 
Layout
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Hot Zone Thermal Analysis
• Temperature mapped as if RadHEX was cut vertically along the air 

inlet side and rolled out into a flat panel
• Gives 11 measurements for each RadHEX surface (the 3 

measurements at the edges are redundant)
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Hot Zone 
Thermal 
Profile -
OCV



Hot Zone 
Thermal 
Profile –
2kW



Module Electrochemical Performance Comparison
Parameter Project Goal GTI/MSRI Test MSRI/GTI Test VPS Test

Stack 
design

NA 40 cells
92-cm2 area
Internal manifolded
cell borders

40 cells
92-cm2 area
Internal manifolded
cell borders

84 cells
121-cm2

Internal manifolded
picture frame

Fuel H2, simulated 
reformed natural gas, 
and CH4/steam (DIR)

50% H2/ 50% N2 OCV:  55%H2
/45% N2
1 kW:  80%H2
/20%N2

Residential 
natural gas***

Module 
output

1-3 kW 550 W 1.0 kW ~2.8 kW DC
2 kW net AC

Stack T at 
full load

As close to 650oC as 
possible

~759oC ~786oC ~719oC
Cath Out T = 730oC

OCV Theoretical V for VPS 
fuel: 78.12V

43.28 V
(1.082 V/cell) 

41.62 V
(1.0405 V/cell)

79.67 V 
(0.9485 V/cell)

Gas 
utilizations

Not specified* 26.7% Uf
26.7% Uo

27% Uf
45% Uo

50% Uf
40% Uo

Power 
density 
under full 
load

0.4 W/cm2 at 
0.8V/cell** 

0.11 W/cm2 at
0.42 V/cell
0.26 A/cm2

16.7 V at 24A

0.27 W/cm2 at
0.59 V/cll
0.46 A/cm2

23.7 V at 42.2 A

0.27 W/cm2**** at
0.79 V/cell
0.35 A/cm2

66 V at 42 A 
*    40-60% Uf and 40-50% Uo targeted to approach commercial operation
**  Depends on stack size, gas utilization, cell dimensions and fuel, which were not specified
*** 75% reformed externally and 25% on-cell reforming
****0.34W/cm2 upper limit



Module Endurance and Efficiency Comparison

Parameter Project Goal GTI/MSRI Test MSRI/GTI Test VPS Test

Endurance Two 500-hr tests and 
one 2000-hr test

Operated 
intermittently for ~3 
weeks 

~500 hrs at part 
load

8,000-hr test 
underway.
Will pass 2000 
hours on 4/25/05*

Voltage 
degradation

<0.6%/1000 hrs during 
2000 hours

Unplanned power 
outages interfered 
with V degradation 
measurements.  

500 test completed
V degradation tbd

~1-2%/1000 hr at 
30A
~5%/1000 hr at 
40A **

Power 
cycling 

Not specified.  ~5 unplanned 
power outages

Apparent good 
power cycling

Apparent good 
power cycling for 
system

Electric 
efficiency

Projected 50% for a 10-
kW system

Modeled by Nexant Modeled by 
Nexant

~35% measured.  
45-50% path 
identified

*In non-CEC work, single-cell stack has operated >25,000 hrs and 20-cell stack has operated >8,000 hrs
**V degradation for a complete system can be higher than for a hot module only test



Module Thermal Performance Comparison

Parameter Project Goal GTI/MSRI Test MSRI/GTI Test VPS Test

Radiant air 
preheater
design

Model and 
design

2 RAP panels adjacent 
to the fuel inlet and 
outlet, respectively
RAP airflow perpendicular to 
the stacking direction

2 RAP panels adjacent 
to the fuel inlet and 
outlet, respectively
RAP airflow perpendicular to 
the stacking direction

Annular 
RadHex
RadHex
airflow is 
proprietary

Thermally 
self-
sustained 

Yes No Essentially at 1.0 kW Yes, >0.98 
kW

RAP air 
temperature 
rise*

>300-400oC at 40-
50% Uo and full 
load**

~101oC
(due to high RAP inlet T)
300 – 400oC in out-of-
stack  tests

~374oC ~440oC

In-plane stack 
delta T*

Not specified
Should be 
<100oC

Modeled to be <100oC Modeled to be <100oC ~36oC 
T/Cs on 
stack face

Axial stack  
delta T*

Not specified
Should be 
<100oC

~163oC
T/Cs at center of cell 

~175oC 
T/Cs at center of cell 

~55oC
T/Cs on 
stack face

*    Values at full load
**   Needed for high electric efficiency



Conclusions
> Radiant transfer of stack-generated heat can 

– Heat air effectively, cool the stack with low airflow, control stack 
temperature gradients, improve cell/stack performance, reduce thermal 
losses to the environment, and improve system flexibility 

– Improve system performance, cost, compactness, and scale-up
> The results

– Suggest that designing combined stack/RAP modules may benefit 
SOFC technology

– Developed module test fixtures and methods that can be used in 
subsequent projects

– Identified options for minimizing axial and in-plane temperature 
gradients from OCV to full load

– Produced a validated, engineering model for design of stack/RAP 
power modules

– Included advances in stack design and electrochemical performance
– Defined options for multi-module array systems



Conclusions (continued)
> The results also 

– Were at or near the CEC project goals
– Are providing input to the design of SOFC power generators in the 

FCE/VPS SECA program
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