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Outline of Workshop

1. Introduction to Bayesian modeling (David Dunson)

2. Bayesian modeling in SAS (Amy Herring)

3. Hierarchical models (Rich MacLehose)
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mainly in southwest US
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Background on Perchlorate

I Contaminant found in groundwater, drinking water & soils -
mainly in southwest US

I Primary source industrial & military - perchlorate used as
oxidizing agent (e.g., in rocket fuel)

I Concern about effects of perchlorate on the thyroid (known to

inhibit thyroid’s ability to absorb iodine from the blood)

I EPA conducted extensive risk assessment → NAS review of
health effects (recommended new reference dose)
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Two Generation Rodent Study (Argus, 1999)

I Male rats were exposed to ammonium perchlorate through
drinking water
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I Male rats were exposed to ammonium perchlorate through
drinking water

I 30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day

I Male rats in P1 generation exposed 70+ days before mating,
through mating period & until sacrifice at 21-22 weeks

I F1 generation treated similarly, with additional exposure
during gestation & lactation
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Two Generation Rodent Study (Argus, 1999)

I Male rats were exposed to ammonium perchlorate through
drinking water

I 30 rats/group with doses of 0, 0.01, 0.1, 1.0 & 30 mg/kg/day

I Male rats in P1 generation exposed 70+ days before mating,
through mating period & until sacrifice at 21-22 weeks

I F1 generation treated similarly, with additional exposure
during gestation & lactation

I At 19 weeks for F1 rats, thyroid tissues examined histologically

I 2/30 male rats in 30 mg/kg/day dose group had thyroid
follicular cell adenomas, with one of these rats having two
adenomas.
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Analyzing the Perchlorate data

I Frequentist analysis: comparing 0/30 tumors in control rats
with 2/30 tumors in the high dose group → non-significant
(Fisher’s exact test p-value=0.49)
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Analyzing the Perchlorate data

I Frequentist analysis: comparing 0/30 tumors in control rats
with 2/30 tumors in the high dose group → non-significant
(Fisher’s exact test p-value=0.49)

I Ignores the prior knowledge that thyroid follicular cell
adenomas are very rare in 19 week rats
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I Frequentist analysis: comparing 0/30 tumors in control rats
with 2/30 tumors in the high dose group → non-significant
(Fisher’s exact test p-value=0.49)

I Ignores the prior knowledge that thyroid follicular cell
adenomas are very rare in 19 week rats
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Analyzing the Perchlorate data

I Frequentist analysis: comparing 0/30 tumors in control rats
with 2/30 tumors in the high dose group → non-significant
(Fisher’s exact test p-value=0.49)

I Ignores the prior knowledge that thyroid follicular cell
adenomas are very rare in 19 week rats

I The National Toxicology Program (NTP) routinely collects
tumor incidence data for control rats in two year studies.

I Would our conclusion change if we included information from
the NTP data base?

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data



Outline
Illustrative example - Perchlorate & thyroid tumors

Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Some prior information

I In 67 recent NTP studies, 38/3419 = 1.1% of male rats
developed thyroid follicular cell adenomas by death in a two
year study.
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developed thyroid follicular cell adenomas by death in a two
year study.

I Results from Portier et al. (1986) suggest probability of
developing thyroid follicular cell adenoma increases in
proportion to age4.78

I Average survival time in NTP study for control male rat is
95.2 weeks

I Suggests that the ratio of probability of thyroid follicular cell
adenomas at 19 weeks to the lifetime probability in a 2-year
study is (19/95.2)4.78 = 0.0005
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Some prior information

I In 67 recent NTP studies, 38/3419 = 1.1% of male rats
developed thyroid follicular cell adenomas by death in a two
year study.

I Results from Portier et al. (1986) suggest probability of
developing thyroid follicular cell adenoma increases in
proportion to age4.78

I Average survival time in NTP study for control male rat is
95.2 weeks

I Suggests that the ratio of probability of thyroid follicular cell
adenomas at 19 weeks to the lifetime probability in a 2-year
study is (19/95.2)4.78 = 0.0005

I Question: How do we incorporate this information in analysis?
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Frequentist vs Bayes

I Suppose we are interested in a parameter θ (e.g., probability

of thyroid FCA by 19 weeks in control rats)
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Frequentist vs Bayes

I Suppose we are interested in a parameter θ (e.g., probability

of thyroid FCA by 19 weeks in control rats)

I Frequentists would typically rely on the MLE, which would be
θ̂ = 0/30 = 0 in the perchlorate example

I Bayesians instead rely on the posterior distribution of θ

I Obtained in updating one’s prior distribution with the
likelihood for the data.

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data



Outline
Illustrative example - Perchlorate & thyroid tumors

Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Bayes’ Rule

I Let π(θ) = prior distribution of parameter θ

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data



Outline
Illustrative example - Perchlorate & thyroid tumors

Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Bayes’ Rule

I Let π(θ) = prior distribution of parameter θ

I Let L(y |θ) = likelihood of data y given parameter θ

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data



Outline
Illustrative example - Perchlorate & thyroid tumors

Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Bayes’ Rule

I Let π(θ) = prior distribution of parameter θ

I Let L(y |θ) = likelihood of data y given parameter θ

I Then, the posterior is defined as:

π(θ | y) =
π(θ) L(y |θ)∫
π(θ) L(y | θ)dθ

,

which is the prior × the likelihood divided by a normalizing
constant
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Bayes’ Rule

I Let π(θ) = prior distribution of parameter θ

I Let L(y |θ) = likelihood of data y given parameter θ

I Then, the posterior is defined as:

π(θ | y) =
π(θ) L(y |θ)∫
π(θ) L(y | θ)dθ

,

which is the prior × the likelihood divided by a normalizing
constant

I The posterior, π(θ | y), represents the state of knowledge
about θ after updating the prior, π(θ), with the information in
the data, y.
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I As an example of Bayesian updating, let θ=probability of
preterm birth (PTB)

I Typical choice of prior for θ is the beta(a, b) distribution

I a, b=hyperparameters characterizing uncertainty in θ before
incorporating information in data from current study

I a/(a + b)=prior expectation for θ & a + b=prior sample size
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Bayesian Updating

I As an example of Bayesian updating, let θ=probability of
preterm birth (PTB)

I Typical choice of prior for θ is the beta(a, b) distribution

I a, b=hyperparameters characterizing uncertainty in θ before
incorporating information in data from current study

I a/(a + b)=prior expectation for θ & a + b=prior sample size

I beta(1, 1) corresponds to uniform distribution → has as much
information as two subjects (one with PTB & one without)
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Preterm Birth Example

I θ=probability of preterm birth

I Consider two different priors: (1) a uniform prior expressing
ignorance; and (2) a beta(10,90) prior.
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Preterm Birth Example

I θ=probability of preterm birth

I Consider two different priors: (1) a uniform prior expressing
ignorance; and (2) a beta(10,90) prior.

I The beta(10,90) prior implies a 95% prior probability of
θ ∈ [0.05, 0.17] (wide range of plausible values for probability

preterm birth)
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Preterm Birth Example

I θ=probability of preterm birth

I Consider two different priors: (1) a uniform prior expressing
ignorance; and (2) a beta(10,90) prior.

I The beta(10,90) prior implies a 95% prior probability of
θ ∈ [0.05, 0.17] (wide range of plausible values for probability

preterm birth)

I We collect data for 100 women & observe 7/100 preterm
births.
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I For conjugate priors, the posterior π(θ | y) is available
analytically and has the same form as the prior

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data



Outline
Illustrative example - Perchlorate & thyroid tumors

Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Updating the beta prior

I The beta prior is conjugate to the binomial likelihood

I For conjugate priors, the posterior π(θ | y) is available
analytically and has the same form as the prior

I Let yi = 1 if woman i has a preterm birth and yi = 0
otherwise, with Pr(yi = 1) = θ
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Updating the beta prior

I The beta prior is conjugate to the binomial likelihood

I For conjugate priors, the posterior π(θ | y) is available
analytically and has the same form as the prior

I Let yi = 1 if woman i has a preterm birth and yi = 0
otherwise, with Pr(yi = 1) = θ

I Likelihood is Bernoulli: L(y | θ) =
∏

i θ
yi (1 − θ)1−yi
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Updating the beta prior

I The beta prior is conjugate to the binomial likelihood

I For conjugate priors, the posterior π(θ | y) is available
analytically and has the same form as the prior

I Let yi = 1 if woman i has a preterm birth and yi = 0
otherwise, with Pr(yi = 1) = θ

I Likelihood is Bernoulli: L(y | θ) =
∏

i θ
yi (1 − θ)1−yi

I The posterior distribution of θ is then

π(θ | y) = beta

(
a +

∑

i

yi , b +
∑

i

(1 − yi )

)
.
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Returning to the Perchlorate Example

I Let θ = γ × ρ, θ=prob tumor in 19 weeks, γ=prob tumor in
lifetime & ρ=proportion of tumors developing by 19 weeks
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Returning to the Perchlorate Example

I Let θ = γ × ρ, θ=prob tumor in 19 weeks, γ=prob tumor in
lifetime & ρ=proportion of tumors developing by 19 weeks

I We choose beta(38, 3381) prior for probability of developing
thyroid FCA for a control male rat in a two-year study (γ)
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Returning to the Perchlorate Example

I Let θ = γ × ρ, θ=prob tumor in 19 weeks, γ=prob tumor in
lifetime & ρ=proportion of tumors developing by 19 weeks

I We choose beta(38, 3381) prior for probability of developing
thyroid FCA for a control male rat in a two-year study (γ)

I Based on the 38/(38 + 3381) rats observed with these tumors
in NTP studies

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data



Outline
Illustrative example - Perchlorate & thyroid tumors

Introduction to Bayesian Statistics
Bayesian Logistic Regression
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Returning to the Perchlorate Example

I Let θ = γ × ρ, θ=prob tumor in 19 weeks, γ=prob tumor in
lifetime & ρ=proportion of tumors developing by 19 weeks

I We choose beta(38, 3381) prior for probability of developing
thyroid FCA for a control male rat in a two-year study (γ)

I Based on the 38/(38 + 3381) rats observed with these tumors
in NTP studies

I We choose beta(0.11, 2.6) prior for ratio:

ρ =
probability of developing tumor by 19 weeks

probability of developing tumor in two year study
.

Centered on 0.0005 with 95% probability of falling within
[0.0000,0.379]
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Conclusions from Perchlorate Example

I θ = γ × ρ=probability of developing thyroid FCA by 19 weeks
for control male rat
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Conclusions from Perchlorate Example

I θ = γ × ρ=probability of developing thyroid FCA by 19 weeks
for control male rat

I We update priors for γ and ρ with data from the Argus
(1999) study to obtain posterior distribution for θ.
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Conclusions from Perchlorate Example

I θ = γ × ρ=probability of developing thyroid FCA by 19 weeks
for control male rat

I We update priors for γ and ρ with data from the Argus
(1999) study to obtain posterior distribution for θ.

I The posterior mean of θ is 1/100, 000
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Introduction to Bayesian Statistics
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Conclusions from Perchlorate Example

I θ = γ × ρ=probability of developing thyroid FCA by 19 weeks
for control male rat

I We update priors for γ and ρ with data from the Argus
(1999) study to obtain posterior distribution for θ.

I The posterior mean of θ is 1/100, 000

I How likely it is to observe 2 or more rats out of 30 with
tumors under the null hypothesis of no effect of perchlorate?
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Conclusions from Perchlorate Example

I θ = γ × ρ=probability of developing thyroid FCA by 19 weeks
for control male rat

I We update priors for γ and ρ with data from the Argus
(1999) study to obtain posterior distribution for θ.

I The posterior mean of θ is 1/100, 000

I How likely it is to observe 2 or more rats out of 30 with
tumors under the null hypothesis of no effect of perchlorate?

I This probability is < 1/100, 000 → data support causal effect
of perchlorate on increased thyroid tumor incidence
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Markov chain Monte Carlo

More Complex Models

I Posterior calculation for preterm birth example relied on
conjugate prior
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More Complex Models

I Posterior calculation for preterm birth example relied on
conjugate prior

I Posterior calculation for perchlorate example relied on numeric
integration - easy for two parameters
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Introduction to Bayesian Statistics
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Markov chain Monte Carlo

More Complex Models

I Posterior calculation for preterm birth example relied on
conjugate prior

I Posterior calculation for perchlorate example relied on numeric
integration - easy for two parameters

I For epidemiologic analyses (e.g., logistic regression, survival

analysis), conjugate priors not available & dimension high
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Introduction to Bayesian Statistics
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Markov chain Monte Carlo

More Complex Models

I Posterior calculation for preterm birth example relied on
conjugate prior

I Posterior calculation for perchlorate example relied on numeric
integration - easy for two parameters

I For epidemiologic analyses (e.g., logistic regression, survival

analysis), conjugate priors not available & dimension high

I In such settings, there are multiple parameters in θ and one
needs to compute the joint posterior:

π(θ | y) =
π(θ) L(y |θ)∫
π(θ) L(y | θ)dθ

.
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Example: Bayesian Logistic Regression

I Logistic regression model:

logit Pr(yi = 1 | xi ,β) = x′iβ,

with xi = (1, xi2, . . . , xip)
′ a vector of predictors &

β = (β1, . . . , βp)′ coefficients for these predictors
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Example: Bayesian Logistic Regression

I Logistic regression model:

logit Pr(yi = 1 | xi ,β) = x′iβ,

with xi = (1, xi2, . . . , xip)
′ a vector of predictors &

β = (β1, . . . , βp)′ coefficients for these predictors

I A Bayesian specification of the model is completed with a
prior for the coefficients, π(β) = Np(β0,Σ).
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Example: Bayesian Logistic Regression

I Logistic regression model:

logit Pr(yi = 1 | xi ,β) = x′iβ,

with xi = (1, xi2, . . . , xip)
′ a vector of predictors &

β = (β1, . . . , βp)′ coefficients for these predictors

I A Bayesian specification of the model is completed with a
prior for the coefficients, π(β) = Np(β0,Σ).

I Here, β0 is one’s best guess at the coefficient values prior to
observing the data from the current study
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Example: Bayesian Logistic Regression

I Logistic regression model:

logit Pr(yi = 1 | xi ,β) = x′iβ,

with xi = (1, xi2, . . . , xip)
′ a vector of predictors &

β = (β1, . . . , βp)′ coefficients for these predictors

I A Bayesian specification of the model is completed with a
prior for the coefficients, π(β) = Np(β0,Σ).

I Here, β0 is one’s best guess at the coefficient values prior to
observing the data from the current study

I Σ=covariance matrix quantifying uncertainty in this guess
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Markov chain Monte Carlo

Some Different Possibilities for the Prior

I. Informative Prior

I Review literature & choose a prior to be centered on previous
estimates of coefficients.
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Some Different Possibilities for the Prior

I. Informative Prior

I Review literature & choose a prior to be centered on previous
estimates of coefficients.

I In the absence of previous estimates, choose a subjective value
synthesizing knowledge of the literature
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Some Different Possibilities for the Prior

I. Informative Prior

I Review literature & choose a prior to be centered on previous
estimates of coefficients.

I In the absence of previous estimates, choose a subjective value
synthesizing knowledge of the literature

I Prior variance chosen so that a 90 or 95% prior interval
contains a wide range of plausible values
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Some Different Possibilities for the Prior

I. Informative Prior

I Review literature & choose a prior to be centered on previous
estimates of coefficients.

I In the absence of previous estimates, choose a subjective value
synthesizing knowledge of the literature

I Prior variance chosen so that a 90 or 95% prior interval
contains a wide range of plausible values

I Useful to choose informative priors for intercept and
confounding coefficients, as there is typically substantial
information about these coefficients
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Some Possible Priors (continued)

II. Shrinkage Priors

I Choose a prior centered on zero with modest variance
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Some Possible Priors (continued)

II. Shrinkage Priors

I Choose a prior centered on zero with modest variance

I When little information is available about a parameter, results
in shrinkage towards zero
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Some Possible Priors (continued)

II. Shrinkage Priors

I Choose a prior centered on zero with modest variance

I When little information is available about a parameter, results
in shrinkage towards zero

I Avoids unstable estimates - particularly problematic in high
dimensions & for correlated predictors.
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Some Possible Priors (continued)

II. Shrinkage Priors

I Choose a prior centered on zero with modest variance

I When little information is available about a parameter, results
in shrinkage towards zero

I Avoids unstable estimates - particularly problematic in high
dimensions & for correlated predictors.

I As more information becomes available that the parameter
(e.g., the exposure odds ratio) is non-zero, the likelihood will
dominate.
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Some Possible Priors (continued)

III. Non-Informative Priors

I Choose a prior that has high variance or is flat in some sense
to express ignorance about the parameter value
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Some Possible Priors (continued)

III. Non-Informative Priors

I Choose a prior that has high variance or is flat in some sense
to express ignorance about the parameter value

I Often yields similar results to maximum likelihood - what’s
the point?
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Some Possible Priors (continued)

III. Non-Informative Priors

I Choose a prior that has high variance or is flat in some sense
to express ignorance about the parameter value

I Often yields similar results to maximum likelihood - what’s
the point?

I No prior is truly non-informative - flat or high variance priors
assign most of their probability outside a plausible range for
the parameter values.
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Some Possible Priors (continued)

III. Non-Informative Priors

I Choose a prior that has high variance or is flat in some sense
to express ignorance about the parameter value

I Often yields similar results to maximum likelihood - what’s
the point?

I No prior is truly non-informative - flat or high variance priors
assign most of their probability outside a plausible range for
the parameter values.

I Can lead to poor results when insufficient information
available about a given parameter in the current data set -
typically, the case when many predictors are collected.
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Bayes Logistic Regression (continued)

I Posterior distribution:

π(β | y) =
Np(β;β0,Σ)

∏n
l=1 L(yi ; xi ,β)∫

Np(β;β0,Σ)
∏n

l=1 L(yi ; xi ,β)dβ
,

where L(yi ; xi ,β) is the likelihood contribution for individual i
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Bayes Logistic Regression (continued)

I Posterior distribution:

π(β | y) =
Np(β;β0,Σ)

∏n
l=1 L(yi ; xi ,β)∫

Np(β;β0,Σ)
∏n

l=1 L(yi ; xi ,β)dβ
,

where L(yi ; xi ,β) is the likelihood contribution for individual i

I Note that we can write the numerator in this expression in
closed form
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Bayes Logistic Regression (continued)

I Posterior distribution:

π(β | y) =
Np(β;β0,Σ)

∏n
l=1 L(yi ; xi ,β)∫

Np(β;β0,Σ)
∏n

l=1 L(yi ; xi ,β)dβ
,

where L(yi ; xi ,β) is the likelihood contribution for individual i

I Note that we can write the numerator in this expression in
closed form

I However, the denominator involves a nasty high-dimensional
integral that has no analytic solution.
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Markov chain Monte Carlo

Calculating the Posterior Distribution

I To calculate the posterior, one can potentially rely on a large
sample approximation
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Calculating the Posterior Distribution

I To calculate the posterior, one can potentially rely on a large
sample approximation

I As n → ∞, the posterior is normally distributed centered on
the maximum likelihood estimate
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Calculating the Posterior Distribution

I To calculate the posterior, one can potentially rely on a large
sample approximation

I As n → ∞, the posterior is normally distributed centered on
the maximum likelihood estimate

I Impact of the prior decreases as the sample size increases in
general
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Introduction to Bayesian Statistics
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Markov chain Monte Carlo

Calculating the Posterior Distribution

I To calculate the posterior, one can potentially rely on a large
sample approximation

I As n → ∞, the posterior is normally distributed centered on
the maximum likelihood estimate

I Impact of the prior decreases as the sample size increases in
general

I However, even for moderate to large samples, asymptotic
normal approximation may be inaccurate
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Calculating the Posterior Distribution

I To calculate the posterior, one can potentially rely on a large
sample approximation

I As n → ∞, the posterior is normally distributed centered on
the maximum likelihood estimate

I Impact of the prior decreases as the sample size increases in
general

I However, even for moderate to large samples, asymptotic
normal approximation may be inaccurate

I In logistic regression for rare outcomes or rare exposure
categories, posterior can be highly skewed
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Bayesian Logistic Regression

Markov chain Monte Carlo

MCMC - Basic Idea

I Markov chain Monte Carlo (MCMC) provides an approach for
generating samples from the posterior distribution
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MCMC - Basic Idea

I Markov chain Monte Carlo (MCMC) provides an approach for
generating samples from the posterior distribution

I This does not give us an approximation to π(θ | y) directly
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Introduction to Bayesian Statistics
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Markov chain Monte Carlo

MCMC - Basic Idea

I Markov chain Monte Carlo (MCMC) provides an approach for
generating samples from the posterior distribution

I This does not give us an approximation to π(θ | y) directly

I However, from these samples we can obtain summaries of the
posterior distribution for θ
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

MCMC - Basic Idea

I Markov chain Monte Carlo (MCMC) provides an approach for
generating samples from the posterior distribution

I This does not give us an approximation to π(θ | y) directly

I However, from these samples we can obtain summaries of the
posterior distribution for θ

I Summaries of exact posterior distributions of g(θ), for any
functional g(·), can also be obtained.
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

MCMC - Basic Idea

I Markov chain Monte Carlo (MCMC) provides an approach for
generating samples from the posterior distribution

I This does not give us an approximation to π(θ | y) directly

I However, from these samples we can obtain summaries of the
posterior distribution for θ

I Summaries of exact posterior distributions of g(θ), for any
functional g(·), can also be obtained.

I For example, if θ is the log-odds ratio, then we could choose
g(θ) = exp(θ) to obtain the odds ratio

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data



Outline
Illustrative example - Perchlorate & thyroid tumors
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Markov chain Monte Carlo

How does MCMC work?

I Let θt = (θt
1, . . . , θ

t
p) denote the value of the p × 1 vector of

parameters at iteration t.
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Markov chain Monte Carlo

How does MCMC work?

I Let θt = (θt
1, . . . , θ

t
p) denote the value of the p × 1 vector of

parameters at iteration t.

I θ0 = initial value used to start the chain (shouldn’t be

sensitive)
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Introduction to Bayesian Statistics
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Markov chain Monte Carlo

How does MCMC work?

I Let θt = (θt
1, . . . , θ

t
p) denote the value of the p × 1 vector of

parameters at iteration t.

I θ0 = initial value used to start the chain (shouldn’t be

sensitive)

I MCMC generates θt from a distribution that depends on the
data & potentially on θt−1, but not on θ1, . . . , θt−2.
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

How does MCMC work?

I Let θt = (θt
1, . . . , θ

t
p) denote the value of the p × 1 vector of

parameters at iteration t.

I θ0 = initial value used to start the chain (shouldn’t be

sensitive)

I MCMC generates θt from a distribution that depends on the
data & potentially on θt−1, but not on θ1, . . . , θt−2.

I This results in a Markov chain with stationary distribution
π(θ | y) under some conditions on the sampling distribution
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Different flavors of MCMC

I The most commonly used MCMC algorithms are:
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Markov chain Monte Carlo

Different flavors of MCMC

I The most commonly used MCMC algorithms are:
I Metropolis sampling (Metropolis et al., 1953)
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Markov chain Monte Carlo

Different flavors of MCMC

I The most commonly used MCMC algorithms are:
I Metropolis sampling (Metropolis et al., 1953)
I Metropolis-Hastings (MH) (Hastings, 1970)
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Markov chain Monte Carlo

Different flavors of MCMC

I The most commonly used MCMC algorithms are:
I Metropolis sampling (Metropolis et al., 1953)
I Metropolis-Hastings (MH) (Hastings, 1970)
I Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith,

1990)
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Different flavors of MCMC

I The most commonly used MCMC algorithms are:
I Metropolis sampling (Metropolis et al., 1953)
I Metropolis-Hastings (MH) (Hastings, 1970)
I Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith,

1990)

I Easy overview of Gibbs - Casella & George (1992, The

American Statistician, 46, 167-174)
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Different flavors of MCMC

I The most commonly used MCMC algorithms are:
I Metropolis sampling (Metropolis et al., 1953)
I Metropolis-Hastings (MH) (Hastings, 1970)
I Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith,

1990)

I Easy overview of Gibbs - Casella & George (1992, The

American Statistician, 46, 167-174)

I Easy overview of MH - Chib & Greenberg (1995, The

American Statistician)
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Bayesian Logistic Regression

Markov chain Monte Carlo

Gibbs Sampling

I Start with initial value θ0 = (θ0
1, . . . , θ

0
p)
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Gibbs Sampling

I Start with initial value θ0 = (θ0
1, . . . , θ

0
p)

I For iterations t = 1, . . . ,T ,
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Gibbs Sampling

I Start with initial value θ0 = (θ0
1, . . . , θ

0
p)

I For iterations t = 1, . . . ,T ,

1. Sample θt
1 from the conditional posterior distribution

π(θ1 | θ2 = θt−1
2 , . . . , θp = θt−1

p , y)
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Markov chain Monte Carlo

Gibbs Sampling

I Start with initial value θ0 = (θ0
1, . . . , θ

0
p)

I For iterations t = 1, . . . ,T ,

1. Sample θt
1 from the conditional posterior distribution

π(θ1 | θ2 = θt−1
2 , . . . , θp = θt−1

p , y)

2. Sample θt
2 from the conditional posterior distribution

π(θ2 | θ1 = θt
1, θ3 = θt−1

3 , . . . , θp = θt−1
p , y)
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Gibbs Sampling

I Start with initial value θ0 = (θ0
1, . . . , θ

0
p)

I For iterations t = 1, . . . ,T ,

1. Sample θt
1 from the conditional posterior distribution

π(θ1 | θ2 = θt−1
2 , . . . , θp = θt−1

p , y)

2. Sample θt
2 from the conditional posterior distribution

π(θ2 | θ1 = θt
1, θ3 = θt−1

3 , . . . , θp = θt−1
p , y)

3. Similarly, sample θt
3, . . . , θ

t
p from the conditional posterior

distributions given current values of other parameters.
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Gibbs Sampling (continued)

I Under mild regularity conditions, samples converge to
stationary distribution π(θ | y)
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Markov chain Monte Carlo

Gibbs Sampling (continued)

I Under mild regularity conditions, samples converge to
stationary distribution π(θ | y)

I At the start of the sampling, the samples are not from the
posterior distribution π(θ | y).
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Bayesian Logistic Regression

Markov chain Monte Carlo

Gibbs Sampling (continued)

I Under mild regularity conditions, samples converge to
stationary distribution π(θ | y)

I At the start of the sampling, the samples are not from the
posterior distribution π(θ | y).

I It is necessary to discard the initial samples as a burn-in to
allow convergence
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Markov chain Monte Carlo

Gibbs Sampling (continued)

I Under mild regularity conditions, samples converge to
stationary distribution π(θ | y)

I At the start of the sampling, the samples are not from the
posterior distribution π(θ | y).

I It is necessary to discard the initial samples as a burn-in to
allow convergence

I In simple models such as logistic regression, convergence
typically occurs quickly & burn-in of 100 iterations should be
sufficient (to be conservative SAS uses 2,000 as default)
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Example - DDE & Preterm Birth

I Scientific interest: Association between DDE exposure &
preterm birth adjusting for possible confounding variables
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Example - DDE & Preterm Birth

I Scientific interest: Association between DDE exposure &
preterm birth adjusting for possible confounding variables

I Data from US Collaborative Perinatal Project (CPP) - n =
2380 children out of which 361 were born preterm
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Example - DDE & Preterm Birth

I Scientific interest: Association between DDE exposure &
preterm birth adjusting for possible confounding variables

I Data from US Collaborative Perinatal Project (CPP) - n =
2380 children out of which 361 were born preterm

I Analysis: Bayesian analysis using a probit model:

Pr(yi = 1 | xi , β) = Φ(β1 + β2ddei + β3zi1 + · · · + β7zi5).
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Example - DDE & Preterm Birth

I Scientific interest: Association between DDE exposure &
preterm birth adjusting for possible confounding variables

I Data from US Collaborative Perinatal Project (CPP) - n =
2380 children out of which 361 were born preterm

I Analysis: Bayesian analysis using a probit model:

Pr(yi = 1 | xi , β) = Φ(β1 + β2ddei + β3zi1 + · · · + β7zi5).

I Chose normal prior with mean 0 and variance 4.
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Example - DDE & Preterm Birth

I Scientific interest: Association between DDE exposure &
preterm birth adjusting for possible confounding variables

I Data from US Collaborative Perinatal Project (CPP) - n =
2380 children out of which 361 were born preterm

I Analysis: Bayesian analysis using a probit model:

Pr(yi = 1 | xi , β) = Φ(β1 + β2ddei + β3zi1 + · · · + β7zi5).

I Chose normal prior with mean 0 and variance 4.

I Probit model is similar to logistic regression, but with different
link
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Gibbs Sampling output for preterm birth example
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Markov chain Monte Carlo

Some MCMC Terminology

I Convergence: initial drift in the samples towards a stationary
distribution
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Some MCMC Terminology

I Convergence: initial drift in the samples towards a stationary
distribution

I Burn-in: samples at start of the chain that are discarded to
allow convergence
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Some MCMC Terminology

I Convergence: initial drift in the samples towards a stationary
distribution

I Burn-in: samples at start of the chain that are discarded to
allow convergence

I Slow mixing: tendency for high autocorrelation in the samples.
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Some MCMC Terminology

I Convergence: initial drift in the samples towards a stationary
distribution

I Burn-in: samples at start of the chain that are discarded to
allow convergence

I Slow mixing: tendency for high autocorrelation in the samples.

I Thinning: practice of collecting every kth iteration to reduce
autocorrelation
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Some MCMC Terminology

I Convergence: initial drift in the samples towards a stationary
distribution

I Burn-in: samples at start of the chain that are discarded to
allow convergence

I Slow mixing: tendency for high autocorrelation in the samples.

I Thinning: practice of collecting every kth iteration to reduce
autocorrelation

I Trace plot: plot of sampled values of a parameter vs iteration
#
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Example - trace plot with poor mixing
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Markov chain Monte Carlo

Poor mixing Gibbs sampler

I Exhibits “snaking” behavior in trace plot with cyclic local
trends in the mean
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Poor mixing Gibbs sampler

I Exhibits “snaking” behavior in trace plot with cyclic local
trends in the mean

I Poor mixing in the Gibbs sampler caused by high posterior
correlation in the parameters
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Poor mixing Gibbs sampler

I Exhibits “snaking” behavior in trace plot with cyclic local
trends in the mean

I Poor mixing in the Gibbs sampler caused by high posterior
correlation in the parameters

I Decreases efficiency & many more samples need to be
collected to maintain low Monte Carlo error in posterior
summaries

David Dunson1, Amy Herring2 & Rich MacLehose1 Introduction to Bayesian Modeling of Epidemiologic Data



Outline
Illustrative example - Perchlorate & thyroid tumors

Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Poor mixing Gibbs sampler

I Exhibits “snaking” behavior in trace plot with cyclic local
trends in the mean

I Poor mixing in the Gibbs sampler caused by high posterior
correlation in the parameters

I Decreases efficiency & many more samples need to be
collected to maintain low Monte Carlo error in posterior
summaries

I For very poor mixing chain, may even need millions of
iterations.
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Poor mixing Gibbs sampler

I Exhibits “snaking” behavior in trace plot with cyclic local
trends in the mean

I Poor mixing in the Gibbs sampler caused by high posterior
correlation in the parameters

I Decreases efficiency & many more samples need to be
collected to maintain low Monte Carlo error in posterior
summaries

I For very poor mixing chain, may even need millions of
iterations.

I Routinely examine trace plots!
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

How to summarize results from the MCMC chain?

I Posterior mean: estimated by average of samples collected
after discarding burn-in
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

How to summarize results from the MCMC chain?

I Posterior mean: estimated by average of samples collected
after discarding burn-in

I Posterior mean provides alternative to maximum likelihood
estimate as a single summary.
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Markov chain Monte Carlo

How to summarize results from the MCMC chain?

I Posterior mean: estimated by average of samples collected
after discarding burn-in

I Posterior mean provides alternative to maximum likelihood
estimate as a single summary.

I As a Bayesian alternative to the confidence interval, one can
use a credible interval
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

How to summarize results from the MCMC chain?

I Posterior mean: estimated by average of samples collected
after discarding burn-in

I Posterior mean provides alternative to maximum likelihood
estimate as a single summary.

I As a Bayesian alternative to the confidence interval, one can
use a credible interval

I The 100(1 − α)% credible interval ranges from the α/2 to
1 − α/2 empirical percentiles of the collected samples
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

How to summarize results from the MCMC chain?

I Posterior mean: estimated by average of samples collected
after discarding burn-in

I Posterior mean provides alternative to maximum likelihood
estimate as a single summary.

I As a Bayesian alternative to the confidence interval, one can
use a credible interval

I The 100(1 − α)% credible interval ranges from the α/2 to
1 − α/2 empirical percentiles of the collected samples

I Credible intervals can be calculated for functionals (e.g., odds
ratios) by first applying the function to each MCMC sample
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Posterior probabilities

I Often interest focuses on the weight of evidence of H1 : θj > 0
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Posterior probabilities

I Often interest focuses on the weight of evidence of H1 : θj > 0

I The posterior probability of H1 can be calculated easily from
the MCMC output as simply the proportion of collected
samples having θj > 0.
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Posterior probabilities

I Often interest focuses on the weight of evidence of H1 : θj > 0

I The posterior probability of H1 can be calculated easily from
the MCMC output as simply the proportion of collected
samples having θj > 0.

I A high value (e.g., greater than 0.95) suggests strong
evidence in favor of H1
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Marginal posterior density estimation

I Summary statistics such as the mean, median, standard
deviation, etc provide an incomplete picture
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Marginal posterior density estimation

I Summary statistics such as the mean, median, standard
deviation, etc provide an incomplete picture

I Since we have many samples from the posterior, we can
accurately estimate the exact posterior density
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

Marginal posterior density estimation

I Summary statistics such as the mean, median, standard
deviation, etc provide an incomplete picture

I Since we have many samples from the posterior, we can
accurately estimate the exact posterior density

I This can be done using a kernel-smoothed density estimation
procedure applied to the samples
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

How to get started?

I It is not necessary to understand MCMC theory to implement
Bayesian analyses
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Markov chain Monte Carlo

How to get started?

I It is not necessary to understand MCMC theory to implement
Bayesian analyses

I WinBUGS is a general software package for implementing
MCMC in a very broad variety of models
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

How to get started?

I It is not necessary to understand MCMC theory to implement
Bayesian analyses

I WinBUGS is a general software package for implementing
MCMC in a very broad variety of models

I WinBUGS can accommodate hierarchical models, missing
data, spatial correlation, etc (Rich will illustrate)
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Introduction to Bayesian Statistics
Bayesian Logistic Regression

Markov chain Monte Carlo

How to get started?

I It is not necessary to understand MCMC theory to implement
Bayesian analyses

I WinBUGS is a general software package for implementing
MCMC in a very broad variety of models

I WinBUGS can accommodate hierarchical models, missing
data, spatial correlation, etc (Rich will illustrate)

I SAS also has several new Bayes Procs available (Amy will

illustrate)
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