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Abstract 
In second price internet auctions with a fixed end time, such as those on eBay, many bidders 
‘snipe’, i.e., they submit their bids in the closing minutes or seconds of an auction.  Late bids of 
this sort are much less frequent in auctions that are automatically extended if a bid is submitted 
very late, as in auctions conducted on Amazon.  We propose a model of second price internet 
auctions, in which very late bids have a positive probability of not being successfully submitted, 
and show that sniping in a fixed deadline auction can occur even at equilibrium in auctions with 
private values, as well as in auctions with uncertain, dependent values.  Sniping in fixed-deadline 
auctions also arises out of equilibrium, as a best reply to incremental bidding.  However, the 
strategic advantages of sniping are eliminated or severely attenuated in auctions that apply the 
automatic extension rule.  The strategic differences in the auction rules are reflected in the field 
data.  There is more sniping on eBay than on Amazon, and this difference grows with experience.  
We also study the incidence of multiple bidding, and its relation to late bidding. It appears that one 
substantial cause of late bidding is as a strategic response to incremental bidding.  (JEL C73, C90, 
D44) 
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I. Introduction 

Some of the most successful internet auction houses such as eBay and Amazon employ second 

price auctions, in which the high bidder wins the object being auctioned, but pays a price equal 

to a small increment above the second highest bid.  A bidder may submit a reservation price, and 

this (maximum) price is used to bid for him by proxy.  At any point in the auction the “current 

price” is a minimum increment above the second highest submitted reservation price.  Hence, the 

bidder with the highest reservation price submitted during the auction will win the auction and 

pay only the minimum increment above the second highest submitted reservation price.  One of 

two ending rules is generally applied.  Some auction houses such as eBay have a fixed end time 

(a “hard close”), while others, such as Amazon, which operate under otherwise similar rules, are 

automatically extended if necessary past the scheduled end time until some number of minutes 

(ten on Amazon) have passed without a bid (a “soft close”).  

Roth and Ockenfels (2002) noted that there is a great deal of very late bidding (called 

“sniping”) on eBay, and considerably less on Amazon.  In the present paper, we investigate this 

phenomenon more closely, theoretically and empirically.  We also investigate a distinct but, as 

we will argue, closely related phenomenon: many bidders submit multiple bids in the course of 

the auction, i.e., they submit and later raise the reservation price they authorize for proxy bidding 

on their behalf.   

A number of observers have expressed surprise and puzzlement at these patterns of late and 

multiple bidding in internet auctions that arise despite advice from auctioneers that bidders 

should simply submit their maximum willingness to pay, once, early in the auction.1  One source 

of the puzzlement at why the “single early bid” strategy is not predominant is the fact that in a 

second price sealed-bid private value auction, as first studied by Vickrey (1961), it is a dominant 

strategy for bidders to submit as their reservation price their maximum willingness to pay.  In 

                                                 
1 Landsburg (1999), for instance, describes his own multiple-bid and last-minute-bidding behavior and concludes: 
“Maybe eBay just makes me giddy.  As a free market aficionado, I am intoxicated by the prospect of one-stop 
shopping for houses, cars, Beanie Babies, and underwear, all at prices that adjust instantly to the demands of 
consumers around the globe.  Or maybe the behavior of eBayers can be explained only by subtler and more carefully 
tested theories that have not yet been devised.”  And eBay “encourage[s] all members to use the proxy bidding 
system that is in place to bid the absolute maximum they are willing to pay for an item right from the start and let 
the proxy bidding system work for them.” (http://webhelp.ebay.com/cgi-bin/eHNC/showdoc-
ebay.tcl?docid=88269&queryid=proxy_bidding).   
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this view, bidding less than one’s true value in

observed behavior might primarily be due to naïv

(see, e.g., Wilcox, 2000, for this view of eBay 

also conclude they are seeing irrational late bi

auction for artists’ renderings of cows). 

Sniping also involves a non-neglig

vary considerably due to erratic internet traffic or connection 

positive probability of being lost.  In a survey of

the last minute of an eBay auction, 63 replied th

started to make a bid, but the auction was cl

Ockenfels, 2002).  Human and artificial bidders do 

bidding service esnipe.com, which offers to au

seconds before the end of an eBay auction, acknowledges that it ca

are actually received on time by eBay (http://www.esnipe.com/faq.asp, 2000).   

The present paper will show that the incentives for late bidding are nevertheless quite robust 

in fixed-deadline auctions.  Not only is late bidding a best response when there are naïve, 

incremental bidders, but late bidding may be consistent with equilibrium, perfectly rational 

behavior both in auctions with private values, and auctions with uncertain, dependent values.  

However, we will also show that rational late bidding is sensitive to the rules of how the auction 

ends.  This will motivate the empirical part of the study. 

We analyze data collected from completed eBay and Amazon auctions.  Auctions conducted 

by Amazon differ from those conducted by eBay in that, if there is a bid in what would have 

been the last ten minutes of the auction, then the auction is automatically extended so that it does 

not end until ten minutes after the final bid.  This removes the strategic advantage of bidding at 

the last minute, so that the late-bidding strategies that are in equilibrium or a best response to 

naïve behavior on eBay will not be on Amazon.  The data on the timing of bids reflect this 

strategic difference in various ways.  Not only is there much more late bidding on eBay than on 

Amazon, but more experienced bidders on eBay submit late bids more often than do less 

experienced bidders, while the effect of experience on Amazon goes in the opposite direction.  

Further, while there is late bidding both by bidders who bid only once and by those who bid 
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ible risk.  Because the time it takes to place a bid may 

times, last-minute bids have a 
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multiple times, bidders who bid only once bid later, and are more experienced than bidders who 

bid multiple times. 

 

II. Last minute bidding in second price internet auctions with a fixed deadline 

II.1 A strategic model of the eBay bidding environment  

We consider here the standard eBay auction format, with a specified minimum opening bid but 

no (other) seller’s reservation price.2  We will construct a model with a multiplicity of equilibria, 

including equilibria with last-minute bidding, even when there is no uncertainty about own 

values and last minute bids run the risk of being lost.  For clarity, we first present the strategic 

structure of the auction, to which we will add the players’ valuations (private values or uncertain, 

dependent values) when we examine particular equilibria.  

The strategic model (the eBay game-form): 

• There are n bidders, },,1{ nN K= . 

• There is a minimum initial bid m (the seller’s reservation price), and a smallest increment s 

by which subsequent bids must be raised.  We assume for simplicity that s is constant.  (In 

fact, on eBay, the smallest increment increases as the price increases).  

• The “current price” (or “high bid”) in an auction with at least two bidders generally equals 

the minimum increment over the second highest submitted bidders’ reservation price.  There 

is one exception to this:  The price never exceeds the highest submitted reservation price; if 

the difference between the highest and the second highest submitted reservation price is 

smaller than the minimum increment, the current price equals the highest reservation price.     

                                                 
2 Sellers typically can choose to set not only a (public) minimum initial bid, but also an additional (secret) 
reservation price below which they will not sell.  We will concentrate here on auctions in which the seller’s 
reservation price is known, since bidding in an auction with an unknown reservation price presents additional 
strategic prospects.  In particular, auctions in which the high bid is less than the reserve price sometimes lead to 
post-sale negotiations.  Therefore, there is an incentive for an agent not to bid against himself if he is the current 
high bidder for fear of going over the reservation price and having to pay it in full.   
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• Each submitted reservation price must exceed both the current price and the corresponding 

bidder’s last submitted reservation price (i.e., a bidder cannot lower his own previous 

reservation price).3 

• The bid history lists the curren dder’s last submitted 

reservation price4 Nj along with the corresponding bidder ID ∈ .  The highest reservation 

price is not revealed. 

• A player can bid at any time }1{)1,0[ ∪∈t .  A player has time to react before the end of the 

auction to another player’s bid at time t’ < 1, but the reaction cannot be instantaneous, it must 

be strictly after time t’, at an earliest time tn, such that t’ < tn < 1.  For specificity, this earliest 

reaction time is the first tn > t’, chosen from a countably infinite subset {tn} of [0,1), such that 

the {tn} converge to 1.  The information sets of the game are such that if t is between tn-1 and 

tn ( tn-1 < t < tn), then the players know the bid histories up to tn-1.5  That is, in the early part of 

the bidding, bidders can make their behavior in that half-open interval contingent on other 

bids observed in the interval—they have time to react to one another.   

• If at some t more than one bidder submitted the highest reservation price, the bidder who 

submitted her bid first is the high bidder at a price equal to the reservation price.  If multiple 

                                                 
3 If the current high bidder submits a new, higher reservation price, the current price is not raised, although the 
number of bids is incremented.  The one exception is if the high bidder’s reservation price was less than the 
minimum increment above the second highest.  In this case, if the high bidder submits a new bid, it will raise the 
current price to the minimum increment above the second highest reservation price. 
4 After our first data set (see Section IV) was collected, eBay changed this rule.  Now eBay’s bid history for each 
auction includes all bids.  These changes gave us the opportunity to analyze the multiple bidding phenomenon in 
greater detail (see Section V), while at the same time they do not alter our theoretical conclusions.  Amazon 
continues to include only each bidder’s last bid.   
5 This allows us to be sure that the path of play will be well defined for any strategy, and avoid the potential problem 
with continuous time models of having the path of play undefined, as when each player’s strategy calls for him to 
react to the other players ‘immediately.’  A referee noted that one could also start from the outset with a countable 
number of decision times, like {1 − 1/n|n = 1,2, …}∪  {1}, without any damage to our theoretical results.  We 
prefer, however, the continuous time model as a somewhat more natural description of eBay.  Also, in all following 
analyses we restrict ourselves to equilibria in undominated strategies.  Because newly submitted reservation prices 
must rise at least by the minimum increment and because submitted reservation prices above value are dominated, 
this implies that the number of reservation prices submitted by each bidder is finite.  However, the model must 
specify whether bidders are allowed to submit an infinite number of reservation prices, and if so how the outcome of 
the game is determined.  There is an implicit rule on eBay (and similarly also on Amazon) that takes care of this 
problem: eBay’s interface does not allow submitting reservation prices above $9,999,999,999.99.  This maximum 
bid size effectively limits the number of bids that can potentially be placed, and at the same time does not affect our 
theoretical results if we assume that the maximum value is below this maximum bid size. 

t price and the submission time of each bi
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bids are submitted simultaneously at the same instant t, then they are randomly ordered, and 

each has equal probability of being received first. 

• At t = 1, everyone knows the bid history prior to t, and has time to make exactly one more 

bid, without knowing what other last minute bids are being placed simultaneously.   

• Bids submitted before time t = 1 are successfully transmitted with certainty.   

• At time t = 1, the probability that a bid is successfully transmitted is p < 1.  The probability p 

is assumed to be exogenous, i.e., not influenced by the bidding in a given auction.6 

 

II.2 Some theoretical observations about eBay auctions with private values 

In this section we assume that each bidder j has a true willingness to pay, jv , distributed 

according to some known, bounded distribution.  A bidder who wins the auction at price h earns 

hv j − , a bidder who does not win earns 0.  At t = 0 each player j knows her own jv .7  At every 

}1{)1,0( ∪∈t , each player knows also the bid histories for all tn < t.  

Unlike the standard case of second price sealed bid auctions (as analyzed by Vickrey, 1961), 

there are generally no dominant strategies in the dynamic eBay environment.   

 

Theorem [No dominant strategies]. A bidder in the second price eBay-model auction with 

private values does not have any dominant strategies (so long as his value is greater than 

m + s). 

 

Proof.  Let n = 2 (if n > 2 assume that all additional bidders do not bid at any time).  It is 

sufficient to show that there is no strategy for bidder j who has value vj > m + s that is a best 

reply to every strategy of the other bidder, i.   

                                                 
6 It is obviously an approximation both to take a discontinuous drop from p = 1 to p < 1, and to model the “last 
minute” as a single point in time.  Here we sacrifice strict realism for simplicity and clarity.  Also, major server 
attacks may affect eBay’s server speed and thus the probability p.  However, since according to eBay (see 
http://www.forbes.com/asap/2000/1127/134_2.html) there are on average about 1,200 bids per minute submitted to 
eBay, ‘regular’ bidding in any given auction can hardly have a measurable effect on the performance of eBay’s 
server.  
7 Values may be independent (as in the standard private value auction environment) or dependent, but unlike the 
standard common value case bidders are assumed to know their values so that the maximum willingness to pay is 
not changed by information conveyed by others’ bids. 
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Suppose first that i's strategy is to bid the minimum bid m at t = 0 and then not to bid further 

at any information set at which he remains the high bidder, but to bid B (with B > vj + s) 

whenever he learns that he is not the high bidder.  Against this strategy, j’s best reply is not to 

bid at any time t < 1, and to bid vj at time t = 1.  The payoff to j from this strategy is p(vj – m – s) 

> 0, and it is easy to see that no other bid at time t = 1 could yield j a larger payoff.     

But now suppose instead that player i’s strategy is not to bid at any time.  Then a strategy for 

player j that calls for bidding only at t = 1 will give j the expected payoff p(vj  – m) < vj – m,  

which is the payoff j could achieve from the strategy of bidding vj at t = 0 (or at any t < 1).  

Hence no best reply to the strategy for player i considered in this paragraph, is among player j’s 

best replies to i's strategy in the previous paragraph, and hence j does not have a dominant 

strategy. This completes the proof of the theorem. 

 

Since the main driver of the above result is the dynamic aspect of the eBay game, one might 

wonder if in the truncated eBay-game that starts at t = 1 bidding one’s true value is always a 

(weakly) dominant strategy because, as in Vickrey’s sealed bid auction, at t = 1 the auction is 

over after bidders simultaneously submit their bids.  Due to the minimum bid increment, 

however, this is not the case.  Assume for instance that bidder i plans to bid some bi < vj – s in 

the truncated game.  In this situation bidder j would have to pay a price of bi + s if he bids his 

value and none of the bids is lost.  But by bidding an amount slightly above bi (and below bi + s) 

he could avoid paying the entire minimum increment because the rules determine that the price 

can never exceed the highest submitted reservation price.  Thus, bidder j wants to condition his 

bid on bidder i’s bid, implying that no dominant strategy exists in the truncated game that only 

starts at t = 1.8   

 

                                                 
8 Several remarks are in order.  First, technically, if money is modeled continuously a best reply does not exist 
because bidder j wants to beat the highest bid by as small a margin as possible.  Second, the truncated game will not 
in general be a game in standard extensive form, since the information sets at t = 1 are not singletons when players 
do not know each other’s values (but the initial distribution over values can be applied to make it a standard game).  
Finally, note that since a winner can never advantageously affect the price in case of winning by bidding higher than 
his value, and since a winner can never push the price down by more than one increment by underbidding, bidding 
one’s true value may be called an “s-dominant strategy” of the game starting at t = 1.  That is, bidding one’s true 
value is a strategy that always yields a payoff not more than the minimum increment s below the supremum 
achievable by any other strategy, regardless of the strategies chosen by the other bidders.   
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The theorem demonstrates that the eBay second price auction is very different from the 

textbook case of a sealed bid second price auction at which every player has a dominant strategy 

of bidding his maximum willingness to pay.  Thus, the standard conclusions drawn from the 

analysis of second price auctions cannot be immediately applied to eBay bidding.  In particular, 

since there are no dominant strategies in the eBay environment it is not surprising that bidding 

late may be a best response to all kinds of bidding behaviors.  When we turn to the data 

(especially Section V), we will see that there is a good deal of incremental bidding.  While the 

particulars of incremental bidding may vary, let us, for specificity, define incremental bidding as 

the strategy that calls for a bidder to bid m at t = 0 and then, whenever he is not the high bidder at 

some t < 1, to bid in minimum increments at some t < 1 until he (re)gains the high bidder status 

or until he reaches his value, whichever comes first.9  The following theorem shows that late 

bidding may be a best response to this kind of incremental bidding.  

 

Theorem [Best response to incremental bidding on eBay]. Bidding at t = 1 can be a best reply 

to incremental bidding. 

 

Sketch of proof.  For simplicity, consider the case in which bidders’ values are common 

knowledge. Suppose there are two bidders, one rational bidder j with value vj > m + s, and one 

incremental bidder i with value vi > m + s.  Facing an incremental bidder, j faces a tradeoff.  

Bidding early makes sure that the bid is received, but induces a bidding war that raises the price.  

Bidding late gives the incremental bidder no time to push up the price (because he does not learn 

that he is no longer the high bidder until the game is over) but runs the risk that the bid and thus 

the auction is lost.  However, whenever vi > vj + s bidder j’s best reply is to bid vj at t = 1 (other 

bids at t = 1 also qualify as best replies) and not to bid early, yielding j a payoff of vj – (m + s) 

with probability p.  Any bid b ≤  vj by j at some t < 1 would be subsequently outbid by i at some 

t’ with t < t’ < 1 (and any strategy that calls for bidder j to bid above value at t is dominated by 

the otherwise identical strategy in which j bids at most his value at t), and at the same time would 

                                                 
9 Reasons for incremental bidding include mistaken analogy with English first-price auction bidding (the data 
analyzed in Section V reveals that incremental bidders are relatively inexperienced), and psychological reasons that 
might cause a bidder to increase his maximum bid in the course of an auction because his maximum willingness to 
pay is increasing over time (see, e.g., Malhotra and Murnighan, 2002).   
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raise the best price that is achievable at t = 1 above m + s.  (Whether late bidding is a best 

response or not in situations in which the rational bidder j’s value is above the incremental bidder 

i’s value will depend on the distribution from which values are drawn and on the parameters p, m 

and s.)   

 

Even though much late bidding appears to be a strategic reaction to (non-equilibrium) 

incremental bidding,10 it is still of interest to know if late bidding can constitute equilibrium 

behavior despite the risk involved in late bidding.  The next theorem shows that this is the case.  

This suggests that, even if bidders initially learn to bid late in response to unsophisticated 

behavior of others, late bidding gain experience.  The intuition 

behind last-minute bidding at equilibrium es will be that there is an 

incentive not to bid too me for other bidders to react, to avoid a bidding 

war that will raise the expected final transaction price.  And mutual delay until the last minute 

can raise the expected profit of all bidders, because of the positive probability that another 

bidder’s last-minute bid will not be successfully transmitted.  Thus at such an equilibrium, 

expected bidder profits will be higher (and seller revenue lower) than at the equilibrium at which 

everyone bids true values early.   

Theorem [An example of equilibrium sniping in eBay auctions with private values]. There 

can exist perfect Bayesian equilibria in which bidders do not bid early, at some t < 1, but only 

bid at the last moment, t = 1, at which time there is only probability p < 1 that the bid will be 

transmitted.   

Proof.  Consider the case of two bidders, N = {1,2}.  For simplicity we assume that both bidders 

have the same value H (i.e. that values are drawn from the degenerate distribution with all its 

mass at H), with H > m + 2s.11  Clearly, in such a situation, many equilibria exist.  In particular, 

                                                 
10 See Section V for field evidence, Ariely et al. (2002) for experimental evidence, and Ockenfels and Roth (2002) 
for anecdotal evidence.  Of course, late bidding may also be a best response to other incremental bidding (or 'price 
war') behaviors, including that of a dishonest seller who attempts to raise the price by using “shill bidders” to bid 
against a proxy bidder.   
11 This assumption is sufficient but not necessary for making sniping an equilibrium strategy in our model; see the 
discussion at the end of this section. 

 high when there is still ti

may persist even as all bidders 

 in auctions with private valu
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the “single early bid” strategy recommended by eBay corresponds to a set of equilibria in our 

environment.  That is, strategies that call for submitting one’s value at some t < 1 (and bidding 

only once) are best responses to each other.  In these equilibria, however, both bidders will earn 

zero.  We will demonstrate that mutual sniping, and not bidding early, may constitute a perfect 

Bayesian Nash equilibrium (in fact, subgame perfect, since the distribution of values is 

degenerate) that gives the bidders positive profits from late bidding whenever the probability p 

that a bid at t = 1 is transmitted successfully is less than 1 and bigger than 0. 

Consider the following bidding strategies, which we will show constitute an equilibrium for 

any probability p > 0 of a successfully transmitted bid at t = 1.  On the equilibrium path, each 

bidder i’s strategy is not to bid at any time t < 1, and to bid H at time t = 1, unless the other 

bidder deviates from this strategy.  Off the equilibrium path, if player j places a bid at some 

 t’ < 1, then player i bids H at some t > t’ such that t < 1.  That is, each player’s strategy is to do 

nothing until t = 1, unless the other bidder makes an early bid, that would start a price war at 

which the equilibrium calls for a player to respond by promptly bidding his true value.  The 

threat of a price war is credible, because, as mentioned above, bidding values early also 

constitutes an equilibrium.  In equilibrium, a bidder earns H – m if his bid at t = 1 is successfully 

transmitted and the other bidder's bid is lost, which happens with probability p(1 – p).  

Otherwise, and whenever the bidder deviates from his equilibrium strategy by bidding at some t 

< 1, his payoff is zero, regardless of whether bids at t = 1 are lost or not.  In the subgame starting 

at t = 1, and given that no bids were registered at t < 1, mutually bidding true values is a Nash 

equilibrium. me perfect equilibrium 

(and thus a perfect Bayesian equ

 

The proof shows that even at equilibrium in auctions with private values, bidders may have 

strategic reasons to refrain from bidding as long as there is time for others to react, since 

otherwise they can cause a bidding war that raises the expected transaction price.  In the proof 

we took the values of the bidders to be identical, but this is not essential.  It does let the proof 

proceed without attention to the parameters of the problem.  When bidders have non-identical 

values, late bidding at a perfect Bayesian equilibrium as in the example above is sensitive to the 

distribution of values, to the probability p, and to the number of bidders, all of which also affect 

ilibrium). 

  This proves that the indicated strategies constitute a subga
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the expected profits at both early and late bidding equilibria (for a numerical example see Ariely 

et al., 2002).  At the same time it is clear, however, that the theorem only shows that some things 

can happen in equilibrium, by way of example.  We do not attempt to characterize the set of all 

possible Bayesian equilibria in this paper.  Finally, because sniping involves the risk that bids are 

lost, both revenue and efficiency are affected.  For instance, in the case of two bidders, identical 

values, and no multiple bidding in equilibrium considered above, an inefficient allocation results 

if all bids are lost (with probability (1 – p)2), and the expected revenue is smaller than in a second 

price auction in which all bids are accepted with probability 1 if one or both bids at t = 1 are lost 

(with probability 1 – p2).  

II.3 An example of eBay auctions with uncertain, dependent values 

The simplest models of auctions with uncertain, dependent values treat the bidders as more or 

less symmetric, except for their private signals about the value, and sometimes for a private 

value component.  Bidders can use the bids of the other bidders to update their information about 

the value of the good.  In an English auction conducted so that bidders have to stay in the auction 

to remain active and can be observed to drop out, the dropout times of other bidders are 

informative.  In an eBay auction, however, it cannot be observed if a bidder has dropped out; he 

might bid again, or for the first time, at t = 1.  Bajari and Hortaçsu (forthcoming), for example, 

develop a common value model in which all bidders bid at t = 1, to avoid giving other bidders 

information.  (In their model there is no cost to bidding at t = 1, however, since bids are 

transmitted with certainty.)   

In general, late bids motivated by information about values arise either so that bidders can 

incorporate into their bids the information they have gathered from the earlier bids of others, or 

so bidders can avoid giving information to others through their own early bids.  In eBay auctions, 

a sharp form of this latter cause of late bidding may arise when there is asymmetric information, 

and some players are better informed than others.  The following example illustrates this kind of 

equilibrium late bidding.  It is motivated by auctions of antiques, in which there may be bidders 
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who are dealers/experts who are better able to identify high value antiques, but who do not 

themselves have the highest willingness to pay for these once they are identified.12   

In our simple “dealer/expert model”, the bidding structure is the same as above, with the 

seller’s reservation price represented by the minimum allowable initial bid, m > 0.  The object for 

sale has one of two conditions, “Fake,” with probability pF, or “Genuine,” with probability pG = 

1 – pF.  There are n = 2 (representative) bidders.  The first, U, is uninformed but discerning, and 

values Genuines more highly than Fakes (vU(F) = 0 < vU(G) = H), but cannot distinguish them, 

i.e. cannot tell whether the state of the world is F or G.  The second, I, is informed (e.g. an expert 

dealer), with perfect knowledge of the state of the world, and values vI(F) = 0 and vI(G) = H – c, 

with 0 < m < H – c + s < H.  Then the dependent value aspect of this auction arises from the 

concern of the bidders with whether the object is Genuine.  The strategic problem facing the 

informed bidder is that if the object is Genuine and he reveals this by bidding at any time t < 1, 

then the uninformed bidder has an incentive to outbid him.  But the strategic problem facing the 

uninformed buyer is that, if he bids H without knowing if the object is Genuine, he may find 

himself losing money by paying m > 0 for a Fake. 

 

Theorem [An example of equilibrium sniping in eBay auctions with uncertain, dependent 

values]. When the probability that the object is Fake is sufficiently high, there is a perfect 

Bayesian equilibrium in undominated strategies in this “dealer/expert model,” in which the 

uninformed bidder U does not bid, and the informed bidder bids only if the object is Genuine, 

in which case he bids vI(G) = H – c at t = 1.  If the informed player deviates and makes a 

positive bid at any t < 1, then the uninformed bidder bids H at some t’ such that t < t’ < 1. 

 

Sketch of the proof. Any strategy that calls for the informed player to place a positive bid when 

the object is Fake is dominated by the strategy of placing no bid.  Therefore, if the informed 

                                                 
12 Some experienced antiques bidders in the survey by Roth and Ockenfels (2002) stated that they snipe to avoid 
information revelation.  Of course, a bidder could also hide his identity behind different user names.  In fact, eBay 
concedes that "Many of our users have determined that it is useful to have multiple user IDs for their businesses." 
(http://www.auctionwatch.com/awdaily/tipsandtactics/buy-multiple.html).  Since, on the other hand, changing 
identities comes at the cost of spreading the reputation across different identities, and maintaining different email 
addresses and credit cards, it is likely that identities are not always changed when information asymmetries would 
dictate so.  Our evidence in Section IV supports this conjecture. 
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player ever makes a positive bid at some t < 1, the uninformed player can conclude that the 

object is genuine and has sufficient time to subsequently submit H at some t’ such that t < t’ < 1.  

As a consequence, in our equilibrium, the informed bidder never bids before t = 1.  However, so 

long as the conditional expected value of the object, conditional on winning, is negative it never 

pays for the uninformed bidder to bid if the informed bidder has not already bid, since in this 

case the expected loss from winning a Fake and paying m is larger than the expected gain from 

winning a Genuine and paying m.  Formally, given that the informed bidder does not bid before t 

= 1, the uninformed bidder will not submit a bid if 

FG

FG

ppp
mpmHpp

+−
−−−

)1(
))(1(  < 0, 

or equivalently if pF/pG > (1 − p)(H – m)/m.    Thus, if pF is sufficiently large, no player will bid 

at t < 1, so that for the informed bidder bidding true value at t = 1 is part of a perfect Bayesian 

equilibrium strategy when 

 

This shows that, in an med bidder has an incentive 

to not make a high bid on a genuine item until the last minute.  This incentive to snipe is robust 

with respect to the probability p (with 0 < p < 1) that a last-minute bid is transmitted 

successfully, because the informed bidder cannot win by bidding early regardless of the value of 

p.  Also, the condition on pF/pG is sufficient but not necessary for the informed bidder to snipe in 

equilibrium.  Even if it is profitable for the uninformed bidder to bid early, i.e. if  

 pF/pG < (1 − p)(H – m)/m, or if m = 0 there can exist equilibria in which the uninformed bidder 

bids his (positive) conditional expected value early, at some t < 1, and the informed bidder, as 

before, bids only once, at t = 1, if the object is genuine.13  However, because there are many 

ways in which values can be dependent (as opposed to the “pure” or “mineral rights” model of 

common values), we do not seek here to develop a general model of dependent values.  We 

simply re-emphasize that the demonstration in the previous section, that late bidding can occur at 

                                                 
13 If we allow weakly dominated strategies, there are furthermore equilibria at which the informed bidder bids, say, 
$1,000,000 + H at t = 0 when the object is genuine, and gets the object for m.  Finally, we have treated here the case 
of a single auction.  It is not a dominated strategy for a dealer bidding in many auctions to sometimes bid above his 
value. 

the object is Genuine.   

 eBay type auction, an (identifiable) infor
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equilibrium in auctions with private values, does not imply that late bidding is itself evidence of 

private values, any more than it is evidence of common values. 

Note in particular that the “expertise effect” modeled here that causes experts to bid late can 

be additive with the “avoiding price war effect” already noted in the case with private values.  

That is, experts could bid late to avoid alerting non-experts of the value of the object, at the same 

time as they and other bidders bid late to avoid setting off price wars.  Section IV will show that 

there is more late bidding in eBay-Antiques than in eBay-Computers.  Since these categories 

might reasonably be expected to have a different scope for expert information, the expertise 

effect appears to be reflected in the timing of bids. 

But first, we will use these simple examples to demonstrate how different the strategic 

incentives can be under the rules by which auctions are conducted on Amazon. 

 

III. A simple model of bidding in internet auctions with the automatic extension rule 

Based on the results in the last section, we now demonstrate by example that the value of sniping 

in auctions with a hard close may be eliminated in auctions with a soft close such as Amazon’s 

automatic extension rule.14  We caution from the start that our examples in this section do not 

imply that there is no combination of independent or dependent value distributions and 

parameter values such that late bidding may occur as a best response on Amazon.  What we 

show, however, is how the automatic extension rule makes late bidding more difficult to achieve 

at equilibrium, and in particular how it rules out the sniping equilibria in those situations, 

identified in Section II, in which late bidding is particularly beneficial on eBay.15   

 

III.1 A strategic model of the Amazon bidding environment  

The rules of the auctions on Amazon are like those on eBay except for having a ‘soft close’ (as 

explained in the introduction) rather than a ‘hard close’.  So, our model of Amazon will be like 

our eBay model except for the ending rule and, therefore, the times at which bids can be 

                                                 
14 The fact that different closing rules create different opportunities for timely bidding has also been observed in the 
design of the simultaneous ascending first-price auctions for the sale of radio spectrum licenses in the United States. 
See Milgrom (2003) for some related discussion of the activity rules employed to prevent sniping there. 
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submitted, since Amazon auctions can potentially have arbitrarily many extensions.  The 

strategic significance of Amazon’s automatic extension rule is that there is no time at which a 

bidder can submit a bid to which others will not have an opportunity to respond. 

• The times t at which a bid can potentially be made are:16   

KK ∪∪−∪∪∪∪∪ }{),1(}2{)2,1(}1{)1,0[ nnn  

As in the eBay model presented earlier, a bidder may submit only finitely many bids (see 

footnote 5), and may react to a bid at time t only strictly later than t, i.e., the information sets 

in each interval are as in the eBay model. 

• The auction extends past any time {n} only if at least one bid is successfully transmitted at 

time t = n, and ends at the first n at which no bid is successfully transmitted. 

• Bids submitted before time t = 1, and in any open interval (n – 1, n), are successfully 

transmitted with certainty. 

• Bids submitted at any t = n for n = 1,2, …, are successfully transmitted with p < 1.17 

 

III.2 Auctions with private values on Amazon 

First we emphasize that in the Amazon auction also, bidders have no dominant strategies.  This is 

a simple corollary of the proof of the same result for the eBay model; the only change needed in 

the proof is to specify that the strategies considered for the other bidder have him make no bids 

at t > 1.  Unlike in eBay auctions, however, late bidding (that is, bidding at t = 1) cannot help 

against incremental bidding (as defined in Section II.2) on Amazon.  The reason is that 

                                                                                                                                                             
15 Because there are no dominant strategies in either our eBay or Amazon models, more general conclusions would 
have to specify how behavior depends on the distribution from which values are drawn and the auction parameters, 
and this appears potentially quite difficult. 
16 We model the auction extensions as beginning with open intervals, in order to more cleanly reflect the way 
Amazon extensions work.  However, since we will prove a theorem of the form “no equilibrium exists such that…” 
it is worth noting that the proof would go through even if we began an auction interval with a semi-closed interval of 
the form [n – 1, n).  That is, the lack of equilibria at which auctions are extended is not an artifact of the fact that 
there is no earliest possible bid in an extension of the auction. 
17 A more realistic model would have auctions extended incrementally further whenever a bid was placed during an 
extension period, and it would not take the times t = 1,2,…, n, … be both the times in which extensions will be 
initiated and the times at which bids cannot be transmitted with certainty.  We introduce the simpler assumptions 
here for clarity and simplicity; our results do not depend on these assumptions. 
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incremental bidders in Amazon auctions, who are prepared to continually raise their bids to 

maintain their status as high bidder, can be provoked to respond whenever a bid is successfully 

placed.  In particular, incremental bidders also have time to respond to a bid that is successfully 

submitted at t = 1, so the gains from sniping against incremental bidding vanish on Amazon.  But 

since bids at t = 1 run the risk of being lost (with probability 1 – p) the costs of sniping persist.  

Moreover, the following theorem indicates that, unlike in eBay style auctions with a hard 

close, implicit collusion by means of ‘stochastic selection’ of bids at t = 1 cannot easily be 

achieved among rational bidders on Amazon.  For the theorem we assume, analogously to the 

proof of the corresponding eBay theorem, that all bidders have the same value H (with H > m + 

2s, drawn from a known degenerate distribution with all its mass at H) because in this case early 

bidding wars yield zero profits for all bidders, winner and losers, so that the incentive for 

collusive behavior is particularly strong.  We also assume here a “willingness to bid” in the case 

of indifference: A bidder who earns 0 prefers to do it by bidding jv , and winning the auction and 

earning jv – jv = 0, rather than by losing the auction.  (Note that while this assumption was not 

needed for the other results in this paper, it would not have altered them.)18   

 

Theorem [No sniping on Amaz  In any perfect 

Bayesian equilibrium in undom es of our Amazon auction with identical 

private values, the auction is not extended (no bid comes in at t = 1). 

 

Sketch of proof.  At a perfect Bayesian equilibrium (in fact, subgame perfect, since the 

distribution of values is degenerate) in undominated strategies: 

1. No bidder ever bids above his value: Any strategy that calls for bidder j to bid above H at any 

time t is dominated by the otherwise identical strategy in which j bids at most H at time t. 

2. There is a number n* such that the auction must end by stage *}{*),1*( nnn ∪− , since 

submitted reservation prices must rise by at least s with each new submission, and (from the 

                                                 
18 This is a very weak assumption on preferences, since it only comes into play when bidders are indifferent.  But 
since we need this weak assumption, this is a good point to warn against over-interpreting the theorem.  Different 
reasonable assumptions (e.g., allowing imperfect equilibria) can yield somewhat different conclusions.   

inated strategi

on: an example with identical private values].
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previous paragraph) no bidder will ever submit a reservation price greater than H.  If the 

auction gets to this last possible stage, there is only room for the price to rise by no more than 

2s.  

3. If the auction gets to stage *}{*),1*( nnn ∪−  with the current price no higher than H – s, the 

price will rise to H at some t < n*, i.e. at a time when p = 1.  To see why, assume first that the 

price when entering the final stage is smaller than H – s.  Since each bidder wants to submit a 

(final) bid that is just marginally above the highest bid of the competitors but does not exceed 

H (see Section II.2), the incentive structure in this case resembles a simple Bertrand game.  

So, analogously to the Bertrand market analysis, in equilibrium of the subgame starting at t = 

n* – 1 at least two bidders will bid H.  As a consequence equilibrium payoffs will be zero, 

regardless of whether one wins or loses the auction.  Now suppose the price when entering 

the final stage equals H – s.  Then the willingness-to-bid assumption comes into play that 

states that bidders prefer to receive zero payoffs by winning the auction than by losing the 

auction. In equilibrium, a bidder who is not the current high bidder entering the final stage 

can only win if he bids H in this stage, so that in this case all bidders bid their values yielding 

zero profits for all bidders.  Since any strategy profile that caused a player to bid at t = n* 

would have a lower expected payoff, because p < 1, than a strategy at which he bid earlier, 

when p = 1, all bids in the final stage are submitted at t < n*.  Thus, if the auction reaches the 

stage *}{*),1*( nnn ∪−  all bidders receive zero payoffs with probability 1.  

4. Inductive step.  Suppose at some stage }{),1( nnn ∪− , it is known that at the next stage a 

price war yields zero payoffs for all bidders.  Then all bidders will bid before t = n.  (Since a 

price war will result if the auction is extended by a successful bid at t = n, any strategy profile 

that calls for a bidder to bid at t = n is not part of an equilibrium, since that bidder gets the 

same or a higher expected return by bidding at t < n, and, by the willing bidder assumption, 

prefers to bid.) 

5. The auction ends in the first stage: all bidders bid their true value before t = 1.   
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Strictly speaking we can conclude all bids are at t = 0, but taking this conclusion too literally 

runs the risk of over interpreting the model.  Recall that we assume that one of the bids made at t 

= 0 will be randomly selected to be the first bid received; a sensible way to interpret this is that at 

the equilibrium bidders bid when they first notice the auction, and this is at a random time after 

the auction opens. 

III.3 Auctions with dependent values on Amazon 

As already noted, there are many ways in which bidders can have dependent values, in the sense 

that one bidder’s information conveys information to other bidders about the value to them of the 

object being auctioned.  Some of these could well lead to equilibria in which there is late bidding 

in Amazon style auctions.  However, as before in the case with private values, we will show here 

that some kinds of late bidding that occur at equilibrium on eBay will not occur at Amazon 

equilibria.  For this purpose, we concentrate on the “expert/dealer” model described earlier. 

 

Theorem [An example of auctions with dependent values on Amazon]. In the “expert/dealer 

model” (for the one-time auction of a single item), at a perfect Bayesian equilibrium in 

undomi uses the automatic extension 

rule. 

 

Sketch of proof. The dealer values Fakes at 0, and values Genuines less than the uninformed 

bidder.  If the object is Fake, no dealer buys it, since a strategy at which the dealer bids a positive 

amount for a Fake is dominated by an otherwise identical strategy at which he does not.  So if a 

dealer bids at some time t, he reveals the object is Genuine, and at equilibrium is subsequently 

outbid with p = 1 by the uninformed bidder. 

 

The theorem shows the sense in which Amazon’s automatic extension rule robs experts of the 

ability to fully utilize their expertise without having it exploited by other bidders, by preventing 

them from sniping high quality objects at the last moment.  The next section will show that 

significantly more late bidding is found in antiques auctions than in computer auctions on eBay, 

but not on Amazon.  This suggests that bidding behavior responds to the strategic incentives 

nated strategies, the dealer never wins an auction that 
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created by the possession of information, in a way that interacts with the rules of the auction as 

suggested by our models. 

 

IV. Late bidding on eBay and Amazon 

IV.1 Data description 

In this section we analyze bidding history data of completed Amazon and eBay auctions.19  We 

downloaded data from both auction houses in two categories, “Computers” and “Antiques.”  In 

the category Computers, information about the retail price of most items is in general easily 

available, in particular, because most items are new.  The difference between the retail price and 

each bidder’s willingness to pay, however, is private information.  In the category Antiques, 

retail prices are usually not available and the value of an item is often ambiguous and sometimes 

require experts to appraise.  As a consequence, the bids of others are likely to carry information 

about the item’s value, allowing the possibility that experts may wish to conceal their 

information, as discussed earlier.  As we will see, our data support this conjecture.  In total, the 

data set consists of 480 auctions, 120 for each auction house-category combination, with in total 

2279 bidders (740 bidders in eBay-Computers, 595 bidders in Amazon-Computers, 604 bidders 

in eBay-Antiques, and 340 bidders in Amazon-Antiques).   

For each eBay-bidder we recorded how many seconds before the fixed deadline the last bid 

was submitted.  (If the bid came in before the last 12 hours of the auction, we just count this bid 

as ‘early’).  Due to Amazon’s soft close, bids within the last 10 minutes with respect to the actual 

deadline are not possible on Amazon.  So, in order to make the timing of bids across auction 

houses comparable, we computed for each last bid on Amazon the number of seconds before a 

                                                 
19 The data are publicly provided by the auction houses.  A description of some aspects of the data analyzed in this 
section appeared in Roth and Ockenfels (2002), but the analyses presented here are new, as is the dataset analyzed in 
Section V.  The data set consists of randomly selected auctions completed between October 1999 and January 2000.  
Auctions were only includ h a hidden reserve price were 
only considered if the reserve price was met.  “Dutch ns”, in which bidders compete for multiple quantities of 
a single item under different bidding rules than described above, and “Private Auctions”, in which the identities and 
feedback numbers of individual bidder ed, were also excluded.  Amazon offers two more auction 
options: “10% off 1st bidder”-auctions, in e first bidder locks in a 10% discount from the seller in case of 
winning, and “Take-it-price”-auctions, in qual to a seller-defined take-it-price immediately halts the 
auction and is accepted.  (eBay’s “Buy-it-now”-option was only introduced after our data were collected.)  10%-off-
1st-bidder-auctions change the incentives for the timing of bidding and were therefore excluded.  Take-it-price 
auctions were only included if the Take-it-price was not met so that the auction ended at the initially posted deadline 
or, if extended, later.   
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‘hypothetical’ deadline.  This hypothetical deadline is defined as the current actual deadline at 

the time of bidding under the assumption that the bid in hand and all subsequent bids were not 

submitted.  Suppose, for example, one bid comes in 2 minutes before the initial closing time and 

another bidder bids 6 minutes later.  Then, the auction is extended by 14 minutes.  The first bid 

therefore is submitted 16 minutes and the second bid 10 minutes before the actual auction close.  

The bids show up in our data, however, as 120 and 240 seconds (before the hypothetical 

deadline), respectively.20   

We also collected information about each bidder’s feedback number.  On eBay, buyers and 

sellers have the opportunity to give each other a positive feedback (+1), a neutral feedback (0), or 

a negative feedback (– 1).  The cumulative total of positive and negative feedbacks is what we 

call the “feedback number” on eBay.  Amazon provides a related though slightly different 

reputation mechanism.  Buyers and sellers are allowed to post 1-5 star ratings about one another.  

We refer to the cumulative number of ratings as the “feedback number” on Amazon.  In both 

auction houses the feedback numbers reflect the number of transactions a bidder participated in, 

and thus the corresponding bidders’ experiences with the auction platforms.21  The measure is 

not perfect, though, because feedback is not always given.  Also, in principle, the sum of positive 

and negative feedbacks could cancel out, but in fact negative feedback is extremely rare.  

Resnick and Zeckhauser (2002) found in a large eBay data set that feedback is provided more 

than half the time, and less than one percent of all feedbacks given on eBay are negative. (In our 

eBay sample no bidder −but two sellers− have a negative feedback number.)  We therefore think 

that it is safe to conclude that feedback numbers can serve as rough approximations for 

experience.   

                                                 
20 Since we only observe the timing of last bids, this calculation implicitly assumes that there is no individual 
multiple bidding later than 10 minutes before the initial deadline.  Late multiple bidding, however, would only 
strengthen our comparative results of late bidding on Amazon and eBay, because this would imply that the actual 
hypothetical deadline, when the last bid is submitted, is later than our computed hypothetical deadline, so that late 
multiple bidding would lead us to overestimate the extent of late bidding on Amazon. 
21 Of course, the feedback numbers’ primary task is to measure the trustworthiness of the market participants (see, 
e.g., Bolton et al., forthcoming).   
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IV.2 Number of bidders per auction and feedback numbers  

Different auction categories attract different numbers of bidders with different feedback 

numbers.  Figure 1 shows the cumulative distributions of numbers of bidders across auction 

houses and categories in our sample.  While most auctions had only two bidders (the minimum 

number that we allowed in our sample), three auctions attracted more than 14 bidders.  The most 

popular item in our data is a Laptop auctioned on eBay with 22 bidders.  The figure illustrates 

that eBay attracts more bidders than Amazon (two-sided 2χ -test, p = 0.000) and that within each 

auction house Computers attract more bidders than Antiques (p = 0.090 for eBay and p = 0.000 

for Amazon).   
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Figure 1. Cumulative distributions of numbers of bidders per auction 

 

There is a great deal of heterogeneity with respect to bidders’ feedback numbers in our data.  

While one third of the bidders have a feedback number of zero, the maximum number is 1162.  

Figure 2 shows the distributions of Amazon- and eBay-feedback numbers within categories.  It 

illustrates that the numbers are in general higher on eBay than on Amazon (two-sided 2χ -tests 

based on the categorized feedback numbers as shown in Figure 2 yield p = 0.000 for both, 

computers and antiques separately).  Furthermore, antiques-bidders have higher feedback 

numbers than computers-bidders within each auction house (p = 0.000 for both, eBay and 

Amazon separately).   
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Figure 2. Distributions of feedback numbers 

IV.3 Regression analyses 

Table 1 shows that a considerable share of the last bids of all bidders is submitted in the very last 

hour of the auctions (that usually run for several days.)  However, late bidding is substantially 

more prevalent on eBay than on Amazon.  The table reveals, for instance, that on eBay 13 

percent of all bidders submit their bid in the last five minutes, while few bids – only about 1 

percent – come in equally late on Amazon.  The difference is even more striking on the auction 

level: half of all eBay-Antiques auctions as compared to about 3 percent of Amazon-auctions 

have last bids in the last 5 minutes.  The pattern repeats in the last minute and even in the last ten 

seconds.22 

 

                                                 
22 The difference in late bidding was first noted in Roth and Ockenfels (2002), but space limitations did not permit 
any statistical or theoretical analyses of the phenomenon there.  We note here that we also find scale independence 
in the distribution over time of bidders’ last bids:  The distribution of bidders’ last bids within any end-interval of 
the auction is the same regardless of the length of the end interval, from, e.g., the last ten hours to the last ten 
minutes, with a high percentage of the bids concentrated at the end of the interval.  This is strikingly similar to the 
‘deadline effect’ observed in bargaining (see Roth et al., 1988, and Kennan and Wilson, 1993).  
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  share of all last bids in …  share of auctions’ last bids in … 
  eBay Amazon  eBay Amazon 

last hour  20 % 7 %  68 % 23 % 
last 10 minutes  14 % 3 %  55 % 11 % 
last 5 minutes  13 % 1 %  50% 3 % 
last 1 minute  8 % 0.1 %  37 % 0.4 % 

last 10 seconds  2 % 0 %  12 % 0 % 
 

Table 1. Frequencies of late bidding on eBay and Amazon23 

 

The following regression analyses shed light on how late bidding relates to the numbers of 

bidders and feedback numbers across auction houses and categories.  The dependent variable in 

the regression analyses in Table 2 is a binary variable with value 1 if the bidder’s last bid comes 

in within the last ten minutes (with respect to the actual or, on Amazon, the hypothetical 

deadline) and 0 otherwise.  The explanatory variables include binary (0/1) variables for the 

auction house and the item category (eBay and Computers), as well as the bidders’ feedback 

numbers and the number of active bidders in the corresponding auction (Feedback# and 

#bidders).  Table 2 reports the maximum likelihood probit coefficient estimates on both the 

bidder (all bidders) and the auction (last bidders only) level. 

The regressions strongly confirm the prediction of the theoretical models that late bidding is 

more common on eBay than on Amazon; the coefficients for eBay are highly significant.24  eBay 

auctions attract not only later bids on the bidder level (Run 1), but also the last bid of an eBay-

auction has a higher probability of being late (Run 3).   

 

                                                 
23 As explained above, the timing of bids on Amazon is defined with respect to a ‘hypothetical’ deadline.  Also, 
recall that the last submitted reservation price does not necessarily win.  In our eBay data, for instance, 132 final 
bids but only 106 winning bids were submitted within the last ten minutes.   
24 The results reported here pass various robustness tests.  We ran Probit as well as Logit and OLS regressions using 
5, 10, and 15 minutes thresholds for late bidding, and also using the classifications of feedback numbers as shown in 
Figure 2.  We found that our qualitative findings are quite insensitive to the details of the statistical model.  Also, in 
a pilot study, we downloaded data from eBay and Amazon in 320 auctions of computer monitors and antique books.  
The data set is less complete since only last bidders and only two feedback categories were considered.  To the 
extent we can compare the data with the data reported in this paper, however, they agree in essentially all qualitative 
features described here. 
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 All bidders’ last bids Auctions’ last bids 
 Run 1 Run 2 Run 3 Run 4 
Explanatory 
variables coeff. 

 (p-value) 
coeff.  

(p-value) 
coeff. 

(p-value) 
coeff.  

(p-value) 
Constant – 1.567 

(0.000) 
– 1.454 
(0.000) 

– 1.404 
(0.000) 

– 1.240 
(0.000) 

eBay 
(= 1 if eBay and 0 if Amazon) 

0.773 
(0.000) 

 1.140 
(0.000) 

 

Computers 
(= 1 if Computers and 0 if Antiques) 

– 0.187 
(0.021) 

 – 0.260 
(0.063) 

 

Feedback# 0.001 
(0.012) 

 0.003 
(0.017) 

 

#bidders – 0.036 
(0.003) 

 0.074 
(0.001) 

 

eBay*Computers  0.477 
(0.026) 

 0.682 
(0.026) 

(1 – eBay)*Computers   – 0.264 
(0.168) 

 – 0.268 
(0.284) 

eBay*(1 – Computers)  0.689 
(0.001) 

 1.033 
(0.001) 

eBay*Feedback#  0.001 
(0.008) 

 0.003 
(0.015) 

(1 – eBay)*Feedback#   – 0.034 
(0.059) 

 – 0.035 
(0.095) 

eBay*#bidders  – 0.039 
(0.003) 

 0.071 
(0.007) 

(1 – eBay)*#bidders  – 0.026 
(0.401) 

 0.068 
(0.124) 

Log-likelihood – 650.6 – 646.4 – 239.9 – 236.8 
Number of observations 2279 2279 480 480 

The dependent variable is 1 for bidders whose last bid came in the last 10 minutes before the (on Amazon: 
‘hypothetical’) deadline and 0 otherwise.  The table reports maximum likelihood probit coefficient estimates.   

Table 2. Probit-estimates for late bidding on eBay and Amazon 

 

The fuller specifications in Runs 2 and 4 look at interaction effects between auction houses 

and categories.25  Within the auction houses, the coefficient estimates in Runs 2 and 4 for 

eBay*(1 – Computers) are larger than for eBay*Computers indicating that eBay-Antiques trigger 

                                                 
25 Runs 2 and 4 both include a constant variable so that we did not include a variable (1 – eBay)*(1 – Computers) in 
order to avoid linear dependencies among the explanatory variables.  
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more late bidding than eBay-Computers.  The difference is statistically significant (p < 0.05 for 

Runs 2 and 4 separately).  A corresponding test for Amazon auctions yields no significant result 

(p = 0.53 on the bidder level and p = 0.28 on the auction level). Across auction houses, on the 

other hand, eBay attracts highly significantly more late bidding both in Computers and Antiques 

as well as on the bidder and the auction level (p < 0.01 in all four cases). 

The regressions reveal an interesting correlation between feedback numbers and late bidding. 

Runs 2 and 4 show that the impact of the feedback number on late bidding is significantly 

positive on eBay (p = 0.008 for Run 2 and p = 0.015 for Run 4) and negative on Amazon (p = 

0.059 for Run 2 and p = 0.095 for Run 4).  This suggests that more experienced bidders on eBay 

go later than less experienced bidders, while experience on Amazon has the opposite effect.26   

In sum, there is substantially more last minute bidding on eBay than on Amazon regardless 

of the category.  This difference also grows with the experience of the bidders.  We therefore 

conclude that last minute bidding is not simply due to naïve time-dependent bidding.  Rather, it 

responds to the strategic structure of the auction rules in a predictable way.  In addition, in line 

with the theoretical considerations, significantly more late bidding is found in antiques auctions 

than in computer auctions on eBay, but not on Amazon.27 

 

V. Some observations on how incremental bidding affects sniping 

An analysis of the dynamics of individual bidding is not possible with the data set described in 

Section IV, because at the time the data were collected, Amazon and eBay only provided 

information about the timing of each bidder’s last bid.  This changed in October 2000 when 

eBay started to display all successfully submitted bids in the bid histories.  So we collected the 

bid history data of 308 randomly selected (computers and antiques) auctions that were completed 

                                                 
26 The difference between the coefficient estimates is significant on the bidder level (p < 0.05) and weakly 
significant on the auction level (p = 0.069).  Wilcox (2000) examines a sample of eBay auctions and also finds that 
more experienced bidders bid later.   
27 The regressions also reveal an impact of the number of bidders on late bidding.  Runs 1 and 2 indicate that the 
number of bidders is negatively correlated with the average tendency of bidding late and Runs 3 and 4 indicate that 
the number of bidders is positively correlated with the probability that the last bid of an auction arrives late.  While 
Runs 2 and 4 show that this size effect is significant on eBay but not on Amazon, the differences between the eBay- 
and Amazon-coefficients are not significant (p = 0.70 on the bidder level and p = 0.96 on the auction level).  It is 
clear, however, that the timing cannot be explained by the ‘naïve’ hypothesis that more bidders per auction cause 
last bids to be later.  In fact, last bids in eBay-Computers come earlier than last bids in eBay-Antiques, while the 
number of bidders per auction is actually significantly higher in eBay-Computers. 
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in October 2000 on eBay, with in total 1339 bidders submitting 2535 bids.  Figure 3 shows the 

distribution of the number of bids per bidder.  While most bidders (62 percent) bid only once, 

many bidders increased their bid in the course of the auction.  The average number of bids per 

bidder is 1.89. 
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Figure 3. Distribution of number of bids submitted by a bidder  

 

The OLS estimates in Table 3 shed some light on what triggers incremental bidding.    

 

Explanatory variables coefficients 
Constant     2.043 (p = 0.000) 

Antiques 
(= 1 if Antiques and 0 if Computers) 

– 0.059  (p = 0.550) 

feedback # – 0.001  (p = 0.000) 

# bidders – 0.139  (p = 0.000) 

number of other bidders in the same auction 
who bid at least twice 

   0.349  (p = 0.000) 

R-squared         .071 
Number of observations         1339 

The dependent variable is the number of submitted bids per bidder (if this number is greater than 1, then the 
corresponding bidder increased his reservation price at least once).  The table reports ordinary least squares 
estimates. 
 

Table 3. Determinants of incremental bidding 
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The regression shows that the number of individually submitted bids is significantly 

negatively correlated with the feedback number, suggesting that incremental bidders, unlike late 

bidders, are relatively less experienced.28  Furthermore, the regression indicates that, controlling 

for the number of bidders,29 the number of bids per bidder is increasing in the number of other 

active bidders who bid multiple times.  This suggests that incremental bidding may induce 

bidding wars with like-minded incremental bidders.30  Facing such bidding war behavior, 

sophisticated, experienced bidders then have an incentive to bid late to avoid pushing the price 

up (see Section II.2).  Naive English-auction bidders, however, may also have an incentive to 

come back to the auction close to the deadline in order to check whether they are outbid.  Indeed, 

a substantial share of both, one-bid bidders (12 percent) and multiple bidders (16 percent) bid as 

late as in the last ten minutes of the eBay auctions in the more recent sample (in the data sample 

discussed in Section IV, on average 14 percent of all bidders submitted last ten minutes-bids).  

However, the data indicates that among these late bidders, one-bid bidders submit their bid later 

than incremental bidders (Mann-Whitney U test, p = 0.002), as illustrated in Figure 4 that shows 

the cumulative distribution functions of last bids within the last ten minutes for bidders with one 

bid and multiple bids.31 

                                                 
28 The average rank of the feedback of a multiple bidder is 599 (out of 1339 bidders), that of a one-bid bidder is 714 
(Mann-Whitney U test, p = 0.001).  The average rank of the feedback of a last ten minutes-bidder is 753, that of all 
other bidders is 654 (p = 0.000). (We report ranks as these are less sensitive to outliers than the actual feedback 
numbers themselves. The overall average feedback number is 80.  The average feedback number of a multiple 
bidder is 61, that of a one-bid bidder is 92.  The average feedback number of a last ten minutes-bidder is 99, that of 
all other bidders is 76.) 
29 The more bidders are active, the less multiple bidding is observed.  Since the average bidder is outbid earlier in an 
auction with many bidders, he has less opportunity to bid multiple times, which may explain this number effect.  
Also, it takes only two to drive up the price, so not all incremental bidders have to contribute to ‘finding the right 
price’ early in the auction with many bidders.   
30 The regression also reveals that there is no difference with respect to multiple bidding between antiques and 
computers.  In fact, while most of the results derived in Section IV apply also to the new eBay data, there is one 
exception: there is no statistically significant difference between antiques and computers with respect to late bidding 
in the new eBay data.  One possibility is that this may reflect that eBay launched “a special area of eBay where you 
can find works of art and collectibles from leading auction houses and dealers around the world.” 
(http://pages.gc.ebay.com/help/index.html).  This site, ebaypremier.com, may have drawn off the attention of 
experts/dealers from the antiques-categories on eBay.com, where we downloaded the data, and therefore diluted the 
category-effect. 
31 Disaggregation of incremental bidding reveals a more detailed picture. Last bids that are placed after the previous 
bid is outbid by automatic proxy bidding tend to be earlier than last bids that are placed after the previous bid is 
outbid by a new proxy bid, probably reflecting that a bidding war against a human bidder takes more time than 
against eBay’s bidding agent.  Second, only incremental bidding that pushes up the current price is negatively 
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Figure 4. Cumulative distribution functions of last bids within the last ten minutes for bidders 
with one bid and for bidders with multiple bids 

 

Overall, our analysis suggests that last-minute bidding is likely to arise in part as a response 

by sophisticated bidders to unsophisticated incremental bidding.   

 

VII. Discussion and Conclusions 

Late bidding in internet auctions has aroused a good deal of attention (more recent papers 

include Asker et al., 2003, Rasmusen, 2003, Schindler, 2003, and Wang, 2003).  In an eBay style 

auction with a hard close, late bidding may be a best response to a variety of incremental bidding 

strategies, but sniping can also be supported as rational equilibrium behavior in both private 

value and common value auctions with a hard close.  Thus there is no reason to believe that late 

bidding behavior will diminish over time, even if it initially arises as out-of-equilibrium 

behavior.  The advantage that sniping confers in an auction with a fixed deadline is eliminated or 

greatly attenuated in an Amazon style auction with an automatic extension.  In such an auction, 

an attentive incremental bidder can be provoked to respond whenever a bid is placed.  So this 

                                                                                                                                                             
correlated with experience, those bidders who increase their proxy bid as the current high bidder have a similar 
average feedback number as one-bid bidders. 
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source of advantage from bidding late is reduced, while it remains costly to delay one’s bid until 

so late that there is some probability that there will not be time to successfully submit it.   

The clear difference in the amount of late bidding on eBay and Amazon is strong evidence 

that rational strategic considerations play a significant role.  This evidence that rational 

considerations are at work is strengthened by the observation that the difference is even clearer 

among more experienced bidders and in markets in which expertise plays a role in appraising 

values.   

Ariely et al. (forthcoming) test the ending rules applied by eBay and Amazon in a private 

value environment in the laboratory.  Controlling for the distribution of (induced) values, number 

of bidders, multiple items offered simultaneously, heterogeneity of sellers and bidders, etc., they 

confirm that the ending rules are sufficient to cause the differences in the timing of bids and the 

differential effects of experience on late and multiple bidding observed in the field.   

Internet auctions and other electronic markets are an especially fertile ground for research in 

such design issues, because the rules of electronic markets are often explicitly given, and are 

easily changeable and implementable.  These characteristics make electronic markets an 

attractive domain on which can be brought to bear a variety of complementary tools for market 

design, such as game theory, experimental economics, field studies, and computations (cf. Roth, 

2002).  Electronic markets therefore seem likely to play a major role in shaping the emerging 

economics of design. 
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