Project Status Overview: Optical Design Optimization

LSST Telescope Final Design October 3, 2005

Lynn Seppala LLNL

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Summary of accumulated changes to baseline

- The CA ID of the secondary is 1.8 m to facilitate installation of the camera through the hole in the secondary.
- Space of 5.0 cm (down from 8.0 cm) between clear apertures of the primary and tertiary mirrors.
- The CA ID of the primary, joint line and the CA OD of the tertiary are respectively: 5116, 5066 and 5016 mm.
- The overall sag of the M1 / M3 monolith is 680 mm.
- Warren Davison suggests reducing the diameter of the hole in the tertiary to $\mathbf{1 0 5 4 . 7} \mathbf{~ m m}$, from 1160 mm.

LSST baseline design specifications: updated

- $\quad 8.36 \mathrm{~m}$ diameter beam
- Full field of view of 3.5 degrees
- Etendue of $318 \mathbf{~ m}^{2}$ deg 2
- Focal ratio f/1.25
- EFL: 10.45 m
- Plate scale: $50.7 \mu \mathrm{~m} / \mathrm{arc}-\mathrm{sec}$
- Flat focal plane
- Five photometric filters
- g-r-i-z-y pass bands, $410 \mathrm{~nm}-1028 \mathrm{~nm}$
- Images calculated for 5 equally spaced and weighted wavelengths spanning the pass band
- Primary and tertiary mirror :
- monolithic
- 5 cm between beams on each mirror
- Camera
- 3 cm between beams at L1 input surface
- Camera can be inserted in hole of secondary: 1.8 m diameter CA ID
- Telescope by itself is corrected on-axis
- No ADC

Three fused spherical silica lenses

- L1
- Maximum diameter, :1.62 m
- Edge thickness at CA diameter is 3.4 cm
- L2
- Central thickness of 3.0 cm
- Minimum space to filter at least 30 cm
- Accommodate filter change mechanism
- L3
- Vacuum barrier
- $>2.5 \mathrm{~cm}$ space to focal plane
- Central thickness sufficient to provide "bulletproof" design for fracture safety
- Diameter/thickness ratio of 12.17 yields 6.0 cm thickness for 73 cm lens

Fused silica filters

- First surface concentric about chief ray
- CT and $2^{\text {nd }}$ surface curvature optimized for image quality
- Minimum center thickness of 1.35 cm

Current work

Refine design regarding throughput, camera location, secondary asphericity while maintaining imaging performance

1. Add small amounts of asphericity on L_{2} and L_{3} to:

- Reduce asphericity on secondary mirror
- Improve null testing for L_{2} and L_{3}
- L_{2} is now fixed; no imaging advantage for moving L_{2}

2. Study small changes in focal ratio: $f / 1.25$ to $f / 1.20$

- Further reduce asphericity on secondary
- L_{2} cantilever and/or secondary diameter increase slightly

Bonus: asphericity on secondary can be reduced from 132 microns to 17 - 100 microns

- Decreasing the L_{1} cantilever can:
- increase the diameter of the secondary
- decrease the vignetting
- increase the asphericity of the secondary
- Decreasing the focal ratio of the telescope can:
- decrease the asphericity of the secondary
- Either the L_{1} cantilever or secondary diameter will increase decreases as secondary diameter increases

- Look at designs with secondary asphericity 17-34 microns
- There are relatively small increases of the L1-FP vertex distance
- increase from 2.63 to $2.75-2.81 \mathrm{~m}$ should be acceptable
- The potential advantages for fabricating and testing the secondary mirror are more significant
- Ranges
- f/1.25 to f/1.2236 (plate scale 50.66 to 50.00 microns/arc-sec)
- Primary radius 19.6 to 19.9 m
- L1 cantilever 2.7 to 2.8 m
- M2 CA diameter 3.37 to 3.44 m
- Telescope length 6.32 to 6.45 m

Continuing work

- Comments on next slide [slide 10]
- Designs A-H increase the L1 cantilever from 2.6 m to 2.7 m
- Designs A-C with biconcave L2 have $\mathbf{2 1}$ to $\mathbf{2 5}$ microns asphericity
- Long radius on $1^{\text {st }}$ surface of L 2 leads to testing difficulties since radius must be within + /- 50 mm or so
- Designs D-H have a plano-concave L2
- Ideal for fabrication and testing
- Asphericity increases to 30 to 34 microns
- Decreasing the focal ratio
- Decreases the vignetting as it increases the diameter of M2
- Slightly improves the image sizes
- Designs D-H are reasonable but look at what is required to further reduce asphericity on secondary

L1 cantilever increased to 2.7 meters; $\mathrm{f} / 1.25, \mathrm{f} / 1.24$ and $\mathrm{f} / 1.2236$
A-C, L2 is biconcave; D-H, L2 is plano-concave

LSST : Sept 30,2005		Units	A	B	C	D	E	F	G	H
FNBR		---	1.2500	1.2400	1.2336	1.2500	1.2500	1.2400	1.2336	1.2336
	Plate scale	$\mu \mathrm{m} / \mathrm{sec}$	50.66	50.26	50.00	50.66	50.66	50.26	50.00	50.00
Casting	Required depth: M1M3	mm	676	676	676	676	671	672	676	674
M1	Radius	m	-19.681	-19.695	-19.688	-19.681	-19.832	-19.811	-19.685	-19.795
M1	Max. Dep.: BF parabola	$\mu \mathrm{m}$	109	113	116	114	117	119	120	123
M2	Diameter (Optical CA)	m	3.40	3.41	3.42	3.40	3.41	3.43	3.42	3.44
M2	Max. Dep.: BSF	$\mu \mathrm{m}$	25	21	21	32	34	31	30	31
M3	Max. Dep.: BSF	$\mu \mathrm{m}$	411	409	406	407	394	391	394	388
L1	Diameter (Optical CA)	m	1.58	158	1.58	1.58	1.58	1.58	1.58	1.58
L1	Center Thickness	mm	-72.13	-70.18	-69.99	-72.67	-/1.9b	-10.10	-69.76	- /2.63
L2	Diameter (Optical CA)	m	1.056	1.042	1.046	1.058	1.048	1.048	1.044	1.064
L2	Surface1: Radius	m	29.93	39.78	54.53	plano	plano	plano	plano	plano
L2	Surface2: Radius	m	-2.914	-2.954	-2.95	-2.651	-2.727	-2.196	-2.864	-2.789
L2	Max. Dep.: BSF	$\mu \mathrm{m}$	260	253	268	213	230	245	233	244
L2-filter	L2 to Filter space	mm	-300	-300	-300	-300	-300	-300	-300	-318.7
Filter	Surface1\&2:RD i-filter	m	-6.403	-6.223	-6.122	-6.3	-6.306	-6.1/4	-6.104	-6.066
Camera	L1 1st vertex to M2	m	2.710	2.709	2.708	2.711	2.690	2.691	2.706	2.694
	Overall System Length ${ }^{1}$	m	6.352	6.331	6.317	6.35	6.37	6.35	6.32	6.33
	Integrated Etendue(A Ω)	$\mathrm{m}^{2} \mathrm{deg}^{2}$	318.9	319.2	319.7	318.9	319.5	319.9	319.7	320.3
	on-axis	\%	62.55	62.55	62.55	62.55	62.55	62.55	62.55	62.55
	full-field	\%	55.47	55.67	55.72	55.58	56.01	56.19	55.80	56.37
	Integrated	\%	60.39	60.45	60.54	60.39	60.49	60.57	60.54	60.65
	Vignetting (\% from center)	\%	11.32	11.01	10.93	11.14	10.46	10.17	10.79	9.89
Image Size (Worst case 80\% Diffraction Encircled energy Dia.)										
	$\mathrm{g}: 410-552 \mathrm{~nm}$	sec	0.305	0.300	0.299	0.328	0.307	0.298	0.303	0.280
	r : $550-694 \mathrm{~nm}$	sec	0.273	0.259	0.250	0.280	0.248	0.234	0.257	0.236
	i: 694-847 nm	sec	0.265	0.252	0.242	0.267	0.236	0.222	0.248	0.215
	y: $847-930 \mathrm{~nm}$	sec	0.278	0.261	0.247	0.274	0.239	0.225	0.252	0.219
	z: 960-1028 nm	sec	0.290	0.274	0.260	0.282	0.245	0.234	0.259	0.231

Look at larger L1 cantilever distance of $\mathbf{\sim} \mathbf{2 . 8} \mathbf{~ m}$

- Designs I - M: Minimum asphericity of 17 microns achieved for L1 cantilever of ~2.8 m
- All designs I - M should be acceptable
- Designs K-M look at reducing L1 CA size from 1.58 m to 1.55 m
- Powers of L1 and L2 increase slightly (and weight, thickness)
- Reducing the focal ratio increases the space between L2 and the filter; could be helpful for filter interchange
- Size of L2 increases slightly
- Recommendation: Designs K-M should be passed by small group to further discuss

Increasing L1 cantilever to 2.8 m reduces secondary asphericity to minimum possible values; K-M trades M2 diameter and vignetting vs. L1 size

LSST : Sept 30,2005 FNBR		Units\qquad $\mu \mathrm{m} / \mathrm{sec}$ mm	$\begin{array}{rr} \text { I } & \\ & 1.2500 \\ & 50.66 \end{array}$	J	K 1.2500	$\begin{aligned} & \hline \text { L } \\ & \hline 1.2400 \end{aligned}$	M	
		1.2400		1.2336				
	Plate scale			50.26	50.66	50.26	50.00	
Casting	Required depth: M1M3		675	677	677	677	677	
M1	Radius		m	-19.840	-19.839	-19.842	-19.838	-19.835
M1	Max. Dep.: BF parabola	$\mu \mathrm{m}$	102	104	100	105	111	
M2	Diameter (Optical CA)	m	3.39	3.40	3.37	3.40	3.42	
M2	Max. Dep.: BSF	$\mu \mathrm{m}$	17	17	17	17	17	
M3	Max. Dep.: BSF	$\mu \mathrm{m}$	400	393	400	401	403	
L1	Diameter (Optical CA)	m	1.56	1.58	1.550	1.550	1.550	
L1	Center Thickness	mm	-74.410	-74.220	-78.400	-79.14	-81.60	
L2	Diameter (Optical CA)	m	1.058	1.060	1.078	1.084	1.098	
L2	Surface1: Radius	m	plano	plano	plano	plano	plano	
L2	Surface2: Radius	m	-2.609	-2.660	-2.508	-2.545	-2.541	
L2	Max. Dep.: BSF	$\mu \mathrm{m}$	230	253	224	235	233	
L2-filter	L2 to Filter space	mm	-305.3	-312.2	-300	-323.9	-355.8	
Filter	Surface1\&2:RD i-filter	m	-5.899	-5.731	-5.744	-5.69	-5.628	
Camera	L1 1st vertex to M2	m	2.777	2.811	2.804	2.780	2.762	
	Overall System Length ${ }^{1}$	m	6.43	6.42	6.45	6.42	6.39	
	Integrated Etendue(A Ω)	$\mathrm{m}^{2} \mathrm{Clg}^{2}$	318.3	318.2	317.6	318.8	319.5	
	on-axis	\%	62.55	62.55	62.55	62.55	62.55	
	full-field	\%	55.72	55.53	55.59	55.80	56.12	
	Integrated	\%	60.27	60.26	60.13	60.37	60.50	
	Vignetting (\% from center)	\%	10.92	11.22	11.13	10.79	10.28	
	$\mathrm{g}: 410-552 \mathrm{~nm}$	sec	0.276	0.264	0.274	0.267	0.264	
	r : $550-694 \mathrm{~nm}$	sec	0.228	0.209	0.232	0.216	0.209	
	i: 694-847 nm	sec	0.226	0.202	0.225	0.208	0.201	
	y: $847-930 \mathrm{~nm}$	sec	0.233	0.207	0.232	0.215	0.209	
Oct 3,2005	z: 960-1028 nm	sec	0.247	0.215	0.237	0.218	0.209	

- g:50\%	- r:50\%
$\Delta \mathrm{i}: 50 \%$	- z50\%
- y.50\%	- g:80\%
-- r:80\%	$\pm \mathrm{i}: 80 \%$
$\bigcirc-$ z80\%	-雱-y. 80%
- - u:80\%	- u: u (50

Current baseline Detector/WFS Layout

 20 Curvature Sensors

