Outline

Illustrative example - Perchlorate & thyroid tumors Introduction to Bayesian Statistics Bayesian Logistic Regression Markov chain Monte Carlo

Introduction to Bayesian Modeling of Epidemiologic Data

David Dunson¹, Amy Herring² & Rich MacLehose¹

¹National Institute of Environmental Health Sciences, NIH & ²Department of Biostatistics, UNC at Chapel Hill

June 19, 2007

Outline of Workshop

- 1. Introduction to Bayesian modeling (David Dunson)
- 2. Bayesian modeling in SAS (Amy Herring)
- 3. Hierarchical models (*Rich MacLehose*)

Outline

Illustrative example - Perchlorate & thyroid tumors Introduction to Bayesian Statistics Bayesian Logistic Regression Markov chain Monte Carlo

Illustrative example - Perchlorate & thyroid tumors

Introduction to Bayesian Statistics

Bayesian Logistic Regression

Markov chain Monte Carlo

イロン イヨン イヨン

Background on Perchlorate

 Contaminant found in groundwater, drinking water & soils mainly in southwest US

Background on Perchlorate

- Contaminant found in groundwater, drinking water & soils mainly in southwest US
- Primary source industrial & military perchlorate used as oxidizing agent (e.g., in rocket fuel)

Background on Perchlorate

- Contaminant found in groundwater, drinking water & soils mainly in southwest US
- Primary source industrial & military perchlorate used as oxidizing agent (e.g., in rocket fuel)
- Concern about effects of perchlorate on the thyroid (known to inhibit thyroid's ability to absorb iodine from the blood)

Background on Perchlorate

- Contaminant found in groundwater, drinking water & soils mainly in southwest US
- Primary source industrial & military perchlorate used as oxidizing agent (e.g., in rocket fuel)
- Concern about effects of perchlorate on the thyroid (known to inhibit thyroid's ability to absorb iodine from the blood)
- ► EPA conducted extensive risk assessment → NAS review of health effects (recommended new reference dose)

Two Generation Rodent Study (Argus, 1999)

 Male rats were exposed to ammonium perchlorate through drinking water

Two Generation Rodent Study (Argus, 1999)

- Male rats were exposed to ammonium perchlorate through drinking water
- ▶ 30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day

Two Generation Rodent Study (Argus, 1999)

- Male rats were exposed to ammonium perchlorate through drinking water
- ▶ 30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day
- ► Male rats in P1 generation exposed 70+ days before mating, through mating period & until sacrifice at 21-22 weeks

Two Generation Rodent Study (Argus, 1999)

- Male rats were exposed to ammonium perchlorate through drinking water
- ▶ 30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day
- Male rats in P1 generation exposed 70+ days before mating, through mating period & until sacrifice at 21-22 weeks
- ► F1 generation treated similarly, with additional exposure during gestation & lactation

Two Generation Rodent Study (Argus, 1999)

- Male rats were exposed to ammonium perchlorate through drinking water
- ▶ 30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day
- Male rats in P1 generation exposed 70+ days before mating, through mating period & until sacrifice at 21-22 weeks
- F1 generation treated similarly, with additional exposure during gestation & lactation
- ► At 19 weeks for F1 rats, thyroid tissues examined histologically

Two Generation Rodent Study (Argus, 1999)

- Male rats were exposed to ammonium perchlorate through drinking water
- 30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day
- Male rats in P1 generation exposed 70+ days before mating, through mating period & until sacrifice at 21-22 weeks
- F1 generation treated similarly, with additional exposure during gestation & lactation
- ▶ At 19 weeks for F1 rats, thyroid tissues examined histologically
- 2/30 male rats in 30 mg/kg/day dose group had thyroid follicular cell adenomas, with one of these rats having two adenomas.

Analyzing the Perchlorate data

► Frequentist analysis: comparing 0/30 tumors in control rats with 2/30 tumors in the high dose group → non-significant (Fisher's exact test p-value=0.49)

イロン イヨン イヨン

Analyzing the Perchlorate data

- Frequentist analysis: comparing 0/30 tumors in control rats with 2/30 tumors in the high dose group → non-significant (Fisher's exact test p-value=0.49)
- Ignores the prior knowledge that thyroid follicular cell adenomas are very rare in 19 week rats

Analyzing the Perchlorate data

- Frequentist analysis: comparing 0/30 tumors in control rats with 2/30 tumors in the high dose group → non-significant (Fisher's exact test p-value=0.49)
- Ignores the prior knowledge that thyroid follicular cell adenomas are very rare in 19 week rats
- The National Toxicology Program (NTP) routinely collects tumor incidence data for control rats in two year studies.

Analyzing the Perchlorate data

- Frequentist analysis: comparing 0/30 tumors in control rats with 2/30 tumors in the high dose group → non-significant (Fisher's exact test p-value=0.49)
- Ignores the prior knowledge that thyroid follicular cell adenomas are very rare in 19 week rats
- The National Toxicology Program (NTP) routinely collects tumor incidence data for control rats in two year studies.
- Would our conclusion change if we included information from the NTP data base?

Some prior information

► In 67 recent NTP studies, 38/3419 = 1.1% of male rats developed thyroid follicular cell adenomas by death in a two year study.

Some prior information

- In 67 recent NTP studies, 38/3419 = 1.1% of male rats developed thyroid follicular cell adenomas by death in a two year study.
- Results from Portier et al. (1986) suggest probability of developing thyroid follicular cell adenoma increases in proportion to age^{4.78}

Some prior information

- In 67 recent NTP studies, 38/3419 = 1.1% of male rats developed thyroid follicular cell adenomas by death in a two year study.
- Results from Portier et al. (1986) suggest probability of developing thyroid follicular cell adenoma increases in proportion to age^{4.78}
- Average survival time in NTP study for control male rat is 95.2 weeks

Some prior information

- In 67 recent NTP studies, 38/3419 = 1.1% of male rats developed thyroid follicular cell adenomas by death in a two year study.
- Results from Portier et al. (1986) suggest probability of developing thyroid follicular cell adenoma increases in proportion to age^{4.78}
- Average survival time in NTP study for control male rat is 95.2 weeks
- Suggests that the ratio of probability of thyroid follicular cell adenomas at 19 weeks to the lifetime probability in a 2-year study is (19/95.2)^{4.78} = 0.0005

・ロト ・回ト ・ヨト ・ヨト

Some prior information

- In 67 recent NTP studies, 38/3419 = 1.1% of male rats developed thyroid follicular cell adenomas by death in a two year study.
- Results from Portier et al. (1986) suggest probability of developing thyroid follicular cell adenoma increases in proportion to age^{4.78}
- Average survival time in NTP study for control male rat is 95.2 weeks
- Suggests that the ratio of probability of thyroid follicular cell adenomas at 19 weeks to the lifetime probability in a 2-year study is (19/95.2)^{4.78} = 0.0005
- Question: How do we incorporate this information in analysis?

- ◆ □ ▶ ◆ 三 ▶ ◆ □ ● ● ○ ○ ○ ○

Frequentist vs Bayes

Suppose we are interested in a parameter θ (e.g., probability of thyroid FCA by 19 weeks in control rats)

David Dunson¹, Amy Herring² & Rich MacLehose¹ Introduction to Bayesian Modeling of Epidemiologic Data

イロン イヨン イヨン

Frequentist vs Bayes

- Suppose we are interested in a parameter θ (e.g., probability of thyroid FCA by 19 weeks in control rats)
- Frequentists would typically rely on the MLE, which would be $\hat{\theta} = 0/30 = 0$ in the perchlorate example

Frequentist vs Bayes

- Suppose we are interested in a parameter θ (e.g., probability of thyroid FCA by 19 weeks in control rats)
- Frequentists would typically rely on the MLE, which would be $\hat{\theta} = 0/30 = 0$ in the perchlorate example
- Bayesians instead rely on the *posterior distribution* of θ

Frequentist vs Bayes

- Suppose we are interested in a parameter θ (e.g., probability of thyroid FCA by 19 weeks in control rats)
- Frequentists would typically rely on the MLE, which would be $\hat{\theta} = 0/30 = 0$ in the perchlorate example
- Bayesians instead rely on the *posterior distribution* of θ
- Obtained in updating one's *prior distribution* with the likelihood for the data.

Bayes' Rule

• Let $\pi(\theta) =$ prior distribution of parameter θ

David Dunson¹, Amy Herring² & Rich MacLehose¹ Introduction to Bayesian Modeling of Epidemiologic Data

・ロン ・回と ・ヨン・

Bayes' Rule

- Let $\pi(\theta) =$ prior distribution of parameter θ
- Let $L(\mathbf{y} | \theta) =$ likelihood of data \mathbf{y} given parameter θ

・ロト ・回ト ・ヨト ・ヨト

-

Bayes' Rule

- Let $\pi(\theta) = \text{prior distribution of parameter } \theta$
- Let $L(\mathbf{y} | \theta) =$ likelihood of data \mathbf{y} given parameter θ
- ► Then, the posterior is defined as:

$$\pi(heta \,|\, \mathbf{y}) = rac{\pi(heta) \, L(\mathbf{y} \,| heta)}{\int \pi(heta) \, L(\mathbf{y} \,|\, heta) d heta},$$

which is the prior \times the likelihood divided by a normalizing constant

・ロン ・回と ・ヨン・

Bayes' Rule

- Let $\pi(\theta) = \text{prior distribution of parameter } \theta$
- Let $L(\mathbf{y} | \theta) =$ likelihood of data \mathbf{y} given parameter θ
- Then, the posterior is defined as:

$$\pi(heta \,|\, \mathbf{y}) = rac{\pi(heta)\, L(\mathbf{y} \,| heta)}{\int \pi(heta)\, L(\mathbf{y} \,|\, heta) d heta},$$

which is the prior \times the likelihood divided by a normalizing constant

► The posterior, $\pi(\theta | \mathbf{y})$, represents the state of knowledge about θ after *updating* the prior, $\pi(\theta)$, with the information in the data, \mathbf{y} .

Bayesian Updating

 As an example of Bayesian updating, let θ=probability of preterm birth (PTB)

イロト イポト イヨト イヨト

-

Bayesian Updating

- As an example of Bayesian updating, let θ=probability of preterm birth (PTB)
- Typical choice of prior for θ is the beta(a, b) distribution

・ロン ・回と ・ヨン・

Bayesian Updating

- As an example of Bayesian updating, let θ=probability of preterm birth (PTB)
- Typical choice of prior for θ is the beta(a, b) distribution
- a, b=hyperparameters characterizing uncertainty in θ before incorporating information in data from current study

Bayesian Updating

- As an example of Bayesian updating, let θ=probability of preterm birth (PTB)
- Typical choice of prior for θ is the beta(a, b) distribution
- a, b=hyperparameters characterizing uncertainty in θ before incorporating information in data from current study
- ► a/(a+b)=prior expectation for $\theta \& a+b$ =prior sample size

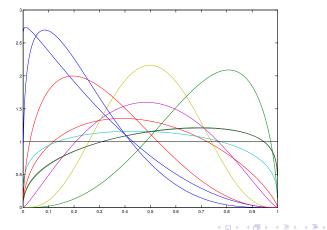
(日) (同) (E) (E) (E)

Bayesian Updating

- As an example of Bayesian updating, let θ=probability of preterm birth (PTB)
- Typical choice of prior for θ is the beta(a, b) distribution
- a, b=hyperparameters characterizing uncertainty in θ before incorporating information in data from current study
- ► a/(a+b)=prior expectation for $\theta \& a+b$ =prior sample size
- ▶ beta(1,1) corresponds to uniform distribution → has as much information as two subjects (one with PTB & one without)

・ロト ・同ト ・ヨト ・ヨト

Beta prior distributions for different hyperparameters



David Dunson¹, Amy Herring² & Rich MacLehose¹

Introduction to Bayesian Modeling of Epidemiologic Data

Preterm Birth Example

• θ =probability of preterm birth

David Dunson¹, Amy Herring² & Rich MacLehose¹ Introduction to Bayesian Modeling of Epidemiologic Data

イロト イポト イヨト イヨト

-

Preterm Birth Example

- θ =probability of preterm birth
- Consider two different priors: (1) a uniform prior expressing ignorance; and (2) a beta(10,90) prior.

イロン 不同と 不同と 不同と

Preterm Birth Example

- θ =probability of preterm birth
- Consider two different priors: (1) a uniform prior expressing ignorance; and (2) a beta(10,90) prior.
- The beta(10,90) prior implies a 95% prior probability of θ ∈ [0.05, 0.17] (wide range of plausible values for probability preterm birth)

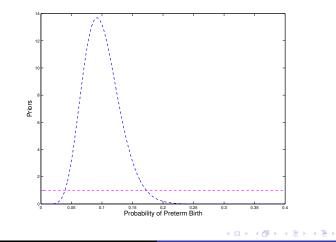
Preterm Birth Example

- θ =probability of preterm birth
- Consider two different priors: (1) a uniform prior expressing ignorance; and (2) a beta(10,90) prior.
- The beta(10,90) prior implies a 95% prior probability of θ ∈ [0.05, 0.17] (wide range of plausible values for probability preterm birth)
- ► We collect data for 100 women & observe 7/100 preterm births.

Outline

Illustrative example - Perchlorate & thyroid tumors Introduction to Bayesian Statistics Bayesian Logistic Regression Markov chain Monte Carlo

Different Priors



David Dunson¹, Amy Herring² & Rich MacLehose¹

Introduction to Bayesian Modeling of Epidemiologic Data

3

Updating the beta prior

The beta prior is conjugate to the binomial likelihood

Updating the beta prior

- The beta prior is conjugate to the binomial likelihood
- For conjugate priors, the posterior π(θ | y) is available analytically and has the same form as the prior

・ロン ・回と ・ヨン・

Updating the beta prior

- The beta prior is conjugate to the binomial likelihood
- For conjugate priors, the posterior π(θ | y) is available analytically and has the same form as the prior
- Let y_i = 1 if woman i has a preterm birth and y_i = 0 otherwise, with Pr(y_i = 1) = θ

Updating the beta prior

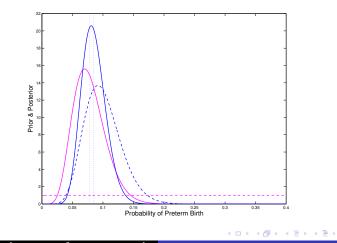
- The beta prior is conjugate to the binomial likelihood
- For conjugate priors, the posterior π(θ | y) is available analytically and has the same form as the prior
- Let y_i = 1 if woman i has a preterm birth and y_i = 0 otherwise, with Pr(y_i = 1) = θ
- Likelihood is Bernoulli: $L(\mathbf{y} | \theta) = \prod_{i} \theta^{y_i} (1 \theta)^{1 y_i}$

Updating the beta prior

- The beta prior is conjugate to the binomial likelihood
- For conjugate priors, the posterior π(θ | y) is available analytically and has the same form as the prior
- Let y_i = 1 if woman i has a preterm birth and y_i = 0 otherwise, with Pr(y_i = 1) = θ
- Likelihood is Bernoulli: $L(\mathbf{y} | \theta) = \prod_i \theta^{y_i} (1 \theta)^{1 y_i}$
- The posterior distribution of θ is then

$$\pi(heta \,|\, \mathbf{y}) = ext{beta}igg(\mathbf{a} + \sum_i y_i, \mathbf{b} + \sum_i (1-y_i)igg).$$

Prior and Posteriors



David Dunson¹, Amy Herring² & Rich MacLehose¹

Introduction to Bayesian Modeling of Epidemiologic Data

3

Returning to the Perchlorate Example

Let θ = γ × ρ, θ=prob tumor in 19 weeks, γ=prob tumor in lifetime & ρ=proportion of tumors developing by 19 weeks

Returning to the Perchlorate Example

- Let θ = γ × ρ, θ=prob tumor in 19 weeks, γ=prob tumor in lifetime & ρ=proportion of tumors developing by 19 weeks
- We choose beta(38,3381) prior for probability of developing thyroid FCA for a control male rat in a two-year study (γ)

Returning to the Perchlorate Example

- Let θ = γ × ρ, θ=prob tumor in 19 weeks, γ=prob tumor in lifetime & ρ=proportion of tumors developing by 19 weeks
- We choose beta(38, 3381) prior for probability of developing thyroid FCA for a control male rat in a two-year study (γ)
- Based on the 38/(38 + 3381) rats observed with these tumors in NTP studies

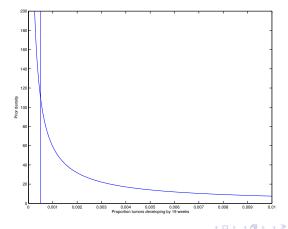
Returning to the Perchlorate Example

- ▶ Let $\theta = \gamma \times \rho$, $\theta =$ prob tumor in 19 weeks, $\gamma =$ prob tumor in lifetime & ρ =proportion of tumors developing by 19 weeks
- ▶ We choose beta(38,3381) prior for probability of developing thyroid FCA for a control male rat in a two-year study (γ)
- ▶ Based on the 38/(38 + 3381) rats observed with these tumors in NTP studies
- ▶ We choose beta(0.11, 2.6) prior for ratio:

 $\rho = \frac{\text{probability of developing tumor by 19 weeks}}{\text{probability of developing tumor in two year study}}.$

Centered on 0.0005 with 95% probability of falling within [0.0000, 0.379]・ロン ・回と ・ヨン・

Prior for proportion of thyroid FCA by 19 weeks (ρ)



David Dunson¹, Amy Herring² & Rich MacLehose¹

Introduction to Bayesian Modeling of Epidemiologic Data

Conclusions from Perchlorate Example

► $\theta = \gamma \times \rho$ =probability of developing thyroid FCA by 19 weeks for control male rat

・ロン ・回と ・ヨン・

Conclusions from Perchlorate Example

- ▶ $\theta = \gamma \times \rho$ =probability of developing thyroid FCA by 19 weeks for control male rat
- We update priors for γ and ρ with data from the Argus (1999) study to obtain posterior distribution for θ.

Conclusions from Perchlorate Example

- ▶ $\theta = \gamma \times \rho$ =probability of developing thyroid FCA by 19 weeks for control male rat
- We update priors for γ and ρ with data from the Argus (1999) study to obtain posterior distribution for θ.
- The posterior mean of θ is 1/100,000

Conclusions from Perchlorate Example

- ▶ $\theta = \gamma \times \rho$ =probability of developing thyroid FCA by 19 weeks for control male rat
- We update priors for γ and ρ with data from the Argus (1999) study to obtain posterior distribution for θ.
- The posterior mean of θ is 1/100,000
- How likely it is to observe 2 or more rats out of 30 with tumors under the null hypothesis of no effect of perchlorate?

Conclusions from Perchlorate Example

- ▶ $\theta = \gamma \times \rho$ =probability of developing thyroid FCA by 19 weeks for control male rat
- We update priors for γ and ρ with data from the Argus (1999) study to obtain posterior distribution for θ.
- The posterior mean of θ is 1/100,000
- How likely it is to observe 2 or more rats out of 30 with tumors under the null hypothesis of no effect of perchlorate?
- ► This probability is < 1/100,000 → data support causal effect of perchlorate on increased thyroid tumor incidence

More Complex Models

 Posterior calculation for preterm birth example relied on conjugate prior

More Complex Models

- Posterior calculation for preterm birth example relied on conjugate prior
- Posterior calculation for perchlorate example relied on numeric integration - easy for two parameters

More Complex Models

- Posterior calculation for preterm birth example relied on conjugate prior
- Posterior calculation for perchlorate example relied on numeric integration - easy for two parameters
- ► For epidemiologic analyses (e.g., logistic regression, survival analysis), conjugate priors not available & dimension high

More Complex Models

- Posterior calculation for preterm birth example relied on conjugate prior
- Posterior calculation for perchlorate example relied on numeric integration - easy for two parameters
- For epidemiologic analyses (*e.g.*, *logistic regression*, *survival analysis*), conjugate priors not available & dimension high
- In such settings, there are multiple parameters in θ and one needs to compute the joint posterior:

$$\pi(\theta \,|\, \mathbf{y}) = \frac{\pi(\theta) \, L(\mathbf{y} \,| \theta)}{\int \pi(\theta) \, L(\mathbf{y} \,|\, \theta) d\theta}.$$

Example: Bayesian Logistic Regression

Logistic regression model:

logit
$$\Pr(y_i = 1 | \mathbf{x}_i, \boldsymbol{\beta}) = \mathbf{x}'_i \boldsymbol{\beta}$$
,

with $\mathbf{x}_i = (1, x_{i2}, \dots, x_{ip})'$ a vector of predictors & $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)'$ coefficients for these predictors

Example: Bayesian Logistic Regression

Logistic regression model:

$$\operatorname{logit} \operatorname{Pr}(y_i = 1 \,|\, \mathbf{x}_i, \boldsymbol{\beta}) = \mathbf{x}'_i \boldsymbol{\beta},$$

with $\mathbf{x}_i = (1, x_{i2}, \dots, x_{ip})'$ a vector of predictors & $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)'$ coefficients for these predictors

A Bayesian specification of the model is completed with a prior for the coefficients, π(β) = N_p(β₀, Σ).

Example: Bayesian Logistic Regression

Logistic regression model:

$$\operatorname{logit} \operatorname{Pr}(y_i = 1 \,|\, \mathbf{x}_i, \boldsymbol{\beta}) = \mathbf{x}'_i \boldsymbol{\beta},$$

with $\mathbf{x}_i = (1, x_{i2}, \dots, x_{ip})'$ a vector of predictors & $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)'$ coefficients for these predictors

- A Bayesian specification of the model is completed with a prior for the coefficients, π(β) = N_p(β₀, Σ).
- Here, β₀ is one's best guess at the coefficient values prior to observing the data from the current study

Example: Bayesian Logistic Regression

Logistic regression model:

logit
$$\Pr(y_i = 1 | \mathbf{x}_i, \beta) = \mathbf{x}'_i \beta$$
,

with $\mathbf{x}_i = (1, x_{i2}, \dots, x_{ip})'$ a vector of predictors & $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)'$ coefficients for these predictors

- A Bayesian specification of the model is completed with a prior for the coefficients, π(β) = N_p(β₀, Σ).
- Here, β₀ is one's best guess at the coefficient values prior to observing the data from the current study
- Σ=covariance matrix quantifying uncertainty in this guess

Some Different Possibilities for the Prior

- I. Informative Prior
 - Review literature & choose a prior to be centered on previous estimates of coefficients.

イロン 不同と 不同と 不同と

Some Different Possibilities for the Prior

I. Informative Prior

- Review literature & choose a prior to be centered on previous estimates of coefficients.
- In the absence of previous estimates, choose a subjective value synthesizing knowledge of the literature

Some Different Possibilities for the Prior

I. Informative Prior

- Review literature & choose a prior to be centered on previous estimates of coefficients.
- In the absence of previous estimates, choose a subjective value synthesizing knowledge of the literature
- Prior variance chosen so that a 90 or 95% prior interval contains a wide range of plausible values

Some Different Possibilities for the Prior

I. Informative Prior

- Review literature & choose a prior to be centered on previous estimates of coefficients.
- In the absence of previous estimates, choose a subjective value synthesizing knowledge of the literature
- Prior variance chosen so that a 90 or 95% prior interval contains a wide range of plausible values
- Useful to choose informative priors for intercept and confounding coefficients, as there is typically substantial information about these coefficients

Some Possible Priors (continued)

- **II. Shrinkage Priors**
 - Choose a prior centered on zero with modest variance

Some Possible Priors (continued)

II. Shrinkage Priors

- Choose a prior centered on zero with modest variance
- When little information is available about a parameter, results in *shrinkage* towards zero

Some Possible Priors (continued)

II. Shrinkage Priors

- Choose a prior centered on zero with modest variance
- When little information is available about a parameter, results in *shrinkage* towards zero
- Avoids unstable estimates particularly problematic in high dimensions & for correlated predictors.

- **A B A B A B A**

Some Possible Priors (continued)

II. Shrinkage Priors

- Choose a prior centered on zero with modest variance
- When little information is available about a parameter, results in *shrinkage* towards zero
- Avoids unstable estimates particularly problematic in high dimensions & for correlated predictors.
- As more information becomes available that the parameter (*e.g., the exposure odds ratio*) is non-zero, the likelihood will dominate.

Some Possible Priors (continued)

III. Non-Informative Priors

Choose a prior that has high variance or is *flat* in some sense to express ignorance about the parameter value

- 4 同 ト 4 三 ト 4 三 ト

Some Possible Priors (continued)

III. Non-Informative Priors

- Choose a prior that has high variance or is *flat* in some sense to express ignorance about the parameter value
- Often yields similar results to maximum likelihood what's the point?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Some Possible Priors (continued)

III. Non-Informative Priors

- Choose a prior that has high variance or is *flat* in some sense to express ignorance about the parameter value
- Often yields similar results to maximum likelihood what's the point?
- No prior is truly non-informative flat or high variance priors assign most of their probability outside a plausible range for the parameter values.

Some Possible Priors (continued)

III. Non-Informative Priors

- Choose a prior that has high variance or is *flat* in some sense to express ignorance about the parameter value
- Often yields similar results to maximum likelihood what's the point?
- No prior is truly non-informative flat or high variance priors assign most of their probability outside a plausible range for the parameter values.
- Can lead to poor results when insufficient information available about a given parameter in the current data set typically, the case when many predictors are collected.

Bayes Logistic Regression (continued)

Posterior distribution:

$$\pi(\boldsymbol{\beta} | \mathbf{y}) = \frac{\mathsf{N}_{\boldsymbol{p}}(\boldsymbol{\beta}; \boldsymbol{\beta}_0, \boldsymbol{\Sigma}) \prod_{l=1}^{n} L(y_i; \mathbf{x}_i, \boldsymbol{\beta})}{\int \mathsf{N}_{\boldsymbol{p}}(\boldsymbol{\beta}; \boldsymbol{\beta}_0, \boldsymbol{\Sigma}) \prod_{l=1}^{n} L(y_i; \mathbf{x}_i, \boldsymbol{\beta}) d\boldsymbol{\beta}},$$

where $L(y_i; \mathbf{x}_i, \beta)$ is the likelihood contribution for individual *i*

<ロ> (日) (日) (日) (日) (日)

Bayes Logistic Regression (continued)

Posterior distribution:

$$\pi(\boldsymbol{\beta} | \mathbf{y}) = \frac{\mathsf{N}_{\boldsymbol{p}}(\boldsymbol{\beta}; \boldsymbol{\beta}_0, \boldsymbol{\Sigma}) \prod_{i=1}^{n} L(y_i; \mathbf{x}_i, \boldsymbol{\beta})}{\int \mathsf{N}_{\boldsymbol{p}}(\boldsymbol{\beta}; \boldsymbol{\beta}_0, \boldsymbol{\Sigma}) \prod_{i=1}^{n} L(y_i; \mathbf{x}_i, \boldsymbol{\beta}) d\boldsymbol{\beta}},$$

where $L(y_i; \mathbf{x}_i, \beta)$ is the likelihood contribution for individual *i*

Note that we can write the numerator in this expression in closed form

<ロ> (日) (日) (日) (日) (日)

Bayes Logistic Regression (continued)

Posterior distribution:

$$\pi(\boldsymbol{\beta} | \mathbf{y}) = \frac{\mathsf{N}_{\boldsymbol{p}}(\boldsymbol{\beta}; \boldsymbol{\beta}_0, \boldsymbol{\Sigma}) \prod_{l=1}^{n} L(y_l; \mathbf{x}_l, \boldsymbol{\beta})}{\int \mathsf{N}_{\boldsymbol{p}}(\boldsymbol{\beta}; \boldsymbol{\beta}_0, \boldsymbol{\Sigma}) \prod_{l=1}^{n} L(y_l; \mathbf{x}_l, \boldsymbol{\beta}) d\boldsymbol{\beta}},$$

where $L(y_i; \mathbf{x}_i, \beta)$ is the likelihood contribution for individual *i*

- Note that we can write the numerator in this expression in closed form
- However, the denominator involves a nasty high-dimensional integral that has no analytic solution.

Calculating the Posterior Distribution

 To calculate the posterior, one can potentially rely on a large sample approximation

Calculating the Posterior Distribution

- To calculate the posterior, one can potentially rely on a large sample approximation
- ► As $n \to \infty$, the posterior is normally distributed centered on the maximum likelihood estimate

Calculating the Posterior Distribution

- To calculate the posterior, one can potentially rely on a large sample approximation
- As n→∞, the posterior is normally distributed centered on the maximum likelihood estimate
- Impact of the prior decreases as the sample size increases in general

Calculating the Posterior Distribution

- To calculate the posterior, one can potentially rely on a large sample approximation
- As n→∞, the posterior is normally distributed centered on the maximum likelihood estimate
- Impact of the prior decreases as the sample size increases in general
- However, even for moderate to large samples, asymptotic normal approximation may be inaccurate

Calculating the Posterior Distribution

- To calculate the posterior, one can potentially rely on a large sample approximation
- As n→∞, the posterior is normally distributed centered on the maximum likelihood estimate
- Impact of the prior decreases as the sample size increases in general
- However, even for moderate to large samples, asymptotic normal approximation may be inaccurate
- In logistic regression for rare outcomes or rare exposure categories, posterior can be highly skewed

MCMC - Basic Idea

 Markov chain Monte Carlo (MCMC) provides an approach for generating samples from the posterior distribution

イロン イヨン イヨン

MCMC - Basic Idea

- Markov chain Monte Carlo (MCMC) provides an approach for generating samples from the posterior distribution
- ▶ This does not give us an approximation to $\pi(\theta | \mathbf{y})$ directly

MCMC - Basic Idea

- Markov chain Monte Carlo (MCMC) provides an approach for generating samples from the posterior distribution
- ▶ This does not give us an approximation to $\pi(\theta \mid \mathbf{y})$ directly
- \blacktriangleright However, from these samples we can obtain summaries of the posterior distribution for θ

MCMC - Basic Idea

- Markov chain Monte Carlo (MCMC) provides an approach for generating samples from the posterior distribution
- ▶ This does not give us an approximation to $\pi(\theta \mid \mathbf{y})$ directly
- \blacktriangleright However, from these samples we can obtain summaries of the posterior distribution for θ
- Summaries of exact posterior distributions of g(θ), for any functional g(·), can also be obtained.

MCMC - Basic Idea

- Markov chain Monte Carlo (MCMC) provides an approach for generating samples from the posterior distribution
- ▶ This does not give us an approximation to $\pi(\theta \mid \mathbf{y})$ directly
- \blacktriangleright However, from these samples we can obtain summaries of the posterior distribution for θ
- Summaries of exact posterior distributions of g(θ), for any functional g(·), can also be obtained.
- For example, if θ is the log-odds ratio, then we could choose g(θ) = exp(θ) to obtain the odds ratio

(日) (同) (E) (E) (E)

How does MCMC work?

Let θ^t = (θ^t₁,...,θ^t_p) denote the value of the p × 1 vector of parameters at iteration t.

How does MCMC work?

- Let θ^t = (θ^t₁,...,θ^t_p) denote the value of the p × 1 vector of parameters at iteration t.
- θ^0 = initial value used to start the chain (*shouldn't be sensitive*)

How does MCMC work?

- Let θ^t = (θ^t₁,...,θ^t_p) denote the value of the p × 1 vector of parameters at iteration t.
- θ^0 = initial value used to start the chain (*shouldn't be sensitive*)
- ► MCMC generates θ^t from a distribution that depends on the data & potentially on θ^{t-1}, but not on θ¹,...,θ^{t-2}.

How does MCMC work?

- Let θ^t = (θ^t₁,...,θ^t_p) denote the value of the p × 1 vector of parameters at iteration t.
- θ^0 = initial value used to start the chain (*shouldn't be sensitive*)
- ► MCMC generates θ^t from a distribution that depends on the data & potentially on θ^{t-1}, but not on θ¹,..., θ^{t-2}.
- ► This results in a Markov chain with stationary distribution $\pi(\theta | \mathbf{y})$ under some conditions on the sampling distribution

Different flavors of MCMC

► The most commonly used MCMC algorithms are:

David Dunson¹, Amy Herring² & Rich MacLehose¹ Introduction to Bayesian Modeling of Epidemiologic Data

イロン イヨン イヨン

Different flavors of MCMC

► The most commonly used MCMC algorithms are:

Metropolis sampling (Metropolis et al., 1953)

Different flavors of MCMC

The most commonly used MCMC algorithms are:

- Metropolis sampling (Metropolis et al., 1953)
- Metropolis-Hastings (MH) (Hastings, 1970)

Different flavors of MCMC

- ► The most commonly used MCMC algorithms are:
 - Metropolis sampling (Metropolis et al., 1953)
 - Metropolis-Hastings (MH) (Hastings, 1970)
 - Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith, 1990)

- A 🗇 N - A 🖻 N - A 🖻 N

Different flavors of MCMC

- ► The most commonly used MCMC algorithms are:
 - Metropolis sampling (Metropolis et al., 1953)
 - Metropolis-Hastings (MH) (Hastings, 1970)
 - Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith, 1990)
- Easy overview of Gibbs Casella & George (1992, The American Statistician, 46, 167-174)

- **A B A B A B A**

Different flavors of MCMC

- ► The most commonly used MCMC algorithms are:
 - Metropolis sampling (Metropolis et al., 1953)
 - Metropolis-Hastings (MH) (Hastings, 1970)
 - Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith, 1990)
- Easy overview of Gibbs Casella & George (1992, The American Statistician, 46, 167-174)
- Easy overview of MH Chib & Greenberg (1995, The American Statistician)

・ロト ・同ト ・ヨト ・ヨト

Gibbs Sampling

• Start with initial value $\theta^0 = (\theta_1^0, \dots, \theta_p^0)$

・ロン ・回と ・ヨン・

Gibbs Sampling

- Start with initial value $\theta^0 = (\theta_1^0, \dots, \theta_p^0)$
- For iterations $t = 1, \ldots, T$,

・ロット (雪) (日) (日)

3

Gibbs Sampling

- Start with initial value $\theta^0 = (\theta_1^0, \dots, \theta_p^0)$
- For iterations $t = 1, \ldots, T$,
 - 1. Sample θ_1^t from the conditional posterior distribution

$$\pi(\theta_1 \mid \theta_2 = \theta_2^{t-1}, \dots, \theta_p = \theta_p^{t-1}, \mathbf{y})$$

・ロン ・回と ・ヨン・

Gibbs Sampling

- Start with initial value $\theta^0 = (\theta_1^0, \dots, \theta_p^0)$
- For iterations $t = 1, \ldots, T$,
 - 1. Sample θ_1^t from the conditional posterior distribution

$$\pi(\theta_1 \mid \theta_2 = \theta_2^{t-1}, \dots, \theta_p = \theta_p^{t-1}, \mathbf{y})$$

2. Sample θ_2^t from the conditional posterior distribution

$$\pi(\theta_2 \mid \theta_1 = \theta_1^t, \theta_3 = \theta_3^{t-1}, \dots, \theta_p = \theta_p^{t-1}, \mathbf{y})$$

・ロン ・回と ・ヨン・

Gibbs Sampling

- Start with initial value $\theta^0 = (\theta_1^0, \dots, \theta_p^0)$
- For iterations $t = 1, \ldots, T$,
 - 1. Sample θ_1^t from the conditional posterior distribution

$$\pi(\theta_1 \mid \theta_2 = \theta_2^{t-1}, \dots, \theta_p = \theta_p^{t-1}, \mathbf{y})$$

2. Sample θ_2^t from the conditional posterior distribution

$$\pi(\theta_2 \,|\, \theta_1 = \theta_1^t, \theta_3 = \theta_3^{t-1}, \dots, \theta_p = \theta_p^{t-1}, \mathbf{y})$$

3. Similarly, sample $\theta_3^t, \ldots, \theta_p^t$ from the conditional posterior distributions given current values of other parameters.

Gibbs Sampling (continued)

 Under mild regularity conditions, samples converge to stationary distribution π(θ | y)

Gibbs Sampling (continued)

- Under mild regularity conditions, samples converge to stationary distribution $\pi(\theta | \mathbf{y})$
- At the start of the sampling, the samples are <u>not</u> from the posterior distribution π(θ | y).

Gibbs Sampling (continued)

- Under mild regularity conditions, samples converge to stationary distribution $\pi(\theta \mid \mathbf{y})$
- At the start of the sampling, the samples are <u>not</u> from the posterior distribution π(θ | y).
- It is necessary to discard the initial samples as a *burn-in* to allow convergence

Gibbs Sampling (continued)

- Under mild regularity conditions, samples converge to stationary distribution $\pi(\theta | \mathbf{y})$
- At the start of the sampling, the samples are <u>not</u> from the posterior distribution π(θ | y).
- It is necessary to discard the initial samples as a *burn-in* to allow convergence
- In simple models such as logistic regression, convergence typically occurs quickly & burn-in of 100 iterations should be sufficient (to be conservative SAS uses 2,000 as default)

・ロト ・回ト ・ヨト ・ヨト

Example - DDE & Preterm Birth

 <u>Scientific interest</u>: Association between DDE exposure & preterm birth adjusting for possible confounding variables

・ロン ・回と ・ヨン・

Example - DDE & Preterm Birth

- <u>Scientific interest</u>: Association between DDE exposure & preterm birth adjusting for possible confounding variables
- Data from US Collaborative Perinatal Project (CPP) n = 2380 children out of which 361 were born preterm

Example - DDE & Preterm Birth

- <u>Scientific interest</u>: Association between DDE exposure & preterm birth adjusting for possible confounding variables
- Data from US Collaborative Perinatal Project (CPP) n = 2380 children out of which 361 were born preterm
- Analysis: Bayesian analysis using a probit model:

 $\Pr(y_i = 1 \mid \mathbf{x}_i, \beta) = \Phi(\beta_1 + \beta_2 dde_i + \beta_3 z_{i1} + \dots + \beta_7 z_{i5}).$

イロト イボト イヨト イヨト 二日

Example - DDE & Preterm Birth

- <u>Scientific interest</u>: Association between DDE exposure & preterm birth adjusting for possible confounding variables
- Data from US Collaborative Perinatal Project (CPP) n = 2380 children out of which 361 were born preterm
- Analysis: Bayesian analysis using a probit model:

$$\Pr(y_i = 1 | \mathbf{x}_i, \beta) = \Phi(\beta_1 + \beta_2 dde_i + \beta_3 z_{i1} + \dots + \beta_7 z_{i5}).$$

Chose normal prior with mean 0 and variance 4.

・ロン ・回と ・ヨン・

Example - DDE & Preterm Birth

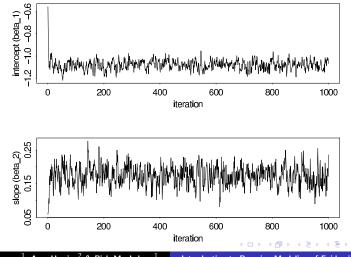
- <u>Scientific interest</u>: Association between DDE exposure & preterm birth adjusting for possible confounding variables
- Data from US Collaborative Perinatal Project (CPP) n = 2380 children out of which 361 were born preterm
- Analysis: Bayesian analysis using a probit model:

 $\Pr(y_i = 1 \mid \mathbf{x}_i, \beta) = \Phi(\beta_1 + \beta_2 dde_i + \beta_3 z_{i1} + \dots + \beta_7 z_{i5}).$

- Chose normal prior with mean 0 and variance 4.
- Probit model is similar to logistic regression, but with different link

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

Gibbs Sampling output for preterm birth example



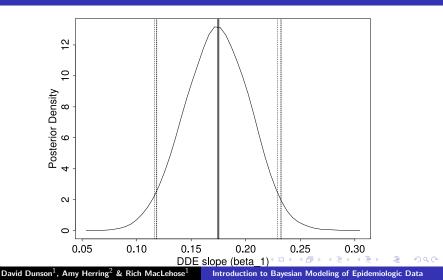
David Dunson¹, Amy Herring² & Rich MacLehose¹

Introduction to Bayesian Modeling of Epidemiologic Data

Outline

Illustrative example - Perchlorate & thyroid tumors Introduction to Bayesian Statistics Bayesian Logistic Regression Markov chain Monte Carlo

Estimated Posterior Density



Some MCMC Terminology

 Convergence: initial drift in the samples towards a stationary distribution

Some MCMC Terminology

- Convergence: initial drift in the samples towards a stationary distribution
- Burn-in: samples at start of the chain that are discarded to allow convergence

Some MCMC Terminology

- Convergence: initial drift in the samples towards a stationary distribution
- <u>Burn-in</u>: samples at start of the chain that are discarded to allow convergence
- ► Slow mixing: tendency for high autocorrelation in the samples.

Some MCMC Terminology

- Convergence: initial drift in the samples towards a stationary distribution
- <u>Burn-in</u>: samples at start of the chain that are discarded to allow convergence
- Slow mixing: tendency for high autocorrelation in the samples.
- Thinning: practice of collecting every kth iteration to reduce autocorrelation

- 4 回 ト 4 ヨ ト 4 ヨ ト

Some MCMC Terminology

- Convergence: initial drift in the samples towards a stationary distribution
- <u>Burn-in</u>: samples at start of the chain that are discarded to allow convergence
- Slow mixing: tendency for high autocorrelation in the samples.
- Thinning: practice of collecting every kth iteration to reduce autocorrelation
- Trace plot: plot of sampled values of a parameter vs iteration

・ロト ・回ト ・ヨト ・ヨト

Outline

Illustrative example - Perchlorate & thyroid tumors Introduction to Bayesian Statistics Bayesian Logistic Regression Markov chain Monte Carlo

Example - trace plot with poor mixing

V1 < Ξ

G Non-Centered

David Dunson¹, Amy Herring² & Rich MacLehose¹

Introduction to Bayesian Modeling of Epidemiologic Data

Poor mixing Gibbs sampler

 Exhibits "snaking" behavior in trace plot with cyclic local trends in the mean

Poor mixing Gibbs sampler

- Exhibits "snaking" behavior in trace plot with cyclic local trends in the mean
- Poor mixing in the Gibbs sampler caused by high posterior correlation in the parameters

イロン イヨン イヨン

Poor mixing Gibbs sampler

- Exhibits "snaking" behavior in trace plot with cyclic local trends in the mean
- Poor mixing in the Gibbs sampler caused by high posterior correlation in the parameters
- Decreases efficiency & many more samples need to be collected to maintain low Monte Carlo error in posterior summaries

Poor mixing Gibbs sampler

- Exhibits "snaking" behavior in trace plot with cyclic local trends in the mean
- Poor mixing in the Gibbs sampler caused by high posterior correlation in the parameters
- Decreases efficiency & many more samples need to be collected to maintain low Monte Carlo error in posterior summaries
- For very poor mixing chain, may even need millions of iterations.

・ロン ・回 と ・ ヨ と ・ ヨ と

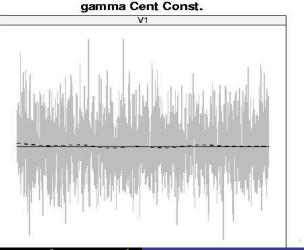
Poor mixing Gibbs sampler

- Exhibits "snaking" behavior in trace plot with cyclic local trends in the mean
- Poor mixing in the Gibbs sampler caused by high posterior correlation in the parameters
- Decreases efficiency & many more samples need to be collected to maintain low Monte Carlo error in posterior summaries
- For very poor mixing chain, may even need millions of iterations.
- Routinely examine trace plots!

Outline

Illustrative example - Perchlorate & thyroid tumors Introduction to Bayesian Statistics Bayesian Logistic Regression Markov chain Monte Carlo

Example - trace plot with good mixing



David Dunson¹, Amy Herring² & Rich MacLehose¹

Introduction to Bayesian Modeling of Epidemiologic Data

How to summarize results from the MCMC chain?

 <u>Posterior mean</u>: estimated by average of samples collected after discarding burn-in

・ロン ・回と ・ヨン・

How to summarize results from the MCMC chain?

- <u>Posterior mean</u>: estimated by average of samples collected after discarding burn-in
- Posterior mean provides alternative to maximum likelihood estimate as a single summary.

How to summarize results from the MCMC chain?

- <u>Posterior mean</u>: estimated by average of samples collected after discarding burn-in
- Posterior mean provides alternative to maximum likelihood estimate as a single summary.
- As a Bayesian alternative to the confidence interval, one can use a credible interval

- 4 回 5 - 4 三 5 - 4 三 5

How to summarize results from the MCMC chain?

- <u>Posterior mean</u>: estimated by average of samples collected after discarding burn-in
- Posterior mean provides alternative to maximum likelihood estimate as a single summary.
- As a Bayesian alternative to the confidence interval, one can use a credible interval
- ► The $100(1 \alpha)$ % credible interval ranges from the $\alpha/2$ to $1 \alpha/2$ empirical percentiles of the collected samples

How to summarize results from the MCMC chain?

- <u>Posterior mean</u>: estimated by average of samples collected after discarding burn-in
- Posterior mean provides alternative to maximum likelihood estimate as a single summary.
- As a Bayesian alternative to the confidence interval, one can use a credible interval
- The 100(1 − α)% credible interval ranges from the α/2 to 1 − α/2 empirical percentiles of the collected samples
- Credible intervals can be calculated for functionals (e.g., odds ratios) by first applying the function to each MCMC sample

・ロト ・回ト ・ヨト ・ヨト

Posterior probabilities

• Often interest focuses on the weight of evidence of $H_1: \theta_i > 0$

David Dunson¹, Amy Herring² & Rich MacLehose¹ Introduction to Bayesian Modeling of Epidemiologic Data

Posterior probabilities

- Often interest focuses on the weight of evidence of $H_1: \theta_j > 0$
- ► The posterior probability of H₁ can be calculated easily from the MCMC output as simply the proportion of collected samples having θ_j > 0.

Posterior probabilities

- Often interest focuses on the weight of evidence of $H_1: \theta_j > 0$
- The posterior probability of H₁ can be calculated easily from the MCMC output as simply the proportion of collected samples having θ_j > 0.
- ► A high value (e.g., greater than 0.95) suggests strong evidence in favor of H₁

Marginal posterior density estimation

Summary statistics such as the mean, median, standard deviation, etc provide an incomplete picture

- A 🗇 N - A 🖻 N - A 🖻 N

Marginal posterior density estimation

- Summary statistics such as the mean, median, standard deviation, etc provide an incomplete picture
- Since we have many samples from the posterior, we can accurately estimate the *exact* posterior density

Marginal posterior density estimation

- Summary statistics such as the mean, median, standard deviation, etc provide an incomplete picture
- Since we have many samples from the posterior, we can accurately estimate the *exact* posterior density
- This can be done using a kernel-smoothed density estimation procedure applied to the samples

How to get started?

 It is not necessary to understand MCMC theory to implement Bayesian analyses

イロン イヨン イヨン

How to get started?

- It is not necessary to understand MCMC theory to implement Bayesian analyses
- WinBUGS is a general software package for implementing MCMC in a very broad variety of models

How to get started?

- It is not necessary to understand MCMC theory to implement Bayesian analyses
- WinBUGS is a general software package for implementing MCMC in a very broad variety of models
- WinBUGS can accommodate hierarchical models, missing data, spatial correlation, etc (*Rich will illustrate*)

How to get started?

- It is not necessary to understand MCMC theory to implement Bayesian analyses
- WinBUGS is a general software package for implementing MCMC in a very broad variety of models
- WinBUGS can accommodate hierarchical models, missing data, spatial correlation, etc (*Rich will illustrate*)
- SAS also has several new Bayes Procs available (Amy will illustrate)