CORVALLIS PLANT MATERIALS CENTER NATURAL RESOURCES CONSERVATION SERVICE CORVALLIS, OREGON Amy Bartow

December 22, 2006

THE 2006 BUREAU OF LAND MANAGEMENT ANNUAL REPORT: *Medford District*

I. Brief Background of Project

The Corvallis Plant Materials Center (PMC) entered into a new agreement with the

Medford District of the Bureau of Land Management (BLM) in 2004 to provide native plant materials for ecological restoration. The agreement was amended in 2006. It was agreed that the PMC would maintain seed increase fields of three grasses, three legumes, and two rushes; perform germination trials and containerized production of one legume and eight forbs; and establish seed increase fields of eight new grass accessions as well as eight new forb species. A minimum of 400 plants are to be delivered to the BLM at a time and place agreed upon by PMC and BLM staff.

Figure 1. *Penstemon roezlii* seed increase field at the Corvallis Plant Materials Center, Aug 20, 2006.

II. Accessions Involved

Accessions included for the Medford District BLM in 2006 are listed in Table 1. This table also displays activities performed by PMC staff.

Scientific Name	Common name	Code	Accession #	Activity in 2006
Iris douglasiana	Douglas Iris	IRDO	9079417	trl, pxn
Juncus ensifolius	sword leaf rush	JUEN	9079418	trl,pxn
Penstemon roezlii	Roezl's penstemon	PERO12	9079419	trl, pxn, sfp
Sisyrincium bellum	western blue-eyed grass	SIBE	9079420	trl, pxn
Tritilia hyacinthina	white hyacinth	TRHY3	9079421	trl, pxn
Festuca elmeri	coast fescue	FEEL2	9079422	pxn, sfp
Polemonium carneum	royal Jaccob's ladder	POCA4	9079424	trl, pxn
Eriogonum umbellatum	sulfur-flowered buckwheat	ERUM	9079425	trl,pxn
Lupinus adsurgens	Drew's silky lupine	LUAD	9079426	pxn, sfp
Potentilla glandulosa	sticky cinquefoil	POGL9	9079427	trl,pxn
Bromus lavipes	woodland brome	BRLA3	9079393	sfp
Poa secunda	Sandberg blue grass	POSE	9079394	sfp
Festuca roemerii	Roemer's fescue	FERO	9079395	sfp
Bromus lavipes	woodland brome	BRLA3	9079396	sfp
Bromus carinatus	California brome	BRCA5	9079397	sfp
Achnatherum lemmonii	Lemmon's needlegrass	ACLE8	9079398	pxn
Festuca californica	California fescue	FECA	9079399	sfp
Cimicifuga elata	tall bugbane	CIEL	9079390	dlv
Darlingtonia californica	California pitcherplant	DACA5	9079391	trl, pxn
Festuca californica	California fescue	FECA	9079327	sfp
Festuca romeri	Roemer's fescue	FERO	9079326	sfp
Frasera umpquaensis	Umpqua green gentian	FRUM	9079387	trl, pxn
Juncus tenuis	poverty rush	JUTE	9079388	pxn
Lomatium macrocarpum	big-seeded lomatium	LOMA3	9079325	pxn
Lupinus albifrons	silverleaf lupine	LUAL4	9079322	sfp, dlv
Melica harfordii	Harford's melic	MEHA2	9079328	sfp
Rupertia physoides	forest scurf peas	RUPH3	9079323	sfp
Scirpus microcarpus	panicled bulrush	SCMI2	9079386	pxn
Wyithia angustifolia	California compassplant	WYAN	9079389	pxn
Xerophyllum tenax	common beargrass	XETE	9079385	trl, pxn

Table 1. Accessions involved for Medford District BLM cooperative agreement with Corvallis Plant Materials Center in 2006.

1- sfp= seed increase, trl= germination research trials, pxn=plant production, dlv=plant materials delivery

III. Experimental Propagation

Informal germination trials were set up for production of the eight new forbs in this agreement. Cold-moist stratification trials were set up in the spring of 2006. These trials were set up as production trials rather than a formal laboratory germination evaluation since the intent is to produce vigorous seedlings under normal greenhouse propagation conditions. Seeds of each species were sown into Ray Leach stubby cone-tainers filled with moistened media (Sunshine #1 a special peat-based soil-less mix) amended with

micronutrients and slow release fertilizer. Seeds were lightly covered with fine vermiculite, and the flats were placed in polyethylene bags and moved into the walk-in cooler (36-38° F). Flats were removed after 45 or 90 days and placed outside in a lath house. Most seedlings emerged within two weeks and grew vigorously.

Species	Code	Optimum treatment	Germ	Notes
Scirpus microcarpus	SCMI2	45 days c/m stratification	70%	Surface sow, needs light
Xerophyllum tenax	XETE	120 days c/m stratification	67%	Needs light, alternating temps
Frasera umpquaensis	FRUM	90 days c/m stratification	40%	seedlings damped off
Juncus ensifolius	JUEF	45 days c/m stratification	42%	Surface sow, needs light
Darlingtonia californica	DACA5	90 days c/m stratification	88%	planted into peat moss, needs light
Iris douglasiana	IRDO	80 days c/m stratification	25%	may need to be frozen during stratification
Penstemon roezlii	PERO12	80 days c/m stratification	85%	Needs light, alternating temps
Sisyrincium bellum	SIBE	none found	0%	Needs light, alternating temps
Tritilia hyacinthina	TRHY3	90 days c/m stratification	93%	Needs light, alternating temps
Festuca elmeri	FEEL2	14 days c/m stratification	99%	
Polemonium carneum	POCA4	80 days c/m stratification	65%	Needs light, alternating temps
Eriogonum umbellatum	ERUM	80 days c/m stratification	92%	Needs light, alternating temps
Lupinus adsurgens	LUAD	scarification	78%	inoculate with rhizobium
Potentilla glandulosa	POGL9	80 days c/m stratification	45%	Needs light, alternating temps

Table 2. Treatments That Produced the Highest Germination per Species at the Corvallis Plant Materials Center in 2006.

IV. Field Seed Increase

Most of the seed provided by the BLM needed a finer cleaning to blow out chaff and weed seeds. Informal germination tests were performed on most of the seed lots prior to

planting. All new grass fields, except *Achnatherum lemmonii*, were seeded into fields on October 11, 2005 using a six-row Planet Jr. seeder equipped with a carbon banding unit. *Achnatherum lemmonii, Eriogonum umbellatum, Potentilla glandulosa, Polemonium carneum*, and *Penstemon roezlii* were seeded using a single-row belt seeder. Rows were then sprayed with a thin strip of carbon slurry using a backpack sprayer. All fields were sprayed with Diuron (a non-selective, pre-emergent herbicide) after sowing. Fall rains began the day after seeding and spraying were completed so no fall irrigation was needed. However, the rain was heavy, lasting for 30 days and caused severe damping off in the *Festuca elmeri* field and damaged some plants in the *Bromus lavipes*-(Sprignette) and *Festuca roemerii*- (RoundTop) fields.

	Amount		Approximate	
Species/Ac	seeded	Germ	seeding rate ¹	Seeds/lb
Festuca elmeri				
0.08 acres or			13 lbs/acre (bulk)	
18 184' rows			12 lbs/acre (PLS)	
12" btwn rows	480g	94%	66 PSL/ft-row	216,000
Bromus lavipes				
0.5 acres or			9 lbs/acre (bulk)	
120 180' rows			0.36 lbs/acre (PLS)	
12" btwn rows	2000g	4%	< 1PLS/ft-row	94,400
Poa secunda				
0.5 acres or			1 lbs/acre (bulk)	
120 181' rows			0.7 lbs/acre (PLS)	
12" btwn rows	200g	70%	12 PLS/ft-row	1,006,700
Festuca roemerii	~			
0.25 acres or			4 lbs/acre (bulk)	
84 130' rows			3.5 lbs/acre (PLS)	
12" btwn rows	339g	87%	16 PLS/ft-row	271,300
Bromus lavipes				
0.25 acres or			10 lbs/acre (bulk)	
60 184' rows			9 lbs/acre (PLS)	
12" btwn rows	1165g	92%	20 PLS/ft-row	92,800
Bromus carinatus				
0.4 acres or			11 lbs/acre (bulk)	
96 180' rows			8 lbs/acre (PLS)	
12" btwn rows	1957g	74%	9 PLS/ft-row	50,000
Festuca californica				
0.2 acres or			3.5 lbs/acre (bulk)	
72 130' rows			3.3 lbs/acre (PLS)	
12" btwn rows	294g	94%	7 PLS/ft-row	110,000
Penstemon roezlii	-			
0.02 acres or			2 lbs/acre (bulk)	
4 181' rows			1.7 lbs/acre (PLS)	
16" btwn rows	16g	85%	42 PLS/ft-row	873,000

Table 3. Seeding rates and field sizes sown on October 11, 2005, at the Corvallis Plant Materials Center for the Medford BLM district.

Species/Ac	Amount seeded	Germ	Approximate seeding rate ¹	Seeds/lb
Polemonium				
carneum				
0.015 acres or			5 lbs/acre (bulk)	
3 181' rows			3.3 lbs/acre (PLS)	
16" btwn rows	32g	65%	28 PLS/ft-row	216,000
Eriogonum				
umbellatum				
0.015 acres or			12 lbs/acre (bulk)	
3 181' rows			11 lbs/acre (PLS)	
16" btwn rows	87g	92%	46 PLS/ft-row	110,600
Achnatherum				
lemmonii				
0.02 acres or			14 lbs/acre (bulk)	
6 130' rows			9 lbs/acre (PLS)	
16' btwn rows	12g	69%	46 PLS/ft-row	127,000
Potentilla				
glandulosa				
0.08 acres or			1 lbs/acre (bulk)	
18 181' rows			.45 lbs/acre (PLS)	
16" btwn rows	39g	45%	60 PLS/ft-row	2,268,000

Achnatherum lemmonii seedlings began to emerge in January. The fields were inundated with water and the seedlings were sometimes completely under standing water. Survival was moderate, but after the water receded in February more seedlings emerged. The field was rated as good. Transplants were also grown in cone-tainers to fill in gaps in the field. *Eriogonum umbellatum, Potentilla glandulosa, Penstemon roezlii,* and *Polemonium carneum* seedlings did not emerge until March and continued to emerge through May. All fields looked very good, considering they were under water for weeks at a time in December and January, except *P. glandulosa*. Rows of *P. glandulosa* were only about 10% full, but individual plants were very vigorous.

Containerized plants of *Scirpus microcarpus* and *Juncus tenuis* that were produced in 2005 were transplanted into a constructed wetland pond for seed increase. Transplanting occurred on January 14, 2006. After planting, four days of freezing temperatures occurred, followed by a month of rain. The level of water in the pond was over three feet deep. The water control system could not pump out all the water due to flooding and high water tables. Most of the transplants did not survive. More plants were grown in the summer and will be transplanted in the spring of 2007. Transplants of *Lupinus adsurgens*, *Rupertia physoides*, and *Festuca elmeri* were grown in the fall of 2005 and transplanted into seed increase fields on March 13, 2006. Mulch was applied to *L. adsurgens* and *F. elmeri* plots to retain moisture in summer and suppress weeds.

Figures 2 and 3: *Eriogonum umbellatum* seedlings (left) and *Polemonium carneum* (right) at the Corvallis Plant Materials Center, May 25, 2006.

In the spring, *Bromus carinatus* field appeared to have herbicide damage. Plants were stunted and twisted. This damage was also noticed in an *Elymus glaucus* field on a different area of the PMC farm. It was discovered that both of these fields had a cover crop of winter wheat the previous year. Allelopathy from the wheat is the suspected cause of the stunting and twisting of the plants. The *Bromus carinatus* field also had a horrible infestation of smut. It was not machine harvested. Plants that were smut-free were harvested individually by hand.

Field notes 2006:

Weed control in the forb and legume seed increase fields was performed mainly by hand weeding and rouging. Borders were cultivated or sprayed with glyphosate. Most fields were spot-sprayed with glyphosate using a shielded backpack sprayer to control exotic bentgrasses and other rhizomatous weeds. All grass fields were sprayed with Banvel in the spring to control broadleaf weeds.

Figure 4. PMC staff harvesting a seed increase field with the moon rover.

All grass fields (only the portions that were over 1 year old) were fertilized in October 2006 with 25 lbs/ac nitrogen (N) and in February with 50 lbs/ac N plus 15 lbs/ac sulfur (S). Grass fields were burned using drip torches following harvest. In mid October, a new pre-emergent herbicide, Outlook, was applied to all fields that had been harvested in 2006. It will be evaluated in the winter and spring for effectiveness.

Weed fabric was installed between existing rows of *Rupertia physoides*. About 2" of soil was removed between the rows before weed fabric was stapled down; this created a trough to catch the seed as it falls from the plant. It was quite successful; the small field yielded almost a pound of seed. A passive seed collection method, like this, is also good for maximizing genetic diversity among the harvest. 90-100% of all seeds that the plant produced were harvested, which is almost impossible to achieve with machine harvest on crops that have very indeterminate ripening and seed that shatters easily.

Figures 5 and 6. *Rupertia physoides* seed increase field with weed fabric installed (left) and close-up of flower (above), at the Corvallis Plant Materials Center, July 15, 2006.

Two new harvesters were used this year. One, informally named the "moon rover", is a hand-built, self propelled swather. It has a conveyer belt that moves all material after it is cut and loads it into bags. Two people operate the machine with one person driving and the other helping to feed the material into bags. The machine has all the benefits of hand harvesting without the labor. Once material was bagged it was laid out on to tarps to dry and cure. It was then fed though a plot thresher, and cleaned as usual. The other harvester is a Woodward flail-vac seed stripper. It uses a high speed brush to strip seed off the heads of grasses and dry flower stalks of forbs. It is mounted like the bucket on a front end loader. The unit has proven to be effective for harvesting several species. It was moderately effective for the *Melica harfordii*. It didn't remove all of the seed, so multiple passes were needed.

Species	Accession #	acres	Method	Yield	Comments
FEEL	9079422	0.08	hand	24 g	good stand, fair vigor
BRLA	9079396	0.25	moon rover	22 lbs	good stand, good vigor
FERO	9079326	0.1	hand	2 lbs	poor stand, low vigor
FECA	9079327	0.2	moon rover	34 lbs	fair stand, fair vigor
MEHA	9079328	0.2	seed stripper	6 lbs	poor stand, fair vigor
LUAL	9079322	0.1	hand	22 g	good stand, low vigor
BRCA	9079397	0.4	hand	8 lbs	excellent stand, SMUT!!
PERO	9079419	0.1	hand	194g	excellent stand, high vigor
RUPH	9079323	0.1	leaf blower	312 g	good stand, high vigor

Table 3. Seed harvested from seed increase fields at the Corvallis Plant Materials Center in 2005.

V. Container Plant Production.

On December 13, 2005, seeds of each species were sown into Ray Leach stubby conetainers filled with moistened media (Sunshine #1 a special peat-based soil-less mix) amended with micronutrients and slow-release fertilizer and lightly covered with fine vermiculite. Seeded flats that required cold-moist stratification to break seed dormancy were placed in polyethylene bags and moved into the walk-in cooler (36-38° F). Flats

Figures 4 & 5. *Festuca elmeri* (left) and *Lupinus adsurgens* (above) seed increase plots, May 25, 2006.

that did not require cold-moist stratification were placed in a shadehouse. Plants were watered overhead daily and monitored for diseases and pests. All plants produced (except *Tritilia hyacinthina*, *Xerophyllum tenax*, and *Darlingtonia californica*) will be used to expand or establish seed increase plots.

		Amt seed		
Code	Treatment	used	Germ	Number produced
SCMI2	45days c/m stratification	2 g	70%	400
XETE	120 days c/m	2 g	67%	120
FRUM	90days c/m stratification	3 g	40%	0
JUEF	45days c/m stratification	1 g	42%	70
DACA5	90days c/m stratification	1 g	88%	0
IRDO	80 days c/m stratification	40 g	25%	70
PERO12	80 days c/m stratification	2 g	85%	120
SIBE	90 days c/m stratification	3 g	0%	0
TRHY3	90days c/m stratification	2 g	93%	395
FEEL2	2 weeks c/m stratification	2 g	99%	400
POCA4	80 days c/m stratification	2 g	65%	80
ERUM	80 days c/m stratification	4 g	92%	450
LUAD	Scarification	7g	78%	130
JUTE	5 weeks c/m stratification	1 g	45%	200
POGL	80 days c/m stratification	1 g	45%	135

Table 4. Containerized Plant Production at the Corvallis PMC in 2006 for the BLM Medford District.

VI. Delivery of Plant Materials.

No materials were delivered in 2006. See Appendix 1 for current seed in storage at the Corvallis Plant Materials Center.

Appendix 1

			Seed in storage	
	C 1	"	Produced by	Provided by
Scientific Name	Code	Accession #	РМС	BLM
Achnatherum lemmonii	ACLE8	9079398		
Bromus carinatus	BRCA5	9079397	621 g	2340 g
Bromus lavipes	BRLA3	9079393		
Bromus lavipes	BRLA3	9079396	22 lbs	64 g
Cimicifuga elata	CIEL	9079390		14 g
Darlingtonia californica	DACA5	9079391		6 g
Eriogonum umbellatum	ERUM	9079425		5 g
Festuca californica	FECA	9079399		836 g
Festuca californica	FECA	9079327	42 lbs	
Festuca elmeri	FEEL2	9079422	24 g	21 g
Festuca roemerii	FERO	9079395		803 g
Festuca romerii	FERO	9079326	339 g	
Frasera umpquaensis	FRUM	9079387		
Iris douglasiana	IRDO	9079417		72 g
Juncus ensifolius	JUEN	9079418		2 g
Juncus tenuis	JUTE	9079388		13 g
Lomatium macrocarpum	LOMA3	9079325		129 g
Lupinus adsurgens	LUAD	9079426	3 g	
Lupinus albifrons	LUAL4	9079322	29 g	
Melica harfordii	MEHA2	9079328	6 lbs	
Penstemon roezlii	PERO12	9079419	194 g	1 g
Poa secunda	POSE	9079394		2372 g
Polemonium carneum	POCA4	9079424		1 g
Potentilla glandulosa	POGL9	9079427		1 g
Rupertia physoides	RUPH3	9079323	352 g	
Scirpus microcarpus	SCMI2	9079386	-	33 g
Sisyrincium bellum	SIBE	9079420		8 g
Tritilia hyacinthina	TRHY3	9079421		8 g
Wyithia angustifolia	WYAN	9079389		-
Xerophyllum tenax	XETE	9079385		226 g
				5

 Table 5. Current seed in storage at Corvallis Plant Materials Center, January 11, 2007.

 Seed in storage