Davenport and Flagstaff Smelters

FIGURES AND TABLES

Figure 1. Topographic Map of Davenport and Flagstaff Smelters Site.

Figure 2. Aerial Photo of Davenport and Flagstaff Smelters Site.

Outlined residential areas are called Operable Unit 1. Undeveloped/nonresidential areas outside the outlined areas are called Operable Unit 2.

Table 1. Results of Surface Soil Samples taken from the Residential Area (Operable Unit 1)
of the Davenport and Flagstaff Smelters Site.

	Soil Comparison Values (CV) [*]			Background	1Results of Soil Sampling (SAIC 2000, URSGWC 2001)							
	Nor CV for Adult (ppm)	CV for Child (ppm)	CV CV Source [*]	Cance CREG (ppm)	er CV Cancer Class [†]	Salt Lake City Area (ppm)	Sample Location	Sample Depth (inches)	Median (ppm)	Ra Low (ppm)	High (ppm)	n
Arsenic	200 20	20		0.5	А	14.9	ROU-D	0-2 0-6	13 14	5 6	530 4,690	156 163
		20	EMEG				ROU-F	0-2 0-6	30 50	9 7	410 580	45 51
Lead	400 [‡]	.00 [‡] 400 [‡]	400 [‡] EPA	n/a	B2	128	ROU-D	0-2 0-6	125 130	12 13	24,000 123,000	156 163
							ROU-F	0-2 0-6	540 660	63 27	9,200 13,000	45 51

n: Number of samples used in calculations.

ppm: parts per million

n/a: Not available

CREG: Cancer Risk Evaluation Guide

EMEG: Environmental Media Evaluation Guide

EPA: U.S. Environmental Protection Agency

ROU-D: samples are from Operable Unit 1, the residential area near the former Davenport Smelter (Figure 2).

ROU-F: samples are from Operable Unit 1, the residential area near the former Flagstaff Smelter (Figure 2).

* See Appendix A.

[†]Cancer class: classification of a particular substance's ability to cause cancer in humans. Each health organization has a separate method of classification. See Appendix A for additional information.

[‡]EPA Lead Soil Hazard Standards: 1,200 ppm average lead in bare soil in residential areas with the exception of play areas which should not exceed 400 ppm lead in bare soil (EPA 2001).

F	Co	S omparison	Soil Values	(CV)*		Background	Results of soil sampling [†] (UDEQ 1996 a,b)			
Matal	Non-	V	Cancer CV		Salt Lake City		Range			
Wictai	CV for Adult (ppm)	CV for Child (ppm)	CV Source	CREG (ppm)	Cancer Class [‡]	(ppm)	Median (ppm)	Low (ppm)	High (ppm)	n
Aluminum	1,000,000	100,000	EMEG	n/a	3	9,749	9,235	4,460	16,300	18
Antimony	300	20	RMEG	n/a	D	10.3	6.2	5.1	270 [¶]	13
Arsenic	200	20	EMEG	0.5	A	14.9	24.9	7.7	181 [¶]	17
Barium	50,000	4,000	RMEG	n/a	D	178	110	62.4	221	18
Beryllium	1000	100	EMEG	n/a	B1	0.78	0.45	0.17	0.64	17
Cadmium	100	10	EMEG	n/a	B1	1.46	1.6	0.4	13.3 [¶]	18
Chromium	2,000	200	RMEG	n/a	Α	15.7	10.1	6.2	27.7	18
Cobalt	500	7000	EMEG	n/a	3	6.29	5.7	3.3	11.9	11
Copper	2000	20000	EMEG	n/a	D	50.5	44.5	20.8	1,650	18
Lead	400 [§]	400 [§]	EPA	n/a	B2	128	405.5	38	37,400 ¶	18
Magnesium	n/a	n/a	n/a	n/a	n/a	10,500	3,705	2,770	7,430	18
Manganese	40,000	3,000	RMEG	n/a	D	353	366.5	168	702	18
Mercury	100	1000	EMEG	n/a	D	0.18	0.12	0.05	1.00	18
Nickel	10,000	1,000	RMEG	n/a	2	13	11.1	3.6	22.4	18
Selenium	4,000	300	EMEG	n/a	D	0.42	0.22	0.16	1.9	16
Silver	4,000	300	RMEG	n/a	D	1.84	2.0	0.79	91.2	18
Thallium	60	4	RMEG	n/a	D	0.38	0.31	0.17	0.49	18
Vanadium	2,000	200	EMEG	n/a	3	21.8	21.8	15	35.2	18
Zinc	200,000	20,000	EMEG	n/a	D	206	164.5	59.9	2,390	18

Table 2. Results for Surface Soil Samples Taken in 1994 from the Davenport and Flagstaff Smelters Site: Includes Background, Residential and Nonresidential Areas.

Entries in **bold** indicate contaminant concentrations that exceed soil comparison values.

When data did not show chemical species of element, for example, chromium, the worst-case scenario was assumed, which in the case of chromium is hexavalent, the most toxic form. Comparison values reflect these assumptions.

n: Number of samples used in calculations.

ppm: parts per million

n/a: Not available

CREG: Cancer Risk Evaluation Guide

EMEG: Environmental Media Evaluation Guide

RMEG: Reference Dose Media Evaluation Guide

EPA: Environmental Protection Agency

* See Appendix A.

[†] Includes estimated values, values at detection limits, or values that are below contract-required detection limits. Data classified as "Rejected" were not used in this table (Utah Department of Environmental Quality 1996a and 1996b).

[‡]Cancer class: classification of a particular substance's ability to cause cancer in humans. Each health organization has a separate method of classification. See Appendix A for additional information.

[§]EPA Lead Soil Hazard Standards: 1,200 ppm average lead in bare soil in residential areas with the exception of play areas which should not exceed 400 ppm lead in bare soil (EPA 2001).

[¶]Sample taken from a slag pile in the nonresidential area.

	Wipe Sample Lead Results (mg/ft ²)	High-Flow Pump Sample Lead Results (mg/kg)	Low Flow Pump Sample Lead Results (mg/kg)	Vacuum Sample Lead < 150 micron Results (mg/kg)
Maximum Concentration	0.078	0.027	0.0045	14
Minimum Concentration	<0.00025	<0.00025	<0.00025	<0.00025
Number of Samples	35	34	34	34
Average Concentration [*]	0.00573	0.0014	0.00031	0.5198

Table 3. Summary of Results of Dust Sampling in Homes Near the Davenport and Flagstaff Smelters Site

 $mg/ft^2 = milligrams$ of lead per square foot of area sampled.

mg/kg = milligrams of lead per kilogram of sample.

< = less than

* Average concentration was calculated using half of the detection limit for results less than the detection limit. Source: URS Greiner Woodward Clyde, 2001

	(Compariso	Soil on Values	(CV) [*]	Background Levels	Results of sediment sampling [†]				
	Non-	I	Cance	er CV			Rang	ge		
Metal	CV for Adult (ppm)	CV for Child (ppm)	CV Source	CREG (ppm)	Cancer Class [‡]	(ppm)	(ppm)	Low (ppm)	High (ppm)	n
Aluminum	1,000,000	100,000	EMEG	n/a	3	9,749	5,030	2,850	5,610	3
Antimony	300	20	RMEG	n/a	3	10.3	37.75	7.3	68.2	2
Arsenic	200	20	EMEG	0.5	A	14.9	30.7	12.3	257	3
Barium	50,000	4,000	RMEG	n/a	3	178	84	62.4	179	3
Beryllium	1000	100	EMEG	n/a	B1	0.78	0.26	0.2	0.68	3
Cadmium	100	10	EMEG	n/a	B1	1.46	2.2	2.1	164	3
Chromium	2,000	200	RMEG	n/a	A	15.7	7.5	6.4	7.9	3
Cobalt	500	7000	EMEG	n/a	3	6.29	6.3	6.2	10.4	3
Copper	2000	20000	EMEG	n/a	3	50.5	61.6	57	251	3
Lead	400 [§]	$400^{\$}$	EPA	n/a	B2	128	162	147	1,480	3
Magnesium	n/a	n/a	n/a	n/a	n/a	10,500	7,240	3,150	9,050	3
Manganese	40,000	3,000	RMEG	n/a	3	353	305	68.2	434	3
Mercury	100	1000	EMEG	n/a	3	0.18	0.13	0.08	4.00	3
Nickel	10,000	1,000	RMEG	n/a	2	13	9.2	7.9	23.7	3
Selenium	4,000	300	EMEG	n/a	3	0.42	0.23	0.16	4.3	3
Silver	4,000	300	RMEG	n/a	3	1.84	1.4	0.89	15.4	3
Thallium	60	4	RMEG	n/a	3	0.38	0.20	0.2	1.1	3
Vanadium	2,000	200	EMEG	n/a	3	21.7	19.7	16	29.5	3
Zinc	200,000	20,000	EMEG	n/a	3	206	360	284	2,630	3

Table 4. Results for Sediment Samples Collected from Little Cottonwood Creek.Davenport/Flagstaff Smelters Site, 1996

Entries in **bold** indicate contaminant concentrations that exceed soil comparison values.

When data did not show chemical species of element, for example, chromium, the worst-case scenario was assumed, which in the case of chromium is hexavalent, the most toxic form. Comparison values reflect these assumptions.

n: Number of samples used in calculations.

ppm: parts per million

n/a = Not available

CREG: Cancer Risk Evaluation Guide

EMEG: Environmental Media Evaluation Guide

RMEG: Reference Dose Media Evaluation Guide

EPA: Environmental Protection Agency

* See Appendix A.

[†] Includes estimated values, values at detection limits, or values that are below contract-required detection limits. Data classified as "Rejected" were not used in this table (Utah Department of Environmental Quality 1996a and 1996b).

[‡]Cancer class: classification of a particular substance's ability to cause cancer in humans. Each health organization has a separate method of classification. See Appendix A for additional information.

[§] EPA Lead Soil Hazard Standards: 1,200 ppm average lead in bare soil in residential areas with the exception of play areas which should not exceed 400 ppm lead in bare soil (EPA 2001).

		Dri Compar	nking Wate ison Values	er (CV) [*]		Background Results of water sample			ng‡	
	N	on-Cancer	CV	Cance	r CV	Levels [†]		Range		
Metal	CV for Adult (ppb)	CV for Child (ppb)	CV Source	CREG (ppb)	Cancer Class [§]	(ppb)	Median (ppb)	Low (ppb)	High (ppb)	n
Aluminum	70,000	20,000	EMEG	n/a	n/a	214	132	44.1	1,930**	5
Antimony	10	4	RMEG	n/a	D	28.5	24.9	24.9	28.5	5
Arsenic	10	3	EMEG	0.02	A	0.9	1.8	0.9	23.4	5
Barium	2,000	700	RMEG	n/a	D	38.9	106	33.2	115	5
Beryllium	70	20	RMEG	n/a	B1	0.2	0.20	0.2	0.23	5
Cadmium	7	2	EMEG	n/a	B1	3.9	3.9	2.2	6	5
Chromium	100	30	RMEG	n/a	A	2.8	4.6	2.8	4.6	5
Cobalt	400	100	EMEG	n/a	2B	4.1	3.8	3.8	4.1	5
Copper	300	1,000	EMEG	n/a	D	8.6	8.6	5.7	14.2	5
Lead	15 [¶]	15 [¶]	EPA	n/a	B2	5.8	5.8	5.1	304 ^{**}	5
Magnesium	n/a	n/a	n/a	n/a	n/a	3,610	8,870	3,300	16,200	5
Manganese	2,000	500	RMEG	n/a	D	11.3	26.9	9.9	71.9	5
Mercury	2	2	LTHA	n/a	D	0.2	0.10	0.1	0.20	5
Nickel	700	200	RMEG	n/a	2	13.3	14.0	13.3	14	5
Selenium	200	50	EMEG	n/a	D	0.90	0.85	0.8	0.9	5
Silver	200	50	RMEG	n/a	D	2.6	4.2	2.6	4.2	5
Thallium	3	0.8	RMEG	n/a	3	0.80	0.80	0.8	0.8	5
Vanadium	100	30	EMEG	n/a	3	3.5	4.1	3.5	6.2	5
Zinc	10,000	3,000	EMEG	n/a	3	60.7	60.7	37.4	181	5

Table 5. Results for Surface Water Samples Collected from Little Cottonwood Creek.Davenport/Flagstaff Smelters Site, 1996

Entries in **bold** indicate contaminant concentrations that exceed comparison values.

When data did not show chemical species of element, for example, chromium, the worst-case scenario was assumed, which in the case of chromium is hexavalent, the most toxic form. Comparison values reflect these assumptions.

n: Number of samples used in calculations.

ppm: parts per million

n/a = Not available

CREG: Cancer Risk Evaluation Guide

EMEG: Environmental Media Evaluation Guide

RMEG: Reference Dose Media Evaluation Guide

EPA: Environmental Protection Agency

LTHA: Lifetime Health Advisory for drinking water (EPA)

* See Appendix A

[†] From single sample in creek upstream of smelters site.

[‡] Includes estimated values, values at detection limits, or values that are below contract-required detection limits. Data classified as "Rejected" were not used in this table (Utah Department of Environmental Quality 1996a and 1996b).

[§]Cancer class: classification of a particular substance's ability to cause cancer in humans. Each health organization has a separate method of classification. See Appendix A for additional information.

[¶] EPA action level for Lead in drinking water.

^{**}This sample was taken from an onsite spring.

Pathway Name]								
	Source	Environmental Medium	Point of Exposure	Route of Exposure	Receptor Populations	Time Frame	Contaminants			
On-site soil	Davenport/ Flagstaff Smelters	On-site soil	On-site homes and yards	Ingestion	Residents	Past, Present, Future	Arsenic, Lead			
On-site dust	Davenport/ Flagstaff Smelters	On-site dust	On-site homes, yards and trails	Inhalation	Residents, visitors	Past, Present, Future	Arsenic, Lead			

Table 6. Completed E	xposure Pathways for (the Davenport and Flag	gstaff Smelters Site.
----------------------	------------------------	------------------------	-----------------------

Table 7. Potential Exposure Pathways for the Davenport and Flagstaff Smelters Site.

Pathway Name		E					
	Source	Environmental Medium	Point of Exposure	Route of Exposure	Receptor Populations	Time Frame	Contaminants
On-site groundwater and/or surface water	Davenport/ Flagstaff Smelters	On-site surface and spring water	Little Cottonwood Creek or area springs	Ingestion	Residents	Past, Present, Future	Arsenic, Lead
On-site groundwater and/or surface water	Davenport/ Flagstaff Smelters	Surface-water run-off	Off-site surface water	Ingestion	Residents and visitors of nearby communities	Past, Present, Future	Arsenic, Lead

Table 8. Calculation of Exposure Doses from Ingestion of Contaminated Soil in Residential Areas of the Davenport and
Flagstaff Smelters Site.

Contaminant	Average contaminant level found in residential areas* (ppm)	Maximum contaminant level found in residential areas* (ppm)	Receptor Population	Average Estimated Exposure Dose (mg/kg/day)	Maximum Estimated Exposure Dose (mg/kg/day)	ATSDR MRL [†] (mg/kg/day)	Source of Guideline	Cancer Class [‡]
Arsenic		4,690	Adults	0.00002	0.0022			IARC = 1; NTP = 1; EPA = A
	50		Children	0.0008	0.768	0.0003	ATSDR 2003	
			Pica children	0.0205	1.9206			
			Adults	0.0003	0.0571		n/a N EF	IADC = 2D
Lead	660	123,000	Children	0.0022	2.015	n/a		IARC = 2B; $NTP = 3;$ $EPA = B2$
			Pica children	0.0532	50.37			

ppm: parts per million

n/a: not available

mg/kg/day: milligrams per kilogram per day

Exposure doses in **BOLD** exceed ATSDR health guideline.

ATSDR: Agency of Toxic Substances and Disease Registry

IARC: International Agency for Research on Cancer

NTP: National Toxicology Program

EPA: Environmental Protection Agency

^{*} Soil depth: 0-6 inches (Science Applications International Corporation 2000 and URS Greiner Woodward Clyde 2001)

[†]MRL: Minimal Risk Level, an ATSDR estimate of daily human exposure to a hazardous substance at or below which that substance is unlikely to pose a measurable risk of harmful (adverse), noncancerous effects.

[‡]Cancer class: classification of a particular substance's ability to cause cancer in humans. Each health organization has a separate method of classification. See Appendix A for additional information.