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ABSTRACT

Hybrid ensemble–three-dimensional variational analysis schemes incorporate flow-dependent, ensemble-
estimated background-error covariances into the three-dimensional variational data assimilation (3DVAR)
framework. Typically the 3DVAR background-error covariance estimate is assumed to be stationary, nearly
homogeneous, and isotropic. A hybrid scheme can be achieved by 1) directly replacing the background-
error covariance term in the cost function by a linear combination of the original background-error co-
variance with the ensemble covariance or 2) through augmenting the state vector with another set of control
variables preconditioned upon the square root of the ensemble covariance. These differently proposed
hybrid schemes are proven to be equivalent. The latter framework may be a simpler way to incorporate
ensemble information into operational 3DVAR schemes, where the preconditioning is performed with
respect to the background term.

1. Introduction

Present three-dimensional variational data assimila-
tion schemes (3DVAR; e.g., Parrish and Derber 1992;
Courtier et al. 1998; Gauthier et al. 1999) commonly
assume that the background-error covariances are sta-
tionary, and nearly homogeneous and isotropic, while
in fact the error covariances may vary substantially with
the flow of the day (Hamill et al. 2002). Several ap-
proaches have been proposed to relax these assump-
tions in 3DVAR. Fisher and Courtier (1995) suggested
explicitly estimating the leading eigenvectors of the
background-error covariance matrix and using a simple

stationary covariance model in the orthogonal sub-
space. Techniques are also being developed to include
some spatial inhomogeneity and anisotropy in the stan-
dard covariance models used in 3DVAR (e.g., Desro-
ziers 1997; Riishøjgaard 1998; Purser et al. 2003; Wu et
al. 2002). Another approach is to blend in flow-
dependent error covariances estimated from an en-
semble into the variational framework (Barker 1998;
Hamill and Snyder 2000; Lorenc 2003; Buehner 2005).
These latter methods are known as hybrid ensemble–
variational schemes, or more simply here as hybrid
schemes. In this paper we focus on discussing different
proposed hybrid ensemble–variational schemes.

A hybrid scheme was proposed and tested by Hamill
and Snyder (2000, hereafter HS00). In that study, the
background-error covariance was explicitly replaced by
a weighted sum of the 3DVAR background-error co-
variance and the sample ensemble covariance. Each
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member was then updated by assimilating perturbed
observations with the hybrid scheme. Parallel assimila-
tions and forecasts were cycled forward, as in a tradi-
tional ensemble Kalman filter scheme (e.g., Houteka-
mer and Mitchell 1998, 2001; Houtekamer et al. 2005).
Later, Etherton and Bishop (2004) and Wang et al.
(2007) provided an implementation of HS00, where the
ensemble perturbations were updated by the ensemble
transform Kalman filter (ETKF; Bishop et al. 2001;
Wang and Bishop 2003; Wang et al. 2004) and the back-
ground-error covariance for updating the mean state
was given by an explicit sum of the ETKF ensemble
covariance and the static covariance.

Lorenc (2003, hereafter L03) proposed another form
of the hybrid variational scheme for updating the state,
where the control variables in the cost function were
augmented by another set of control variables, precon-
ditioned upon the square root of the ensemble covari-
ance. He also showed how a localizing Schur product,
which will reduce the effects of sampling error in the
ensemble covariances, could be implemented in the
variational framework with preconditioning. Buehner
(2005, hereafter B05) adopted a hybrid framework
similar to L03 to incorporate the ensemble covariance
output from the ensemble Kalman filter into the
3DVAR system. Another implementation of the Schur
product for covariance localization was proposed by B05.

Hybrid schemes present a possible alternative to
more conventional ensemble data assimilation schemes
(e.g., Evensen 1994; Burgers et al. 1998; Anderson
2001; Bishop et al. 2001; Whitaker and Hamill 2002,
2005; Snyder and Zhang 2003; Zhang et al. 2004; Ott et
al. 2004; Szunyogh et al. 2005; Houtekamer and Mitch-
ell 1998, 2001, 2005; Houtekamer et al. 2005). Unlike
those ensemble data assimilation schemes, which adopt
a framework completely different from existing varia-
tional scheme, the hybrid schemes begin with existing
variational systems and thus can be implemented with
minor changes to the existing variational codes. If prop-
erly preconditioned, hybrids may be less computation-
ally expensive than other ensemble data assimilation
schemes. Because many of the ensemble data assimila-
tion schemes assimilate observations serially, their
computational expense typically scales not only with
the number of ensemble members and the number of
state variables updated by each observation, but also
with the number of observations. This may be a concern
for operational applications, as the number of observa-
tions is huge and still growing with each passing year. In
comparison, the computational expense of variational
techniques currently used in operational centers such as
the National Centers for Environmental Prediction do
not scale linearly with the number of observations (Da-

ley and Barker 2000; J. Derber 2005, personal commu-
nication). Another potential advantage of hybrids is the
ease of applying variational quality control (L03). Con-
sequently, if hybrid methods can achieve much of the
potential error reduction of these ensemble filters
(Wang et al. 2007), then they may provide an attractive
alternative for operational centers where variational
data assimilation is established and ensemble forecasts
are available or a suitable and efficient method can be
found to form the background ensemble.

The hybrid schemes proposed by HS00, and by L03
and B05 differ in the way that they incorporate the
ensemble covariance information into the cost function,
though L03 and B05 state without proof that the
schemes are equivalent or similar. The purpose of this
note is to provide a proof that the variational state
update steps for the two hybrid schemes proposed by
HS00, and by L03 and B05 are mathematically equiva-
lent. We also show that the methods that L03 and B05
proposed to implement a localizing Schur product in the
variational framework with preconditioning are equiva-
lent. Because augmenting the control variables as in
L03 and B05 may be easier to implement within those
variational systems in which the preconditioning is with
respect to the background term, this may provide a
convenient pathway for the incorporation of ensemble
information into many operational analysis schemes.

Section 2 will provide a detailed proof of the equiva-
lence of the two proposed hybrid schemes and section 3
summarizes the paper.

2. Proof of equivalence of the hybrid schemes

In HS00, the cost function associated with the hybrid
ensemble–3DVAR background-error covariance is

J �
1
2

�x � xb �TB�1�x � xb�

�
1
2

�H�x� � y�TR�1�H�x� � y�, �1�

where x b is a column vector of the N-dimensional back-
ground forecast state, y contains the observations, R is
the observation-error covariance matrix, and H is the
operator mapping from the model space to the obser-
vation space. The hybrid background-error covariance
matrix B is given by a weighted sum of the 3DVAR
covariance matrix B1 and the ensemble covariance B2 ,
that is,

B � �1B1 � �2B2 , �2�

where �1 and �2 are scalar coefficients. In HS00, �1 �
1 � �2 . Further defining the analysis increment as 	x �
x � x b, then Eq. (1) becomes
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J �
1
2

��x�TB�1��x�

�
1
2

�H�xb � �x� � y�TR�1�H�xb � �x� � y�. �3�

After expanding H(x b � 	x) in a Taylor series at x b,
this is the quadratic minimization problem solved in the
“inner loop” of incremental variational schemes. The
goal of HS00’s hybrid scheme, is then to find 	x to
minimize (3).

L03 and B05 employ a different approach to incor-
porate ensemble information in the cost function. They
represent the analysis increment as

�x � �1�x1 � �2�x2 , �4�

�x1 � �B1�1�2v1 , and �5�

�x2 � �B2�1�2v2 , �6�

so that the associated cost function is

J �
1
2

v1
Tv1 �

1
2

v2
Tv2

�
1
2

�H�xb � �x� � y�TR�1�H�xb � �x� � y�. �7�

Here, v1 is a vector of the standard 3DVAR control
variables associated with the traditional 3DVAR trans-
form (B1)1/2, while the vector v2 is the augmented part
of the control variable, which is associated with the
ensemble covariance. The scalars 
1 and 
2 are the
weighting coefficients to combine the two increments
	x1 and 	x2 . This choice of control variables also pre-
conditions the background term in Eq. (7), as is com-
mon in variational methods (e.g., Parrish and Derber
1992; Gauthier et al. 1999; Courtier et al. 1998).

In Eq. (6), (B2)1/2 is the square root of the ensemble
covariance. If no covariance localization is applied, (B2)1/2

is simply the rectangular matrix whose columns are the
ensemble perturbations divided by �K � 1, where K
is the ensemble size.

Both L03 and B05 proposed methods to implement
covariance localization on the ensemble covariance in a
variational system with preconditioning. As shown in
the appendix of this note [and Eq. (B.3) of B05], B05
found the square root of the localized ensemble covari-
ance. Thus, the form of the cost function by B05 with
covariance localization implemented is still the same as
Eqs. (4)–(7). After incorporating covariance localiza-
tion, the cost function of L03 [his Eq. (17)] is somewhat
different from Eq. (7). As shown in the appendix, the
cost function incorporating the correlation matrix by
L03 can be manipulated into the same form of B05.

Thus, in the following proof, for simplicity, we use the
general formulation Eqs. (4)–(7) to represent the ex-
tended control variable method for both L03 and B05.
The goal of L03 and B05’s hybrid scheme is then to find
the control vectors v1 and v2 to minimize Eq. (7) and
reconstruct the increment through Eqs. (4)–(6).

When 
1 � ��1 and 
2 � ��2 , the hybrid varia-
tional methods proposed by HS00 and L03 are math-
ematically equivalent in the sense that minimizing Eqs.
(3) and (7) produces the same analysis increment. This
can be shown as follows.

To find 	x that minimizes Eq. (3), we set the first-
order derivative of Eq. (3) with respect to 	x equal to
zero, that is, �J/�	x � 0, which gives

�x � BHTR�1�H�xb � �x� � y� � 0, �8�

where H  �H/�x, evaluated at the x that satisfies Eq.
(8). Solutions for Eq. (8) can be found iteratively when
the observation operator H is nonlinear. If the obser-
vation operator is linear or if it is weakly nonlinear and
xb is reasonably accurate, then explicit solutions can be
derived. For details, see Lorenc (1986, 1988), Daley
(1991), Parrish and Derber (1992), Cohn (1997), and
Daley and Barker (2001).

Next we find the analysis increment associated with
minimizing Eq. (7) with respect to v1 and v2 . To mini-
mize Eq. (7), v1 and v2 must satisfy �J/�v1 � 0 and
�J/�v2 � 0, which gives

v1 � �H�1�B1�1�2�TR�1�H�xb � �x� � y� � 0, �9�

v2 � �H�2�B2�1�2�TR�1�H�xb � �x� � y� � 0, �10�

where 	x is given by Eqs. (4)–(6). Premultiplying Eq.
(9) by 
1(B1)1/2, premultiplying Eq. (10) by 
2(B2)1/2,
adding both sides of the subsequent two equations, and
using Eq. (4), yields

�x � ��1
2B1 � �2

2B2�HTR�1�H�xb � �x� � y� � 0.

�11�

So, if 
1 � ��1 and 
2 � ��2 , we can further sub-
stitute Eq. (2), the HS00 background-error covariance,
into Eq. (11) and then obtain Eq. (8). Consequently,
the analysis increments from the schemes of L03 and
B05 satisfy the same equation as that of HS00.

The above proof shows that the analysis increment
from Eq. (3) and Eqs. (4)–(7) will converge to the same
solution and thus the two hybrid schemes are equivalent.

3. Summary and discussion

In hybrid ensemble–variational data assimilation
schemes, ensemble covariances that reflect flow-depen-
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dent forecast-error uncertainty are incorporated into
the variational framework. Methods have been pro-
posed to achieve this. In HS00, the background-error
covariance was defined explicitly as a linear combina-
tion of the standard 3DVAR covariance and the en-
semble covariance. In L03 and B05, the original varia-
tional control variables were extended by another set of
control variables preconditioned upon the square root
of the ensemble covariance. They also suggested how to
incorporate a localizing Schur product to the varia-
tional framework with preconditioning. Here we have
demonstrated that the hybrid schemes proposed by
HS00, L03, and B05 are mathematically equivalent.
The L03 and B05 framework should be easier to apply
in model-space variational schemes where precondi-
tioning is performed with respect to the background
term (e.g., Parrish and Derber 1992; Lorenc et al. 2000;
Gauthier et al. 1999; L03; Barker et al. 2004). For ob-
servation-space schemes, such as the Naval Research
Laboratory Atmospheric Variational Data Assimila-
tion System (Daley and Barker 2001), the ensemble
covariance can be hybridized by directly linearly com-
bining the ensemble covariance with the standard
3DVAR covariance (C. H. Bishop 2005, personal com-
munication). The hybrid scheme may provide an effec-
tive and feasible way to improve the analysis at the
operational centers without the cost of a full implemen-
tation of an ensemble-based data assimilation ap-
proach. The improvement in hybrid analysis accuracy
over a standard variational approach may depend sub-
stantially upon how accurately the short-range (e.g., 6
h) ensemble forecasts used in the hybrid estimate the
flow-dependent forecast error covariance. Because op-
erational ensembles are not optimized for this applica-
tion (Hamill et al. 2000, 2003; Wang and Bishop 2003),
alternative ensemble generation schemes may need to
be explored.
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funded by National Science Foundation Grant ATM-
0205612. The participation of the second author was
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APPENDIX

On the Equivalence of L03 and B05 in
Implementing Localized Ensemble Covariances in
the Variational Framework with Preconditioning

Denote X f � (x �1, x �2, . . . , x �K) as the deviation from
the ensemble mean normalized by �K � 1, where K is

the ensemble size. The sample ensemble covariance is
P � X f(X f )T. Thus, if no covariance localization is ap-
plied, in Eq. (6), (B2)1/2 � X f. This is an N � K rect-
angular matrix, where N is the dimension of the state
vector, and also note in Eq. (6), v2 is a vector of K
elements.

Further denote S as the prescribed correlation matrix
used for covariance localization. Then the localized en-
semble covariance is the Schur product of P and S (i.e.,
P � S). To match this localized ensemble covariance in
the variational framework with preconditioning, B05
modified Eq. (6) as follows. First, (B2)1/2 is defined as

�B2�1�2 � �diag�x �1�S1�2, . . . , diag�x �k�S1�2,

. . . , diag�x �K�S1�2�, �A1�

where diag(x �k), k � 1, . . . , K, represents a matrix with
vector x �k along its diagonal. Denote the rank of S as r.
There are K � r columns in (A1). It was shown in B05
that (A1) satisfies (B2)1/2 [(B2)1/2]T � P � S. The asso-
ciated extended control variables are defined as

v2 � �
v21

v22

···
v2k

···
v2K

� , �A2�

where v2k , k � 1, . . . , K, is a vector of r elements. With
other terms in Eq. (7) unchanged, the second term of
the cost function is then given by the inner product of
(A2) and the 	x2 term in Eq. (6) is given by Eq. (A1)
times Eq. (A2) instead. B05’s cost function with covari-
ance localization has the same form as Eqs. (4)–(7).

L03 incorporated S in the cost function in a different
form [see Eq. (17) of L03]. The second term of the cost
function is redefined as

J2 �
1
2

aT�
S 0

···
0 S

�
�1

a, �A3�

where the block diagonal matrix is constructed by list-
ing K correlation matrices S. In Eq. (A3) the newly
defined extended control variables are

a � �
a1

a2

···
a2k

···
aK

� , �A4�
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where ak, k � 1, . . . , K, is a vector of N elements. The
	x2 term is modified as

�x2 � �X f � A�l, �A5�

where A � (a1 , a2 , . . . , aK), X f � A is the Schur product
of X f and A, and l is a vector of K elements that are all
equal to 1.

Next we show that by linearly transforming a, L03’s
cost function with covariance localization incorporated,
can be manipulated into the same format as that of B05.
Thus, they will lead to the same solution.

We further define a new set of extended control vari-
ables v2 , which are linearly related to a by

a � �
S1�2 0

···
0 S1�2�v2, �A6�

where v2 is given by Eq. (A2). Substituting Eq. (A6)
into (A3), then the second term of the cost function
becomes the inner product of v2 , the same as B05.

Further substituting Eq. (A6) into A, we obtain

A � S1�2V, �A7�

where V � (v21 , v22 , . . . , v2K). Thus, Eq. (A5) becomes

�x2 � �X f � �S1�2V�� l. �A8�

Next we need to show that, 	x2 , defined as Eq. (A1)
times (A2) by B05 and as Eq. (A8) by L03 are the same.

Denoting V � �ij, i � 1, . . . , r, j � 1, . . . , K; S1/2 �
(sij), i � 1, . . . , N, j � 1, . . . , r ; X f � (xij), i � 1, . . . , N,
j � 1, . . . , K; A � S1/2V � (aij), i � 1, . . . , N, j � 1, . . . ,
K, and writing Eq. (A8) in element format, we obtain
the ith element of 	x2 by L03 as

��x2�i � �
j�1

K

xijaij � �
j�1

K

xij �
m�1

r

sim�mj � �
j�1

K

�
m�1

r

xijsim�mj .

�A9�

Substituting Eqs. (A1) and (A2) into (6), we obtain 	x2

by B05 as

�x2 � �
k�1

K

�diag�xk�S1�2�v2k. �A10�

Denote Dk � diag(xk)S1/2 � (dij)k, i � 1, . . . , N, j � 1,
. . . , r, k � 1, . . . , K, and note that (dij)k � sijxik. Sub-
stituting (dij)k into Eq. (A10) and writing in element
format, we obtain the ith element of 	x2 by B05 as

��x2�i � �
k�1

K ��
j�1

r

�dij�k�jk�� �
k�1

K ��
j�1

r

sijxik�jk�
� �

k�1

K

�
j�1

r

sijxik�jk . �A11�

From Eqs. (A9) and (A11), the 	x2 terms in L03 and
B05, with the localized ensemble covariance incorpo-
rated, are the same.

To summarize, the above shows that after linear
transformation on the extended control variables, L03’s
cost function with covariance localization applied has
the same form as B05. In other words, it can be written
as Eqs. (4)–(7).
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