A Direct Measurement of the W Boson Decay Width in Proton-Antiproton Collisions at 1.8 TeV
 by
 William Joseph Ashmanskas
 A.B. (Harvard University) 1992
 M.A. (University of CaliforniaГBerkeley) 1994
 A dissertation submitted in partial satisfaction of the
 requirements for the degree of
 Doctor of Philosophy in
 Physics
 in the
 GRADUATE DIVISION
 of the
 UNIVERSITY OF CALIFORNIAГBERKELEY

Committee in charge:

Professor Marjorie D. Shapiro「Chair
Professor Mark W. Strovink
Professor Joseph Cerny

Spring 1998

The dissertation of William Joseph Ashmanskas is approved:

University of CaliforniaГBerkeley

Spring 1998

A Direct Measurement of the W Boson Decay Width in Proton-Antiproton Collisions at 1.8 TeV

Copyright © 1998
by

William Joseph Ashmanskas

This work was supported by the DirectorГOffice of Energy ResearchГOffice of High Energy and Nuclear Physics Division of High Energy Physics Γ of the U.S. Department of Energy under contract DE-AC03-76SF00098.

The United States Department of Energy has the right to use this thesis for any purpose whatsoever including the right to reproduce all or any part thereof.

Abstract
\title{ A Direct Measurement of the W Boson Decay Width in Proton-Antiproton Collisions at 1.8 TeV }
by
William Joseph Ashmanskas
Doctor of Philosophy in Physics
University of California「Berkeley
Professor Marjorie D. Shapiro「Chair

We present a direct measurement of the W boson total decay width $\Gamma \Gamma_{W} \Gamma$ using $90 \mathrm{pb}^{-1}$ of high- p_{T} electron data collected by the Collider Detector at Fermilab during the 1994-1995 run of the Fermilab Tevatron $p \bar{p}$ collider. We normalize aredieted signal and background transverse mass $\left(M_{T}\right)$ distributions to $49843 W \rightarrow e \nu$ candidates in the region $M_{T}<200 \mathrm{GeV}$ and fit the high- M_{T} region to extract Γ_{W}. By fitting the 456 events in the region $100 \mathrm{GeV} \leq M_{T}<200 \mathrm{GeV} \Gamma$ we find $\Gamma_{W}=2.25_{-0.12}^{+0.13}($ stat $) \pm 0.11$ (syst) GeV .

Dedicated to my wife Γ

Kirsten Leigh Parkinson.

Acknowledgements

Throughout my years as a student Γ I have been fortunate to have many outstanding mentors. When I was in high school J Judy MasselamГ Mark RodriguezГ and Paul Bamberg inspired me to learn as much about scienceГmathГand computer science as I could manage-for no other reason than the pleasure of understanding. My interest in particle physics began with a terrific undergraduate course taught by Bob Cousins when he visited Harvard during 1990-91. During the two following summers Γ George Brandenburg and Melissa Franklin showed me how much fun working in high-energy physics could be. From Richard Kadel and Aseet Mukherjee Γ whose approaches to problem solving are about as different as two people's can beГI absorbed a wealth of knowledge about particle detectors Γ charged particle tracking Γ and the nuts and bolts of experimental physics; I would have gladly spent twice as long working with each of them.

Since my first visit to BerkeleyГI have benefited from the knowledge Γ common sense「and thoughtfulness of my advisorГMarjorie Shapiro. When I have had questions about physical phenomenaГparticle detectors Γ simulation techniques「or data analysis Γ or have needed advice on coping with a laborious statistical mechanics course Γ writing a thesis Γ finding a job Γ or even finding an apartment Γ Marjorie's door has always been open. She insisted that I choose for myself what I was really interested in doing-even at times when I would have preferred the safety of being told what to do-but once I had decided Γ she consistently offered thoughtful advice on making it work. I don't think any student in this field could find a better advisor.

People often describe the size of particle physics experiments as a disadvantage. One sure advantage Γ however Γ is the large number of talented people from whom one has an opportunity to learn. I am grateful to Barry Wicklund Peter Berge Γ John KadykГHans WenzelГJerry PrzybylskiГand Tom Weber for frequently taking the time to explain things to me.

I am indebted to Henry Frisch and Young-Kee Kim for suggesting this measurement as a possible thesis topic. (I am also extremely grateful to Henry for wandering down Grant Street in Chinatown on November 22Г1997.)

I would like to thank my dissertation committeeГMarjorie ShapiroГMark Strovink Γ and Joe Cerny Γ for taking the time to read and to comment on this thesis. Kevin EinsweilerГLarry NodulmanГSacha KoppГand John Wahl have also provided valuable feedback on this thesis and the note that preceded it.

I thank Andrew Gordon for many fruitful discussions Γ which were almost daily at times Cof CDF W and Z physics and for providing many ideas used in this analysis. Mark Lancaster has also been very generous in offering assistance and advice.

My year at Fermilab would not have been nearly so enjoyable without the friendship of Aseet Mukherjee Г Bob WagnerГ Aesook Byon-WagnerГ Marc PetersГPetar MaksimovicГAndrew GordonГErich VarnesГand Patrick Virador.

Many thanks to Anne Takizawa and Donna Sakima for cutting through red tape and for making me feel welcome in the Berkeley physics department office.

I enjoyed learning physics with fellow graduate students Patrick ViradorГErich Varnes Γ Mark Lakata Γ Eric Johnson Γ Andrew Schechter Γ Ken ClubokГ and Rich Mallozzi. Geoff Pike has been a close friend for 12 years-through high school Γ college「and graduate school-and was very supportive of a Berkeley roommate who traveled frequently to visit a wife in Los Angeles and an experiment in Chicago.

I thank my wifeГKirsten Γ for sharing her life with me (even when we were stuck in different cities) Γ for having much more confidence in me than I have in myself Γ and for putting up with my moodiness during the writing process. Now it's her turn to write. FinallyГI'd like to thank my family and Kirsten's family for their love and encouragement.

The CDF Collaboration

F. AbeI ${ }^{{ }^{7}}$ H. Akimotor ${ }^{36}$ A. Akopian ${ }^{31}$ M. G. Albrow Γ^{7} S. R. Amendolia ${ }^{[7}$ D. Amidei ${ }^{20}$ J. Antos ${ }^{33}$ S. Aota ${ }^{36}$ G. Apollinari ${ }^{31}$ T. Asakawa ${ }^{36}$ W. Ashmanskas ${ }^{[8}$ M. Atac Γ^{7} F. Azfar I^{26} P. Azzi-Bacchetta I^{25} N. Bacchettal ${ }^{25}$ W. BadgettI ${ }^{20}$ S. Bagdasarov ${ }^{31}$ M. W. BaileyI ${ }^{22}$ J. Bao I^{39} P. de Barbaro ${ }^{30}$ A. Barbaro-GaltieriI ${ }^{18}$ V. E. Barnes ${ }^{29}$ B. A. Barnett I^{15} M. Baronel ${ }^{9}$ E. Barzi ${ }^{9}$ G. Bauer I^{19} T. Baumann Γ^{11} F. Bedeschil ${ }^{27}$ S. BehrendsI ${ }^{3}$ S. Belforte I^{27} G. Bellettini 1^{27} J. Bellinger ${ }^{38}$ D. Benjamin ${ }^{35}$ J. Benlloch Γ^{19} J. Bensinger ${ }^{3}$ D. Benton ${ }^{26}$ A. Beretvas Γ^{7} J. P. Berge ${ }^{7}$ J. Berryhill Γ^{5} S. BertolucciI ${ }^{9}$ B. Bevensee I^{26} A. BhattiI ${ }^{31}$ K. BieryI ${ }^{7}$ M. BinkleyI ${ }^{7}$ D. BiselloI ${ }^{25}$ R. E. BlairI C. BlockerI ${ }^{3}$ A. Bodek ${ }^{30}$ W. BokhariI ${ }^{9}$ V. BolognesiI ${ }^{2}$ G. Bolla I^{29} D. BortolettoI I^{29} J. BoudreauI ${ }^{28}$ L. Breccial ${ }^{2}$ C. BrombergI ${ }^{21}$ N. Bruner ${ }^{22}$ E. Buckley-GeerI ${ }^{7}$ H. S. Budd ${ }^{30}$ K. BurkettI ${ }^{20}$ G. Busettol ${ }^{25}$ A. Byon-WagnerI ${ }^{7}$ K. L. Byrumi J. Cammerata Γ^{55} C. Campagnari Γ^{7} M. Campbelli ${ }^{20}$ A. Caner ${ }^{27}$ W. Carithers I^{88} D. Carlsmith ${ }^{38}$ A. Castro ${ }^{25}$ D. Cauz I^{27} Y. Cen \mathbb{P}^{30} F. CervelliI ${ }^{27}$ P. S. Chang ${ }^{33}$ P. T. Changr ${ }^{33}$ H. Y. ChaoI ${ }^{33}$ J. Chapman ${ }^{20}$ M. -T. Cheng ${ }^{33}$ G. ChiarelliI ${ }^{27}$ T. Chikamatsu ${ }^{36}$ C. N. Chiou ${ }^{33}$ L. Christofek ${ }^{[33}$ S. Cihangir ${ }^{7}$ A. G. Clark Γ^{10} M. Cobal ${ }^{27}$ E. Coccal ${ }^{27}$ M. Contreras ${ }^{5}$ J. ConwayI ${ }^{32}$ J. Cooper ${ }^{7}$ M. CordelliI ${ }^{9}$ C. Couyoumtzelis ${ }^{10}$ D. Crane Γ^{1} D. Cronin-Hennessyl ${ }^{6}$ R. Culbertson ${ }^{5}$ T. Daniels ${ }^{19}$ F. DeJongh ${ }^{7}$ S. Delchamps ${ }^{7}$ S. Dell'Agnellol ${ }^{27}$ M. Dell'Orsol ${ }^{77}$
R. Demina Γ^{7} L. DemortierI ${ }^{31}$ M. Deninnol ${ }^{2}$ P. F. Derwent Γ^{7} T. Devlin ${ }^{32}$ J. R. DittmannI ${ }^{6}$ S. DonatiI ${ }^{27}$ J. Done ${ }^{34}$ T. Dorigol ${ }^{25}$ A. Dunn ${ }^{20}$ N. Eddy ${ }^{20}$ K. Einsweiler ${ }^{18}$ J. E. Elias Γ^{7} R. Ely Γ^{18} E. Engels Γ Jr. ${ }^{28}$ D. Errede I^{13} S. Errede ${ }^{〔 3}$ Q. Fan 30 G. Feild ${ }^{39}$ C. Ferrettil ${ }^{27}$ I. Fioril ${ }^{2}$ B. Flaugher $\bar{\Gamma}^{7}$ G. W. Foster ${ }^{7}$ M. Franklin Γ^{11} M. Frautschi ${ }^{35}$ J. Freeman Γ^{7} J. Friedman ${ }^{[9}$ H. Frisch ${ }^{5}{ }^{5}$ Y. Fukui ${ }^{17}$ S. FunakiI ${ }^{36}$ S. GaleottiI ${ }^{27}$ M. GallinaroI ${ }^{26}$ O. GanelI ${ }^{35}$ M. Garcia-Sciveres ${ }^{[8}$ A. F. GarfinkelI ${ }^{29}$ C. Gay ${ }^{\dagger 1}$ S. Geer Γ^{7} D. W. Gerdes ${ }^{\Gamma^{5}}$ P. Giannetti I^{27} N. Giokaris ${ }^{P^{1}}$ P. Girominil ${ }^{9}$ G. GiustiI ${ }^{27}$ L. Gladney ${ }^{26}$ D. GlenzinskiI ${ }^{55}$ M. GoldI ${ }^{22}$ J. GonzalezI ${ }^{26}$ A. Gordoni ${ }^{[1}$ A. T. GoshawI ${ }^{6}$ Y. Gotra \mathbb{I}^{25} K. Goulianos P^{31} H. GrassmannI ${ }^{27}$ L. GroerI ${ }^{32}$ C. Grosso-PilcherI Γ^{5} G. Guillian I^{20} R. S. Guo ${ }^{33}$ C. Haber ${ }^{18}$ E. HafenI ${ }^{19}$ S. R. Hahn Γ^{7} R. Hamilton Γ^{11} R. Handler I^{38} R. M. Hans Γ^{39} F. HappacherI ${ }^{9}$ K. HaraI ${ }^{36}$ A. D. HardmanI ${ }^{29}$ B. Harral ${ }^{26}$ R. M. Harris ${ }^{7}$ S. A. HaugerI ${ }^{6}$ J. HauserI ${ }^{4}$ C. Hawk ${ }^{32}$ E. Hayashi ${ }^{36}$ J. Heinrich ${ }^{26}$ B. Hinrichsen ${ }^{4}{ }^{4}$ K. D. Hoffman ${ }^{29}$ M. HohlmannI ${ }^{5}$ C. Holck \mathbb{I}^{26} R. Hollebeek \mathbb{I}^{26} L. Holloway ${ }^{43}$ S. Hong ${ }^{20}$ G. HoukI ${ }^{26}$ P. HuI ${ }^{28}$ B. T. Huffman ${ }^{28}$ R. Hughes \mathbb{I}^{23} J. Huston ${ }^{21}$ J. Huth Γ^{11} J. Hylen Γ^{7} H. Ikeda ${ }^{36}$ M. IncagliI ${ }^{27} \mathrm{~J}$. Incandelar ${ }^{7}$ G. Introzzil ${ }^{27} \mathrm{~J}$. Iwai ${ }^{36}$ Y. Iwata ${ }^{{ }^{2}}{ }^{2}$ H. Jensen ${ }^{7}$ U. Joshi ${ }^{7}$ R. W. KadelI ${ }^{18}$ E. KajfaszI ${ }^{25}$ H. KambaraI ${ }^{10}$ T. KamonI ${ }^{34}$ T. Kaneko ${ }^{36}$ K. KarrI ${ }^{37}$ H. KashaI ${ }^{39}$ Y. Kato ${ }^{24}$ T. A. Keaffaber ${ }^{29}{ }^{29}$ K. KelleyI ${ }^{[9}$ R. D. Kennedy ${ }^{7}$ R. Kephart ${ }^{7}$ P. Kesten Γ^{88} D. KestenbaumI ${ }^{11}$ H. Keutelian ${ }^{7}$

S. H. KimI ${ }^{36}$ Y. K. Kim $^{{ }^{18}}$ L. KirschI ${ }^{3}$ P. KoehnI ${ }^{23}$ K. Kondo ${ }^{36}$ J. KonigsbergI ${ }^{8}$ S. Kopp $\Gamma^{\ulcorner }$K. Kordas ${ }^{~}{ }^{4}$ A. KorytovI ${ }^{8}$ W. Koska ${ }^{7}$ E. Kovacs ${ }^{7}{ }^{i a}$ W. KowaldI ${ }^{6}$
M. Krasberg ${ }^{20}$ J. KrollI ${ }^{7}$ M. Kruse ${ }^{30}$ T. Kuwabara ${ }^{36}$ S. E. KuhlmannI ${ }^{1}$ E. Kuns ${ }^{32}$ A. T. Laasanen ${ }^{79}$ S. LamiI ${ }^{27}$ S. Lammel ${ }^{7}$ J. I. Lamoureux ${ }^{3}$ M. Lancaster ${ }^{[88}$ T. LeCompteI S. Leone I^{27} J. D. Lewis Γ^{7} P. Limon Γ^{7} M. LindgrenI ${ }^{4}$ T. M. Liss ${ }^{\dagger 3}$ J. B. LiuI ${ }^{30}$ Y. C. Liui ${ }^{33}$ N. Lockyer ${ }^{26}$ O. Long ${ }^{26}$ C. Loomis ${ }^{32}$ M. LoretiI ${ }^{25}$ J. LuI ${ }^{34}$ D. Lucchesi ${ }^{27}$ P. Lukens Γ^{7} S. Lusin Γ^{38} J. Lys ${ }^{18}$ K. Maeshima Γ^{7} A. Maghakian ${ }^{31}$ P. Maksimovic ${ }^{19}$ M. Mangano I^{27} J. Mansour I^{21} M. MariottiI ${ }^{25}$ J. P. Marriner Γ^{7} A. Martin ${ }^{39}$ J. A. J. Matthews ${ }^{32}$ R. Mattingly ${ }^{[9}$ P. McIntyre ${ }^{34}$ P. Melese ${ }^{31}$ A. Menzione ${ }^{27}$ E. Meschil ${ }^{27}$ S. Metzler I^{26} C. MiaoI ${ }^{20}$ T. Miao Γ^{7} G. Michail ${ }^{1}{ }^{1}$ R. Miller I^{21} H. Minato ${ }^{36}$ S. Miscettil ${ }^{9}$ M. Mishina ${ }^{17}$ H. Mitsushiol ${ }^{36}$ T. Miyamotol ${ }^{36}$ S. Miyashita ${ }^{36}$ N. Moggi ${ }^{27}$ Y. Morita Γ^{77} A. Mukherjee Γ^{7} T. Muller ${ }^{1{ }^{16}}$ P. Murat ${ }^{27}$ H. NakadaI ${ }^{36}$ I. Nakano Γ^{36} C. Nelson Γ^{7} D. Neuberger $\Gamma^{\Gamma^{6}}$ C. Newman-Holmes Γ^{7} C-Y. P. Ngan ${ }^{59}$ M. Ninomiyar ${ }^{36}$ L. Nodulman「 S. H. OhI ${ }^{5}$ K. E. Ohlr ${ }^{39}$ T. Ohmoto Γ^{2} T. Ohsugi ${ }^{\Gamma^{2}}$ R. Oishi I^{36} M. Okabe ${ }^{36}$ T. Okusawa ${ }^{24}$ R. Oliveira ${ }^{26}$ J. Olsen I^{38} C. Pagliarone ${ }^{27}$ R. PaolettiI ${ }^{27}$ V. Papadimitrioul ${ }^{35}$ S. P. Pappas ${ }^{39}$ N. Parasharl ${ }^{27}$ S. Park $\bar{\Gamma}^{7}$ A. ParriI ${ }^{9}$ J. Patrick $\bar{\Gamma}^{7}$ G. Paulettal ${ }^{27}$ M. PauliniI ${ }^{88}$ A. Perazzol ${ }^{27}$ L. Pescara ${ }^{25}$ M. D. Peters ${ }^{18}$ T. J. PhillipsI ${ }^{87}$ G. Piacentinol ${ }^{27}$ M. PillaiI ${ }^{30}$ K. T. PittsI R. Plunkett Γ^{7} L. PondromI ${ }^{38}$ J. Proudfoot ${ }^{18}$ F. Ptohos ${ }^{[1}$ G. Punzi \mathbb{I}^{27} K. Ragan ${ }^{\dagger 4}$ D. Reher ${ }^{18}$ A. Ribon ${ }^{185}$ F. RimondiI I^{2} L. Ristori ${ }^{27}$ W. J. RobertsonI ${ }^{6}$ T. Rodrigo ${ }^{27}$ S. Rolli ${ }^{37}$ J. Romano ${ }^{5}$ L. Rosenson Γ^{19} R. Roser ${ }^{[3}{ }^{3}$ T. SaabI ${ }^{4}$ W. K. Sakumoto ${ }^{30}$ D. Saltzberg ${ }^{5}$ A. Sansonil ${ }^{9}$ L. Santi ${ }^{27}$ H. SatoI ${ }^{36}$ P. Schlabach Γ^{7} E. E. Schmidt Γ^{7} M. P. Schmidt ${ }^{39}$ A. Scribanol ${ }^{27}$ S. Segler ${ }^{7}$ S. SeidelI ${ }^{22}$ Y. SeiyaI ${ }^{36}$ G. Sganos ${ }^{54}$ M. D. ShapiroI ${ }^{48}$ N. M. Shaw ${ }^{29}$ Q. Shen ${ }^{79}$ P. F. ShepardI ${ }^{28}$ M. Shimojima ${ }^{36}$ M. Shochet ${ }^{5}$ J. Siegrist I^{18} A. SillI ${ }^{35}$ P. SinervoI ${ }^{~}{ }^{4}$ P. SinghI ${ }^{28}$ J. SkarhaI ${ }^{55}$ K. SliwaI ${ }^{37}$ F. D. SniderI ${ }^{55}$ T. SongI ${ }^{20}$ J. Spalding ${ }^{7}$ T. SpeerI ${ }^{\ddagger 0}$ P. Sphicas ${ }^{1^{9}}$ F. Spinella ${ }^{27}$ M. SpiropuluI ${ }^{\dagger 1}$ L. Spiegel ${ }^{77}$ L. StancoI ${ }^{25}$ J. Steele ${ }^{38}$ A. Stefanini ${ }^{27}$ K. Strahl Γ^{4} J. Strait Γ^{7} R. Ströhmer $\Gamma^{7 a}$ D. Stuart Γ^{7} G. SullivanI ${ }^{5}$ K. Sumoroki ${ }^{19}$ J. Suzuki ${ }^{36}$ T. Takada ${ }^{36}$ T. Takahashi ${ }^{24}$ T. TakanoI ${ }^{36}$ K. Takikawa ${ }^{36}$ N. Tamura ${ }^{\dagger 2}$ B. Tannenbaum ${ }^{22}$ F. Tartarelli ${ }^{27}$ W. Taylor ${ }^{[14}$ P. K. Teng P^{33} Y. Teramoto \mathbb{I}^{24} S. Tether Γ^{9} D. Theriot Γ^{7} T. L. Thomas \mathbb{I}^{22} R. Thun ${ }^{20}$ R. Thurman-Keup Γ^{1} M. Timko P^{37} P. Tipton I^{30} A. Titov ${ }^{31}$ S. Tkaczyk Γ^{7} D. Toback Γ^{5} K. TollefsonI ${ }^{30}$ A. TollestrupI ${ }^{7}$ H. ToyodaI ${ }^{24}$ W. TrischukI ${ }^{44}$ J. F. de TroconizI ${ }^{1}$ S. TruittI ${ }^{20}$ J. Tseng T^{19} N. Turini ${ }^{27}$ T. Uchidal ${ }^{36}$ N. Uemura ${ }^{36}$ F. Ukegawal ${ }^{26}$
 R. VidalI Γ^{7} R. Vilar $\Gamma^{7 a}$ M. Vondracek Γ^{13} D. Vucinic Γ^{19} R. G. Wagner ${ }^{1}$ R. L. Wagner Γ^{7} J. Wahlㅍ N. B. Wallace ${ }^{27}$ A. M. WalshP ${ }^{32}$ C. WangI ${ }^{6}$ C. H. Wang ${ }^{33}$ J. WangP ${ }^{5}$ M. J. WangI ${ }^{33}$ Q. F. Wang ${ }^{31}$ A. WarburtonI ${ }^{44}$ T. Watts ${ }^{32}$ R. Webbr ${ }^{34}$ C. Weil ${ }^{6}$ H. Wenzel ${ }^{16}$ W. C. WesterГIIII A. B. WicklundI ${ }^{1}$ E. WicklundI ${ }^{7}$ R. Wilkinson ${ }^{26}$ H. H. Williams I^{26} P. WilsonI ${ }^{5}$ B. L. Winer I^{23} D. Winn ${ }^{20}$ D. WolinskiI ${ }^{20}$ J. Wolinski ${ }^{21}$ S. Wormi ${ }^{22}$ X. WuI ${ }^{10}$ J. Wyss 1^{25} A. Yagill ${ }^{7}$ W. YaoI ${ }^{18}$ K. Yasuoka ${ }^{36}$ Y. YeI ${ }^{{ }^{4}}$ G. P. Yeh Γ^{7} P. Yehr ${ }^{33}$ M. YinI ${ }^{6}$ J. Yoh Γ^{7} C. Yosef ${ }^{21}$ T. Yoshida ${ }^{24}$ D. Yovanovitch Γ^{7} I. YuI ${ }^{7}$ L. YuI ${ }^{22}$ J. C. YunI ${ }^{\overline{7}}$ A. ZanettiI ${ }^{27}$ F. ZettiI ${ }^{27}$ L. Zhang ${ }^{38}$ W. Zhang ${ }^{26}$ and S. Zucchelli ${ }^{2}$

(CDF Collaboration)

[^0]
Contents

Acknowledgements iv
1 Theoretical Context and Overview 1
1.1 The Standard Model 2
$1.2 \quad \Gamma_{W}$ in the Standard Model 7
1.3 Overview of the analysis 8
$2 W$ and Z Production and Decay at a $p \bar{p}$ Collider 11
3 Experimental Setup 19
3.1 Tevatron 19
3.2 CDF detector 20
3.2.1 Coordinate system 20
3.2.2 Solenoid 21
3.2.3 VTX 22
3.2.4 CTC 22
3.2.5 SVX 25
3.2.6 Calorimetry 25
3.2.7 CEM 26
3.3 Trigger and DAQ 28
3.3.1 Central electron triggers 29
3.4 Data handling 31
3.4.1 Offline reconstruction 31
3.4.2 Central electron datasets 31
3.4.3 Inferred electron and neutrino momenta 32
3.4.4 Fiducial requirements 33
3.4.5 Electron identification 35
3.4.6 Corrections applied to the data 36
4 Event Selection 38
4.1 $Z \rightarrow e e$ candidate selection 38
4.2 Inclusive electron candidate selection 44
$4.3 W \rightarrow e \nu$ candidate selection 44
4.4 Checks of $W \rightarrow e \nu$ event selection 46
$5 W$ and Z Lineshape Simulation 52
5.1 Event generation 52
5.2 Detector simulation overview 53
5.3 Simulating $N_{\text {cone }}$ with W events 54
5.4 Tuning the simulation 57
5.4.1 Electron energy scale 57
5.4.2 Electron resolution 59
5.4.3 $W p_{T}$ distribution 59
5.5 Recoiling hadrons 66
5.5.1 Shape of resolution function 67
5.5.2 Fit of resolution function to Z data 67
5.5.3 Results of the recoil model 73
5.6 Checking the simulation 74
5.6.1 Comparisons with the data 74
5.6.2 Checks with QFL 78
6 Backgrounds 83
6.1 $Z \rightarrow e e$ 83
6.1.1 $Z \rightarrow e e$ removal 83
6.1.2 Residual $Z \rightarrow e e$ background 84
6.2 Multijet background 86
6.2.1 Track isolation 86
6.2.2 Residual QCD background 87
$6.3 W \rightarrow \tau \nu \rightarrow e \nu \nu \nu$ 89
6.4 Cosmic rays 89
6.5 Summary of backgrounds 90
7 Extracting Γ_{W} from the Data 107
7.1 Fitting for Γ_{W} 107
7.2 Sources of error 107
8 Conclusions 113
Bibliography 116
A Details for CDF Physicists 122
B Detector Simulation 124
C QCD Background Model 131
D CTC Alignment 145
D. 1 Introduction 146
D. 2 Alignment procedure 151
D. 3 Results 154
D. 4 SVX/CTC global alignment 164
D. 5 Bibliography 169

List of Tables

1.1 Electroweak boson-fermion couplings 4
1.2 Standard Model particle content 4
2.1 $W \rightarrow e \nu$ events recorded by various experiments 17
4.1 $Z \rightarrow e e$ selection criteria 39
4.2 $Z \rightarrow e e$ candidates surviving electron ID cuts on first electron 39
4.3 $Z \rightarrow e e$ candidates surviving electron ID cuts on second electron 40
4.4 Inclusive electron selection for dijet background study 44
4.5 $W \rightarrow e \nu$ selection criteria 45
4.6 Checks of W event selection 47
5.1 Combined $N_{\text {cone }}$ prediction 57
5.2 CEM scale vs. cuts 58
5.3 CEM resolution vs. cuts 59
6.1 Number of $Z \rightarrow$ electron + track events found by region 85
6.2 $N_{\text {cone }}$ distributions of background-enriched samples 88
6.3 Summary of background estimates 90
7.1 Systematic error from PDF choice 110
7.2 Summary of uncertainties 112
A. 1 Electron fiducial cut failures in QFL 123
D. 1 Events passing successive selection cuts 152
D. 2 False curvatures in Ib W electrons Γ before and after Ib alignment 161

List of Figures

1.1 Simulated $M_{T}(e, \nu)$ lineshapes for a range of Γ_{W} values 10
2.1 Parton luminosity vs. $u \bar{d}$ mass 12
2.2 Lowest-order W and Z diagrams 13
$2.3 W$ production rate vs. off-shell mass 13
2.4 Final state photon radiation diagrams 14
2.5 Diagrams giving nonzero W transverse momentum 15
2.6 Jacobian peak in M_{T} spectrum 18
3.1 CDF detector 20
3.2 CTC endplate geometry 23
3.3 CTC cell geometry 24
3.4 Tower geometry of CDF calorimetry 26
3.5 CEM wedge 27
3.6 CEM ϕ crack response in test beam 34
4.1 Dielectron mass spectrum after minimal filtering 42
4.2 OS and LS dielectron mass spectra before electron ID 42
4.3 OS and LS dielectron mass spectra after ID cuts on one leg 43
4.4 OS and LS dielectron mass spectra after ID cuts on both legs 43
4.5 Inclusive electron E_{T} spectrum 46
$4.6 u$ distributions for signal and background 49
$4.7 \quad M_{T}(e, \nu)$ spectrum for $W \rightarrow e \nu$ candidates 50
4.8 W candidate event display 51
$5.1 \quad N_{\text {cone }}$ distribution in SSD Z events 55
$5.2 \quad N_{\text {cone }}$ distributions predicted by W list 56
5.3 Likelihood fits to CEM scale and resolution 60
$5.4 Z \rightarrow e e$ mass spectrum compared to simulation 61
5.5 Variation of p_{T} and $\Delta \phi$ spectra with g_{2} 62
5.6 Likelihood fits to p_{T} and $\Delta \phi$ spectra 63
5.7 Data and MC p_{T} and $\Delta \phi$ spectra 64
5.8 Fit for $Z p_{T}$ skew parameter 65
5.9 Variation of $W p_{T}$ spectrum with mass 66
5.10 Fit to minimum-bias resolution vs. ΣE_{T} 68
5.11 Fit to $Z \rightarrow e e \Sigma E_{T}$ spectrum 68
5.12 Resolution function S_{MB} 69
5.13 Response and resolution functions 70
5.14 Recoil response for Z data and MC 71
5.15 Recoil resolution for Z data and MC 72
$5.16 u$ and u_{1} for Z data and MC 73
5.17 Measured recoil in W data and MC 75
$5.18 u_{\|}$and u_{\perp} in W data and MC 76
$5.19 u_{\|}$vs. $u \Gamma u_{\|}$vs. $M_{T} \Gamma$ and $\Delta \phi(e, u)$ in W data and MC 77
$5.20 z$-vertex and ϕ_{0} and data and MC 78
$5.21 z$ at CES and at CTC SL8 in data and MC 79
5.22 Checks of Z polarization and rapidity 80
$5.23 E_{T}$ and $\not{ }_{T}$ for W data and MC 81
$6.1 \Delta \phi(e e)$ for Z events 84
6.2 $Z \rightarrow e e$ removal 91
6.3 Z removal in data and simulation 92
6.4 Track efficiency in 30° crack region 93
6.5η of lost Z electrons in QFL 94
6.6 Predicted lost- Z distributions 95
6.7 E_{T} distributions for various $N_{\text {cone }}$ values 96
$6.8 N_{\text {cone }}$ in Z data 97
$6.9 N_{\text {cone }}$ in Z data (loose electron ID) 98
$6.10 N_{\text {cone }}$ in W data 99
6.11 M_{T} for isolated and non-isolated W candidates 100
6.12 Predicted QCD background shape 101
6.13 $W \rightarrow \tau \rightarrow e$ background 102
$6.14 d_{\text {beam }}$ tails in $Z \rightarrow e e$ data 103
6.15 Event display of cosmic-ray candidate 104
6.16 Events with large $\left|d_{\text {beam }}\right|$ in W data 105
6.17 Shapes and sizes of predicted backgrounds 106
$7.1-2 \log (L)$ vs. Γ_{W} 108
7.2 Data with best fit overlayed 109
8.1 Comparison with other measurements 115
B. 1 CDF detector geometry in SSD simulation 125
C. $1 E_{T}$ for electrons with and without conversion partners 133
C. $2 \mathbb{E}_{T}$ for conversions after trident removal 134
C. 3 Conversion radius for electrons with LS and OS partners 136
C. 4 Conversion events vs. W sample 137
C. 5 Fit to conversion E_{T} spectrum 138
C. 6 Fit to conversion $x_{| |}$spectrum 139
C. $7 x_{\| \mid}$fit vs. E_{T} window 140
C. 8 Fit to conversion u_{\perp} spectrum 141
C. 9 Conversion data vs. Monte Carlo 142
C. 10 Predicted QCD background shapes after $E_{T}>25 \mathrm{GeV}$ cut 143
C. 11 Background shapes after $E_{T}>25 \mathrm{GeV} \Gamma u<20 \mathrm{GeV}$ cuts 144
D. 1 Exaggerated endplate twist 147
D. 2 Run Ia ϕ offset vs. layer 148
D. 3 Run Ia $r_{i} \frac{d \varphi_{i}}{d z}$ vs. layer 150
D. $4\left\langle z_{\mathrm{CTC}}-z_{\mathrm{VTVZ}}\right\rangle$ vs. z_{VTVZ} 155
D. $5 r_{i} \Delta \varphi_{i}$ for east and west endplates 156
D. $6 J / \psi$ residuals with new alignment Γ original calibration 157
D. $7 J / \psi$ residuals with new alignment Γ new calibration 158
D. 8 Ia vs. Ib alignment Γ before and after recalibration 159
D. $9 r_{i} \frac{d \varphi_{i}}{d z} \Gamma \mathrm{Ia}$ vs. Ib 160
D. $10 W \rightarrow e \nu$ residuals Γ before and after realignment and recalibration 161
D. $11 \cot \theta$ scale factor Γ Ia vs. Ib alignment 162
D. 12 CTC impact parameter with respect to SVX beamline 163
D. 13 False curvature vs. ϕ 165
D. 14 Beam position used in CTC beam constraint vs. SVX database 166
D. 15 CTC and SVX impact parameters vs. ϕ. 167
D. 16 CTC and SVX fitted beam positions 168

Chapter 1

Theoretical Context and Overview

People seem to have an innate desire to understand the world in which they live. What are the constituents of air Γ water Γ and earth? Why does the sun shine? In searching for answers to questions such as these Γ scientists have been guided by emerging patterns. The fractions of elements that combine to form a chemical compound are ratios of small integers. Densities of many gases (at a given temperature and pressure) are approximately integer multiples of one-half the density of hydrogen gas. Elements can be arranged in an orderly table by atomic weight and by chemical properties. These patterns and others led to the nineteenth-century atomic model of chemistry. (Many physicists were not convinced of the atomic hypothesis until Einstein invoked it to explain Brownian motion-the random motion of a (small) macroscopic objectГsuch as a speck of dustГsuspended in a liquid.)

The knowledge that matter is composed of atoms leads to a more fundamental question: What is the nature of atoms? The model that emerged in the early twentieth century placed light Γ negatively charged electrons in orbit around a massive nucleus that contains positively charged protons and electrically neutral neutrons. The quantum-mechanical description of such a system elegantly explains the structure of the periodic table of the elements.

This model leads to further questions: How are neutrons and protons related? What force overcomes the electrical repulsion of protons in the nucleus? Are the electrons Γ protons Γ and neutrons themselves pieces in a different kind of periodic table?

Particle physics endeavors to find and to study the most fundamental building blocks of matter and the forces by which they interact. The picture that has evolved thus far has many intriguing properties: particles with fractional electric charge Γ particles that are just like electrons but heavierГparticles that can only be found in bound states with other particles. BelowTwe briefly describe the present state of the art in particle physics known as the Standard Model.

1．1 The Standard Model

There are four known forces in nature：gravity Γ the electromagnetic force Γ the weak nuclear force（responsible for β decay）Гand the strong nuclear force（whose residual effects bind the protons and neutrons in the nucleus）．While gravity is extremely important in the macroscopic worldГat the subatomic level its effects are negligible in comparison with the other three forces Γ so we neglect it in the following discus－ sion．${ }^{(1)}$ In relativistic quantum mechanics（the analog of Newtonian mechanics for the subatomic world） Fforces are described as the exchange of particles．

The Standard Model comprises two theories：the Glashow－Weinberg－Salam［1 Γ $2 \Gamma 3]$（GWS）model of the weak and electromagnetic interactions and quantum chromodynamics $[4 \Gamma 5 \Gamma 6](\mathrm{QCD}) \Gamma$ which describes the strong interaction．In the Standard Model Γ the electromagnetic force is carried by the massless photon；the weak force is carried by the three massive $W^{ \pm}$and Z^{0} particles；and the strong force is carried by eight massless gluons．

The known particles can be divided into two classes：fermions Γ which have half－ integer spin（intrinsic angular momentum）and obey the Pauli exclusion principle； and bosons Γ which have integer spin．All force carriers are bosons．Electrons Γ protons Γ and neutrons are all fermions．Every fermion has a corresponding an－ tiparticleГof opposite electric charge：the positron「antiproton「and antineutron are antiparticles of the electron「proton「and neutron．${ }^{(2)}$ While electrons appear to be fundamental particles Γ protons and neutrons are in fact bound states of three quarks （uud and $u d d \Gamma$ respectively）．

While only two quarks Γu and $d \Gamma$ are present in ordinary matter Γ there are in fact six known quarks $\Gamma d \Gamma \mu \Gamma \Gamma c \Gamma b \Gamma$ and $t \Gamma$ whose masses range from $\sim 0.005 \mathrm{GeV}$ to $175 \mathrm{GeV} .{ }^{(3)}$ In addition to the proton and neutron Γ dozens of other bound states of three quarks－collectively known as baryons－exist Γ but all have much shorter lifetimes than the proton（which appears to be stable：$\tau>10^{31}$ years） and the neutron（ $\tau \approx 15$ minutes Γ or longer when bound inside a nucleus）．Many bound states of a quark and an antiquark－called mesons－also exist Γ but all are short－lived（ $<10^{-7}$ seconds）．Whereas the electromagnetic force couples to electric charge Γ the strong force couples to a quantity called color charge Γ which（unlike electric charge）comes in three varieties Γ called redГgreenГand blue．${ }^{(4)}$ Quarks are either redГblueГor green；antiquarks are either anti－redГanti－blueГor anti－green．A

[^1]net color of zero can be made by combining a particle and antiparticle of opposite color (e.g. red and anti-red) or by combining equal amounts of red Γ green Γ and blue. Thus Γ colorless bound states can be formed from three quarks Γ from three antiquarks Γ or from a quark and an antiquark. A peculiar property of the strong force is that its strength increases as the distance between two particles of nonzero color charge increases. Thus Γ quarks never appear in isolation. We can assign each quark a "baryon number" $B=+1 / 3$ and each antiquark $B=-1 / 3$. For reasons that are not understood Γ baryon number is (additively) conserved by all known interactions. ${ }^{(5)}$

The electron Γ an essential constituent of ordinary matter Γ turns out to be only one of three charged leptons. The muon and the tau lepton are like the electron but 200 times and 2500 times heavier Γ respectively. In addition Γ there are three corresponding neutral leptons Γ the electron neutrino Γ the muon neutrino Γ and the tau neutrino Γ whose masses are very small-possibly zero. Leptons are assigned "lepton number" $L=+1$ and antileptons are assigned $L=-1$; the sum of L values is conserved by all known interactions. In fact Γ separate lepton numbers for each generation $\Gamma L_{e} \Gamma L_{\mu} \Gamma$ and $L_{\tau} \Gamma$ appear to be individually conserved. While there is no known reason for L conservation Γ if L is conserved then $L_{e} \Gamma L_{\mu} \Gamma$ and L_{τ} will be separately conserved if neutrinos are massless.

Both quarks and leptons couple to the photon in proportion to their electric charge. The Z^{0} boson couples to fermions in proportion to a combination of electric charge and another property called weak isospin $\left(T_{3}\right)$. The $W^{ \pm}$boson couples to the left-handed component of each fermion with equal strength (with a coupling that is closely related to the electron's electric charge) and does not couple at all to the right-handed component of each fermion. ${ }^{(6)}$ The W is the only particle whose interactions change particle flavor-changing a charged lepton to a neutral lepton or an up-type ($T_{3}=+1 / 2$) quark to a down-type $\left(T_{3}=-1 / 2\right)$ quark. Only specific pairs of fermions (called isospin doublets) are connected by interaction with a W : $\left(\nu_{e}, e\right) \Gamma\left(\nu_{\mu}, \mu\right) \Gamma\left(\nu_{\tau}, \tau\right) \Gamma\left(u, d^{\prime}\right) \Gamma\left(c, s^{\prime}\right) \Gamma$ and $\left(t, b^{\prime}\right) \Gamma$ where

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

The change of basis $V_{i j}$ is called the CKM matrix [8Г9]. Another particleГthe Higgs bosonΓ as yet undiscovered Γ couples to the $W^{ \pm} \Gamma Z^{0} \Gamma \gamma \Gamma$ and all fermions; the coupling to each fermion is in proportion to its mass. We summarize the couplings of $\gamma \Gamma W^{ \pm} \Gamma$

[^2]| | f_{L} | f_{R} |
| :---: | :---: | :---: |
| γ | $e Q$ | $e Q$ |
| $W^{ \pm}$ | $g_{W} / \sqrt{2}$ | 0 |
| Z^{0} | $g_{Z}\left(Q \sin ^{2} \theta_{W}-T_{3}\right)$ | $g_{Z} Q \sin ^{2} \theta_{W}$ |

Table 1.1: Standard Model electroweak boson-fermion couplings. Note $g_{W}=e / \sin \theta_{W}$ and $g_{Z}=e / \sin \theta_{W} \cos \theta_{W} . f_{L}$ and f_{R} refer to left-handed and right-handed fermions.

quarks (spin 1/2)			$Q \quad T_{3}^{L}$
$\begin{gathered} u \\ 5 \mathrm{MeV} \end{gathered}$	$\begin{gathered} c \\ 1.3 \mathrm{GeV} \end{gathered}$	$\begin{gathered} t \\ 175 \mathrm{GeV} \end{gathered}$	$+2 / 3 \quad+1 / 2$
20 MeV	$\begin{gathered} s \\ 200 \mathrm{MeV} \end{gathered}$	$\begin{gathered} b \\ 4.3 \mathrm{GeV} \end{gathered}$	$-1 / 3-1 / 2$
leptons (spin 1/2)			$Q \quad T_{3}^{L}$
$\begin{gathered} \nu_{e} \\ <15 \mathrm{eV} \end{gathered}$	$\begin{gathered} \nu_{\mu} \\ <0.2 \mathrm{MeV} \end{gathered}$	$\begin{gathered} \nu_{\tau} \\ <24 \mathrm{MeV} \end{gathered}$	$0+1 / 2$
$\begin{gathered} \hline e \\ 0.511 \mathrm{MeV} \end{gathered}$	$\begin{gathered} \mu \\ 106 \mathrm{MeV} \end{gathered}$	$\begin{gathered} \tau \\ 1.78 \mathrm{GeV} \end{gathered}$	$\begin{array}{ll}-1 & -1 / 2\end{array}$
gauge bosons (spin 1)		Higgs boson (spin 0)	
$\gamma \quad W^{ \pm}$	Z^{0}	g	$\left(H^{0}\right)$
$0 \quad 80.3 \mathrm{GeV}$	91.187 GeV	0	>0 GeV

Table 1.2: Standard Model particle content. The approximate mass of each particle is listed below its name. For fermions Γ the electric charge (Q) is given Γ as well as the weak isospin assignment (T_{3}) for the left-handed fermion. (Right-handed fermions have $T_{3}=0 \Gamma$ and right-handed neutrinos may not exist.) The Higgs boson is undiscovered; if it exists Γ its mass must be between 60 GeV and about 1000 GeV . Each quark comes in three distinct color states.
and Z^{0} to fermions in Table 1.1.
Some properties of the known particles (and of the unknown Higgs boson) are summarized in Table 1.2. The particles in this table are .as far as we know Γ fundamental particles. ${ }^{(7)}$ The fact that each set of quarks and leptons is repeated three times Γ however Γ suggests that someday a deeper connection may be found Γ as with the various elements in the periodic table. Although there are three generations each of quarks and leptons Γ there is no known connection between generation i ($i=1,2,3$) of quarks and generation i of leptons.

[^3]The tidy arrangement of known particles and interactions into Tables 1.1 and 1.2 is the result of many decades of experimental and theoretical work．${ }^{(8)}$ We can trace the theory of weak interactions back to 1930 एwhen Pauli introduced the neutrino to explain the broad electron energy spectrum observed in nuclear β decay．In 1933Γ Fermi modeled weak interactions as a vector coupling of two fermionic currents Γ by analogy with quantum electrodynamics．To model the short－range behavior of the weak force Γ Fermi replaced the dimensionless coupling（ $\alpha \approx \frac{1}{137}$ ）and long－range interaction $\left(\frac{1}{q^{2}}\right)$ of QED with the dimensionful coupling of a point－like interaction $\left(G \approx \frac{10^{-5}}{M_{p}^{2}}\right)$ ．The same ${ }^{(9)}$ Fermi coupling constant G explained nuclear β decay rates Γ $\Gamma \propto G^{2}(\Delta E)^{5} \Gamma$ and the decay rate of the muon $\Gamma \Gamma \propto G^{2} M_{\mu}^{5}$ ．In 1956Γ motivated by a puzzle in which two particles of opposite parity appeared to have the same mass and lifetime $\Gamma^{(10)}$ Lee and YangГin a thorough analysis of the experimental literature Γ found no evidence for the widely－held belief that weak interactions conserve parity （mirror symmetry）．In 1957Γ C．S．Wu et al［11］observed a large parity－violating asymmetry in β decay of polarized Co^{60} nuclei；shortly thereafter Γ parity violation was observed at accelerators in the $\pi^{ \pm} \rightarrow \mu \nu \rightarrow e \nu \nu \nu$ decay chain by GarwinГLeder－ man「and Weinrich［12］and by Friedman and Telegdi［13］．These experiments「and others in which the helicities of β decay products were measured Γ established the $V-A$（vector minus axial－vector）form of the leptonic coupling in weak interactions Γ proposed by Feynman and Gell－Mann and by Sudarshan and MarshakГto replace the vector coupling of the original Fermi model．The $V-A$ coupling explains Γ among many other things Γ why $\frac{\Gamma\left(\pi^{ \pm} \rightarrow e \nu\right)}{\Gamma\left(\pi^{ \pm} \rightarrow \mu \nu\right)} \sim 10^{-4}$ ．The study of strange particle decays in the 1950s and 60s required another extension to Fermi＇s theory：introduction of the Cabibbo mixing angle $\Gamma \theta_{C} \approx 0.22 \Gamma$ relating strangeness－changing and strangeness－ conserving weak hadronic currents．${ }^{(11)}$ With these modifications ${ }^{(1)}$ the Fermi theory survives as a useful phenomenological model for low－energy $\left(q^{2} \ll M_{W}^{2}\right)$ weak inter－ actions．

In the early 1960s Γ particle theorists searched for a model of weak interactions that would make sensible predictions at high energy and beyond first order in pertur－ bation theory（the latter property is called renormalizability）．An aesthetic desire to unify the weak and electromagnetic forces within a single symmetry group led Glashow Γ Weinberg「and Salam to the solution．

Both QCD and the GWS model are＂gauge theories＂based on symmetry groups $S U(3)$ and $S U(2) \otimes U(1)$ 「respectively．In a gauge theory Гthe force－carrying particles （gauge bosons）correspond to the generators of the gauge symmetry groupГand the allowed set of couplings（interactions）between particles is fixed by the requirement that the Lagrangian be locally invariant under symmetry group transformations．${ }^{(12)}$

[^4]The GWS model describes the interactions of massless leptons and quarks with four massless vector bosons: $B^{0} \Gamma$ corresponding to the one generator of $U(1) \Gamma$ and $W^{0} \Gamma W^{ \pm} \Gamma$ corresponding to the three generators of $S U(2)$. Particle mass terms are excluded because they break the electroweak gauge symmetry. The parity-violating $V-A$ form of the weak interaction is incorporated by assigning left-handed fermions to weak-isospin doublets ($T_{3}= \pm 1 / 2$) and right-handed fermions to weak-isospin singlets $\left(T_{3}=0\right)$. The masses are then generated dynamically through interactions with an additional particleГthe Higgs boson. It was suspected by Weinberg「and proven by 't Hooft in 1971Γ that including the masses in this manner would leave the theory renormalizable. The Higgs mechanism mixes the B^{0} and W^{0} states into a massless state A (the photon) and a massive state Z^{0} (the Z boson):

$$
\begin{aligned}
A_{\mu} & =\cos \theta_{W} B_{\mu}^{0}+\sin \theta_{W} W_{\mu}^{0} \\
Z_{\mu} & =\cos \theta_{W} W_{\mu}^{0}-\sin \theta_{W} B_{\mu}^{0}
\end{aligned}
$$

While the mixing angle θ_{W} is not specified by the theory Γ the same mixing angle relates both the masses and the couplings of the W and Z bosons: $M_{W} / M_{Z}=\cos \theta_{W}$ and $g_{W} / g_{Z}=\cos \theta_{W}$. The W coupling g_{W} is also related to the fundamental unit e of electric charge: $e=g_{W} \sin \theta_{W}{ }^{(13)}$ The point-like Fermi coupling G corresponds to the exchange of a massive vector boson $\Gamma \frac{g_{W}^{2}}{q^{2}-M_{W}^{2}} \rightarrow g_{W}^{2} / M_{W}^{2}$ at low q^{2}. ${ }^{(14)}$

Since its birth in the 1960s「the Glashow-Weinberg-Salam model of electroweak interactions has survived a remarkable series of experimental tests. Its prediction of weak neutral currents Γ introduced on theoretical grounds alone Γ was confirmed with the observation of $\nu_{\mu} N \rightarrow \nu_{\mu}+$ hadrons scattering in the Gargamelle bubble chamber at CERN in 1973 [14]. A central prediction of the theory-that the mixing angle θ_{W} relating weak and electromagnetic charges also relates the masses of the W and Z bosons-was spectacularly confirmed when the W and Z were discovered [15] in 1983 at the first $p \bar{p}$ colliderГCERN's $S p \bar{p} S$ Гat the masses predicted from neutrinoscattering data and the muon lifetime.

Experimental tests of the Standard Model have now reached a level of precision at which loop diagrams must be considered. For instance Donce the remarkably precise experimental values for $\alpha^{-1}=137.0359895(61) \Gamma G_{F}=1.16639(1) \times 10^{-5} \mathrm{GeV}^{-2} \Gamma$ and $M_{Z}=91.1867(20) \mathrm{GeV}$ [16] are specified Γ the W mass can be predicted. The prediction Γ however Γ includes radiative corrections proportional to $\left(\frac{m_{\text {top }}}{M_{Z}}\right)^{2}$ and $\log \left(\frac{M_{\mathrm{higgs}}}{M_{Z}}\right)[17]$. Measuring the W mass directly at the 1% level probes these radiative corrections. Similarly Γ measuring $\frac{\Gamma(Z \rightarrow b \bar{b})}{\Gamma(Z \rightarrow \text { hadrons })}$ at the 1% level probes loop
replaces p_{μ} with $p_{\mu}-e A_{\mu}$ in the Lagrangian, giving the electron-photon coupling term.
${ }^{(13)}$ These relations are modified somewhat by loop corrections. The relation $g_{W} / g_{Z}=M_{W} / M_{Z}$ receives a roughly 1% correction due to the mass of the top quark and a several-percent correction due to the running of α_{EM} as a function of q^{2}.
${ }^{(14)}$ Including the constants, $\frac{G}{\sqrt{2}}=\frac{g_{W}^{2}}{8 M_{W}^{2}}$.
corrections proportional to $\left(\frac{m_{\text {top }}}{M_{z}}\right)^{2} \Gamma$ and is potentially sensitive to the presence of new particles-such as a charged Higgs boson $H^{ \pm}$predicted by many supersymmetric models - that would reveal their existence through loop effects [18]. For a recent review of the Electroweak Standard ModelГsee Ref. [16].

Despite its tremendous success Γ the Standard Model must be incomplete. The Higgs boson has not yet been found Γ and it is likely that many other new particles will be discovered along with it. ${ }^{(15)}$

1.2 Γ_{W} in the Standard Model

At tree level (lowest order in perturbation theory) in the Standard Model Γ the partial width $\Gamma(W \rightarrow e \nu)$ is calculated to be $\Gamma_{e \nu}=\frac{g^{2} M_{W}}{48 \pi} \Gamma^{(16)}$ which we can rewrite as

$$
\begin{equation*}
\Gamma_{e \nu}=\frac{G_{F} M_{W}^{3}}{6 \pi \sqrt{2}} \tag{1.1}
\end{equation*}
$$

using $\frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 M_{W}^{2}}$. When experimental values for G_{F} (measured in muon decay) and M_{W} (measured at S $\overline{\mathrm{p}} \mathrm{pS}$ Гthe Tevatron Γ and LEP II) are used in Equation 1.1 Γ Standard Model radiative corrections are calculated by Rosner et al [20] to be less than $\frac{1}{2} \%$ Гand the predicted partial width is [20Г21]

$$
\begin{equation*}
\Gamma_{e \nu}=226 \pm 1 \mathrm{MeV} \tag{1.2}
\end{equation*}
$$

where the uncertainty is dominated by the experimental precision on M_{W}. With three leptonic decay channels and two hadronic decay channels (times three colors) Γ the branching ratio $B(W \rightarrow e \nu)$ is naively $\frac{1}{9}$. Including the QCD correction factor $1+\frac{\alpha_{s}\left(M_{W}\right)}{\pi}+1.409\left(\frac{\alpha_{s}}{\pi}\right)^{2}-12.77\left(\frac{\alpha_{s}}{\pi}\right)^{3}$ for the quark modes Γ the Standard Model prediction for the total width is [20Г21]

$$
\begin{equation*}
\Gamma_{W}=2.09 \pm 0.01 \mathrm{GeV} \tag{1.3}
\end{equation*}
$$

(Note that the QCD loop effects are a 2.5% correction.)
Because radiative corrections to the W boson propagator-such as $t \bar{b} \Gamma W Н Г a n d$ $W \gamma$ loops-affect Γ_{W} and M_{W} in the same manner Γ these corrections are absorbed into M_{W} when the measured W mass is used in Equation 1.1. Thus Γ within the Standard Model $\Gamma \Gamma_{W}$ is extremely well predicted. The measurement described in this dissertation is an experimental test of that prediction.

[^5]
1.3 Overview of the analysis

This measurement uses a relatively novel method Γ outlined in Ref. [20] and first employed in Ref. [22] by CDF Cto measure Γ_{W} directly from the $M_{T}(e, \nu)$ lineshape. Many authors ${ }^{(17)}$ have noted that a Γ_{W} measurement from the M_{T} lineshape is possible Γ and most M_{W} measurements to date have quoted a fitted value for $\Gamma_{W} \Gamma$ but these values have usually been quoted either with large systematic errors or (equivalently) with no estimate of systematic errors. The trick that makes the lineshape method feasible is to observe that the Breit-Wigner (width) component of the high M_{T} lineshape falls off much more slowly than the Gaussian (resolution) component. ${ }^{(18)}$ By comparing the $M_{T} \gg M_{W}$ region to the peak region Γ one is sensitive to Γ_{W} but relatively insensitive to the systematic uncertainties in detector resolution-particularly calorimeter response to $p_{T}(W)$-that make a measurement of Γ_{W} in the region $M_{T} \approx M_{W}$ difficult. Figure 1.1 illustrates the variation of the M_{T} lineshape with Γ_{W}.

Historically Γ most W width measurements have used a different method. The most precise experimental values for Γ_{W} to date have been extracted from the ratio

$$
\begin{aligned}
R & =\frac{\sigma \cdot B(\bar{p} p \rightarrow W \rightarrow l \nu)}{\sigma \cdot B(\bar{p} p \rightarrow Z \rightarrow l l)} \\
& =\frac{\sigma(\bar{p} p \rightarrow W X)}{\sigma(\bar{p} p \rightarrow Z X)} \cdot \frac{\Gamma(W \rightarrow l \nu)}{\Gamma(Z \rightarrow l l)} \cdot \frac{\Gamma_{Z}}{\Gamma_{W}} \\
& =\frac{\sigma(W)}{\sigma(Z)} \cdot \frac{\Gamma_{Z}}{\Gamma(Z \rightarrow l l)} \cdot B(W \rightarrow l \nu)
\end{aligned}
$$

by using the LEP value of $\frac{\Gamma(Z \rightarrow l l)}{\Gamma_{Z}}$ and a theoretical calculation of $\frac{\sigma(W)}{\sigma(Z)}$ to obtain the branching ratio $B(W \rightarrow l \nu)$. One then divides the Standard Model value for $\Gamma(W \rightarrow l \nu)$ by this branching ratio to find Γ_{W}. Because $\Gamma(W \rightarrow e \nu)$ is taken from a calculation ΓR is usually interpreted as a measurement of the branching ratio $\frac{\Gamma_{W}}{\Gamma(W \rightarrow e \nu)}$ rather than a measurement of the W coupling strength $g_{W} \cdot{ }^{(19)}$ Since numerically $R \approx 11 \Gamma$ the R method determines Γ_{W} with a statistical precision dominated by the number of available Z events: $\frac{\sigma_{R}}{R} \approx \frac{1}{\sqrt{N_{Z \rightarrow e e}}} \approx 1.4 \%$ for a $90 \mathrm{pb}^{-1}$ data sample [25].

The direct Γ_{W} measurement complements the standard R measurement in several ways:

- Theoretical input for $\frac{\sigma(W)}{\sigma(Z)}$ and $\Gamma(W \rightarrow e \nu)$ are not needed
${ }^{(17)}$ For example, Barger et al [23] and Smith et al [24].
${ }^{(18)}$ This idea was introduced to CDF by Henry Frisch, Sacha Kopp, and David Saltzberg.
${ }^{(19)}$ A large deviation of g_{W} from the Standard Model expectation, however, would also affect $\frac{\sigma(W)}{\sigma(Z)}$, so in effect the R measurement is testing both the branching ratio and the coupling strength.
- Sources of systematic error are different: understanding acceptance for $e e / e \nu$ final states vs. understanding spectral shape for $e \nu$ final state
- The measurement is in principle sensitive to vertex enhancements that may cancel in the ratio $\frac{\Gamma_{e \nu}}{\Gamma_{\text {tot }}}{ }^{(20)}$
- It explores the region above the W pole Γ where new phenomena such as $W^{\prime} \rightarrow e \nu$ may appear ${ }^{(21)}$
- ExperimentallyГit is desirable to have more than one method of measuring a given particle property
- Having a second method will be especially important if the R measurement encounters a systematic limit in the next collider run

From a more practical point of view Γ this analysis uses the same data and many of the same methods as the W mass analysis Γ and thus provides a set of useful cross-checks on that measurement. The W mass and width are thus intertwined both theoretically and experimentally.

This dissertation Γ documenting a measurement of the W boson decay width from the $M_{T}(e, \nu)$ lineshape Γ is organized as follows: Chapter 2 reviews W and Z production and decay at a hadron collider. Chapter 3 describes the experimental setup used in this measurement. In Chapter 4Γ we describe the selection of $W \Gamma$ $Z \Gamma$ and inclusive electron candidate events. Chapter 5 describes the Monte Carlo simulation of W and Z lineshapes and the tuning of this simulation from data. In Chapter 6Γ we estimate the rates and kinematic shapes of background processes that can fake the $W \rightarrow e \nu$ signature. In Chapter 7Γ we fit the data to simulated lineshapes to extract Γ_{W} and investigate sources of systematic error. In Chapter 8Γ we conclude.

[^6]

Figure 1.1: Simulated $M_{T}(e, \nu)$ lineshapes Γ normalized to unit area Γ for $\Gamma_{W}=$ $1.5,1.7, \ldots, 2.5 \mathrm{GeV}$. Detector responseГkinematic cuts Γ and fiducial cuts are simulated.

Chapter 2

W and Z Production and Decay at a $p \bar{p}$ Collider

Perhaps the most familiar particle colliders are $e^{+} e^{-}$machines Γ in which every collision proceeds through a known initial state $\Gamma e^{+} e^{-} \rightarrow \gamma^{*} / Z^{*} \Gamma$ at a fixed center-ofmomentum energy $\sqrt{s}=2 E_{\text {beam }}$.

By contrast Γ the particles colliding in a $p \bar{p}$ machine are a broad-band beam of quarks Γ antiquarks Γ and gluons. The initial state particles can be $q \bar{q} \Gamma q g \Gamma \bar{q} g \Gamma$ or $g g \Gamma$ and the range of attainable intermediate-state masses $\Gamma \sqrt{\hat{s}} \Gamma$ is distributed roughly exponentially Γ from 0 to $\sqrt{s}=2 E_{\text {beam }}$. Thus Γ a wide range of states can be produced Γ making these machines ideal for new-particle searches.

To predict the rate of a process Γ such as $p \bar{p} \rightarrow W \rightarrow e \nu \Gamma$ one calculates the parton-level cross section $\Gamma \hat{\sigma} \Gamma$ as a function of the quark momentaГand then convolves with the distribution of quark momenta inside the proton Γ

$$
\sigma=\sum_{a, b} \int d x_{1} d x_{2} f_{a / p}\left(x_{1}, Q^{2}\right) f_{b / \bar{p}}\left(x_{2}, Q^{2}\right) \hat{\sigma}_{a b}(\hat{s})
$$

where $\hat{s}=\tau s=x_{1} x_{2} s$ [26]. The probability density functions f are called parton distribution functions (PDFs). The distributions are functions of $x \Gamma$ the fraction of the hadron momentum carried by the parton Γ and of a scale $Q^{2} \Gamma$ which we take to equal \hat{s}. Modern PDFs are constructed from HERA ep collider data Γ fixedtarget $\mu N \Gamma e N \Gamma$ and νN scattering data Γ and to a lesser extent Tevatron $p \bar{p}$ collider data [27].

We can integrate over $y=\frac{1}{2} \log \left(\frac{x_{1}}{x_{2}}\right)$ and define a parton luminosity Γ

$$
\begin{aligned}
\frac{d L_{a b}}{d \tau} & =\int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} f_{a / p}\left(x_{1}, \tau s\right) f_{b / \bar{p}}\left(x_{2}, \tau s\right) \delta\left(x_{1} x_{2}-\tau\right) \\
& =\int_{\log \sqrt{\tau}}^{-\log \sqrt{\tau}} d y f_{a / p}\left(\sqrt{\tau} e^{y}, \tau s\right) f_{b / \bar{p}}\left(\sqrt{\tau} e^{-y}, \tau s\right)
\end{aligned}
$$

which describes the $\tau=\frac{\hat{s}}{s}$ spectrum produced by the broad-band beam of partons in the proton and antiproton beams. Figure 2.1 shows the parton luminosity vs. $\operatorname{mass} \Gamma \frac{d L_{a b}}{d \sqrt{\widehat{s}}}=\frac{2 \sqrt{s}}{s} \frac{d L_{a b}}{d \tau} \Gamma$ from the MRS-R2 PDF for $a=u \Gamma b=\bar{d} \Gamma \sqrt{s}=1.8 \mathrm{TeV}$. Most parton-level cross sections fall asymptotically as $\frac{1}{\hat{s}}$. This behavior of $\hat{\sigma}$ and the rapidly falling parton luminosity are the reason that low-mass states are much more copiously produced than high-mass states.

Figure 2.1: Parton luminosity $d L_{u \bar{d}} / d \sqrt{\hat{s}}$ vs. invariant mass $\sqrt{\hat{s}}$ of the $u \bar{d}$ system Γ for finding an up quark in the proton and a down antiquark in the antiproton at $\sqrt{s}=1.8 \mathrm{TeV}$. We use the MRS-R2 parton distribution functions.

The diagram for the lowest-order process for W and Z production and leptonic decay at a $p \bar{p}$ collider is shown in Figure 2.2. The parton-level cross section for $q \bar{q}^{\prime} \rightarrow W^{+} \rightarrow e^{+} \nu$ is [28]

$$
\hat{\sigma}_{i j}(\hat{s})=\frac{1}{3} \frac{\left|V_{i j}\right|^{2}}{3 \pi}\left(\frac{G_{F} M_{W}^{2}}{\sqrt{2}}\right)^{2} \frac{\hat{s}}{\left(\hat{s}-M_{W}^{2}\right)^{2}+\left(\hat{s} \Gamma_{W} / M_{W}\right)^{2}}
$$

The factor $\frac{1}{3}$ in front accounts for the fact that the colliding partons must have the same color. The resonance shape is the relativistic Breit-Wigner distribution Γ the \hat{s}-dependent factor in $\hat{\sigma}$ above. Figure 2.3 shows the lowest-order Tevatron $p \bar{p} \rightarrow W^{+} \rightarrow e^{+} \nu$ cross-section as a function of $\sqrt{\hat{s}} \Gamma$ using the MRS-R2 PDFs.

Because the W couples only to left(right)-handed (anti)fermions Γ a W^{+}produced by a u from the proton and a \bar{d} from the antiproton will be polarized along the antiproton $(-\hat{z})$ direction. The same $V-A$ coupling causes the $e^{ \pm}$to be emitted preferentially in the direction of the $W^{ \pm}$polarization $(\mp \hat{z}) \Gamma$ giving $\frac{d N}{d \cos \hat{\theta}}=\frac{3}{8}(1 \mp \cos \hat{\theta})^{2}$

Figure 2.2: Lowest-order diagrams for W and Z production and leptonic decay at a $p \bar{p}$ collider. For W^{+}production Γq is u or c and \bar{q}^{\prime} is the corresponding linear combination $V_{u d} \bar{d}+V_{u s} \bar{s}$ or $V_{c d} \bar{d}+V_{c s} \bar{s}$. For Z production Γq is $u \Gamma d \Gamma s \Gamma$ or $c \Gamma$ and \bar{q} is $\bar{u} \Gamma \bar{d} \Gamma \bar{s} \Gamma$ or $\bar{c} \Gamma$ respectively.

Figure 2.3: The solid curve is the parton-level cross section $\hat{\sigma}$ for $u \bar{d} \rightarrow W^{+} \rightarrow e^{+} \nu \Gamma$ weighted by the $u \bar{d}$ parton luminosity $\Gamma \frac{d L}{d \sqrt{s}}=\frac{2 \sqrt{s}}{s} \frac{d L_{u \bar{d}}}{d \tau} \Gamma$ for $\sqrt{s}=1.8 \mathrm{TeV}$ from the MRSR2 parton distribution functions. In the dashed curve Γ we show the effect of the parton luminosity by replacing $\frac{d L}{d \sqrt{\widehat{s}}}$ with $\frac{1}{\sqrt{\widehat{s}}}$ (so that we compare two quantities with equivalent dimension). The dashed curve has been normalized to the area under the solid curve Γ which is about 1 nanobarn.
for $W^{ \pm}$when (anti)quarks come exclusively from the (anti)proton. ${ }^{(1)}$ Averaging over charge $\Gamma \frac{d N}{d \cos \hat{\theta}}=\frac{3}{8}\left(1+\cos ^{2} \hat{\theta}\right) \Gamma$ where $\hat{\theta}$ is measured in the frame of the colliding partons. In the lab frame Γ this distribution is modified by boosts along \hat{z} :

[^7]$\eta_{e}=\hat{\eta}_{e}+y$.
Two corrections to the lowest-order model are important to describe W and Z events at the level required by this measurement. The first is to account for final-state photon radiation Γ as illustrated in Figure 2.4. These effects Γ calculated by Berends and Kleiss [29] Γ reduce observed electron energies when photons and electrons land in different calorimeter cells Γ and they increase the probability that the electron will be accompanied by a photon conversion $\gamma \rightarrow e^{+} e^{-}$and thus fail the track isolation requirement described in Section 3.4.5.

Figure 2.4: Diagrams in which the final state contains a photon radiated by the electron or the virtual W.

The second correction is to account for the transverse momentum of the W and Z. In the diagrams of Figure 2.2Γ the W and Z are produced at rest. Figure 2.5 shows two examples of diagrams in which a W is produced with non-zero transverse momentum. High- $p_{T} W$ and Z bosons are accompanied by a small number of high- p_{T} gluons Γ which produce collimated jets. Those events are qualitatively different from the low- $p_{T} W$ and Z bosons relevant to this measurement Γ which are accompanied by a large number of very low- p_{T} gluons. At high $p_{T} \Gamma$ conventional perturbation theory reliably predicts the W and $Z p_{T}$ spectra as a power series in α_{s}; this calculation has been performed to order α_{s}^{2} in Ref. [30]. At low $p_{T}\left(p_{T} \ll M\right) \Gamma$ powers of $\alpha_{s} \log ^{2}\left(M^{2} / p_{T}^{2}\right)$ arise [31] Γ which have been calculated using resummation techniques $[32 \Gamma 33 \Gamma 34]$. The resummation is typically performed as a Fourier integral in $b \Gamma$ a conjugate variable to p_{T}; at large $b \Gamma \alpha_{s}$ blows up Γ so perturbation theory must be replaced with a phenomenological model. Ladinsky and Yuan [35] have fit previously published fixed-target and collider data to a three-parameter model of the nonperturbative regime: $g_{1}=0.11_{-0.03}^{+0.04} \mathrm{GeV}^{2} \Gamma g_{2}=0.58_{-0.2}^{+0.1} \mathrm{GeV}^{2} \Gamma$ $g_{3}=-1.5 \pm 0.1 \mathrm{GeV}^{-1}$. Recently Ellis et al $[36 \Gamma 37]$ have performed the resummation procedure in p_{T}-space rather than in b-space Γ which eliminates dependence on non-perturbative models except at the very lowest p_{T} values.

The total inelastic cross-section at the Tevatron is about $\sigma_{\mathrm{MB}} \approx 50 \mathrm{mbI}^{(2)}$ while

[^8]

Figure 2.5: A W or Z produced by $q \bar{q}$ can be accompanied by one or more gluons. A W or Z produced by $q g$ is accompanied by a quark and possible gluons. Because the gluon distribution falls more rapidly with x than the quark distributions Γ the $q g \rightarrow W$ process is less important than the $q \bar{q} \rightarrow W$ process at Tevatron energies.
$\sigma \cdot B(Z \rightarrow e e)$ is about $0.2 \mathrm{nb}(\sigma \cdot B(W \rightarrow e \nu)$ is about 2.4 nb$)$. Thus Γ a rejection factor of order 10^{8} is required to isolate a sample of leptonic W and Z events at the Tevatron. A factor of order 10^{5} can be obtained simply because the W and Z are so massive: CDF has measured $\sigma(j j X)=280 \pm 135 \mathrm{nb}$ for $70<M_{j j}<100 \mathrm{GeV}$ [38]. The remaining rejection is due to the striking signatures of leptonic W and Z decays. An electron typically appears as a single charged particle in the tracking volume Γ produces a shower only a few centimeters wide $I^{(3)}$ and deposits its energy early in the calorimeter; ${ }^{(4)}$ a jet Γ by contrast Γ typically contains many charged and neutral particles Γ spread over many calorimeter cells Γ which penetrate more of the calorimeter material before losing their energy. ${ }^{(5)}$ Some jets contain b and c quarks Γ whose decay products often include real electrons. Electrons from these sources can be statistically separated from electrons produced in W and Z decay ${ }^{\text {Chowever }} \Gamma$ because the latter are much more isolated from other particles in the event. A neutrino leaves no signal at all in the detector Γ but because the colliding $p \bar{p}$ system carries negligible momentum in the laboratory frame Гone can infer the presence of a neutrino from an energy imbalance in the calorimeter. In practice only the component of this energy imbalance transverse to the beamline is used Γ because a significant fraction of the proton and antiproton longitudinal momenta escape undetected at very small angles to the beamline $\mathrm{I}^{(6)}$ and because the partons colliding in the hard-scattering process have a broad distribution of longitudinal momenta. Jet energy resolution effects can mimic the neutrino signature Γ but this happens infrequently. We can estimate from Figure C. 2 in Appendix C that of dijet events

[^9]likely to fake the signature of an electron from W decay Γ the probability also to satisfy the neutrino signature with a large energy imbalance is only $2-3 \%$.

Because only the transverse components of the neutrino momentum are inferred Γ one uses transverse quantities in $W \rightarrow e \nu$ events: the electron and neutrino transverse momentum vectors \vec{p}_{T}^{e} and $\vec{p}_{T}^{\nu} \mathrm{I}^{(7)}$ the "transverse mass" $M_{T}=$ $\sqrt{\left(\left|\vec{p}_{T}^{e}\right|+\left|\vec{p}_{T}^{\nu}\right|\right)^{2}-\left(\vec{p}_{T}^{e}+\vec{p}_{T}^{\nu}\right)^{2}} \Gamma$ and the W transverse momentum p_{T}^{W}. For the special case $p_{T}^{W}=0 \Gamma$ the transverse components of the electron and neutrino momenta are back-to-back Γ with $p_{T}^{e}=p_{T}^{\nu}=\frac{M}{2} \sin \theta^{*} \Gamma$ so $M_{T}=M \sin \theta^{*} \Gamma$ where θ^{*} is the electron polar angle in the W rest frame. The transverse mass distribution $\operatorname{lgraphed}$ in Figure 2.6 Гis

$$
\begin{aligned}
\frac{d \sigma}{d\left(M \sin \theta^{*}\right)} & =\int d M \frac{d \sigma}{d M} \frac{1}{M} \frac{d N}{d \sin \theta^{*}} \\
& =\int d M \frac{d \sigma}{d M} \frac{1}{M} \frac{d \cos \theta^{*}}{d \sin \theta^{*}} \frac{d N}{d \cos \theta^{*}} \\
& =\int d M \frac{d L}{d M} \frac{\hat{\sigma}(M)}{M} \tan \theta^{*}\left(1+\cos ^{2} \theta^{*}\right) \\
& =\int d M \frac{d L}{d M} \frac{\hat{\sigma}(M)}{M} \frac{\sin \theta^{*}\left(2-\sin ^{2} \theta^{*}\right)}{\sqrt{1-\sin ^{2} \theta^{*}}}
\end{aligned}
$$

which is a convolution of the sharply peaked mass spectrum $(M=\sqrt{\hat{s}})$ shown in Figure 2.3 with the singular $\sin \theta^{*}$ distribution. Because the singularity is a result of the change of variables from $\cos \theta^{*}$ to $\sin \theta^{*} \Gamma$ it is known as a "Jacobian peak." Since M_{T} is to first order independent of $\frac{p_{T}^{W}}{M_{W}} \Gamma$ the M_{T} spectrum (without resolution effects) has a similar appearance for the general case $p_{T}^{W} \neq 0$.

Since the discovery of the W boson in 1982-83Г the size of W samples available for study at hadron colliders has increased more than a thousand-fold Γ providing a laboratory for precise measurements of W properties. Since $1996 \Gamma W$ bosons have also been produced (in pairs: $e^{+} e^{-} \rightarrow W^{+} W^{-}$) at LEPГnear Geneva; while the W event samples at LEP are not large Γ precise knowledge of the $e^{+} e^{-}$initial state allows much more information to be extracted from each event. Table 2.1 lists approximate numbers of $W \rightarrow e \nu$ decays observed by experiments at $S p \bar{p} S \Gamma$ the TevatronГand LEP-IIГincluding predictions for upcoming accelerator runs.

[^10]| Year | Where | $W \rightarrow e \nu$ recorded |
| :---: | :---: | :---: |
| 1982 | UA1 | 6 |
| $1982-83$ | UA1 | 52 |
| 1985 | UA2 | 250 |
| $1988-89$ | CDF | 1700 |
| $1988-90$ | UA2 | 2100 |
| $1992-93$ | CDF | 12000 |
| $1992-93$ | DØ | 10000 |
| $1994-95$ | CDF | 50000 |
| $1994-95$ | DØ | 60000 |
| 1996 | LEP-II $(161 \mathrm{GeV})$ | 30 |
| 1996 | LEP-II $(172 \mathrm{GeV})$ | 100 |
| $1999(?)$ | LEP-II $\left(500 \mathrm{pb}^{-1} \mathrm{at} 180 \mathrm{GeV}\right)$ | 7000 |
| $2000(?)$ | CDF-II $\left(2 \mathrm{fb}^{-1}\right)$ | 1000000 |

Table 2.1: Approximate numbers of $W \rightarrow e \nu$ decays recorded by various experiments. We have combined the four LEP-II experiments. Event counts have been estimated from values in Refs. [15Г39Г40Г41Г42Г $43 \Gamma 44 Г 45 \Gamma 46]$.

Figure 2.6: Jacobian peak.

Chapter 3

Experimental Setup

3.1 Tevatron

The Tevatron is a circular proton synchrotron 1000.00 meters in radius located at Fermilab Γ near Chicago. When the Tevatron operates in $p \bar{p}$ collider mode Γ six bunches of 2×10^{11} protons circulate clockwise (as seen from above) and six bunches of $2-9 \times 10^{10}$ antiprotons circulate counterclockwise Γ with beam energies of $900 \mathrm{GeV} .{ }^{(1)}$ Bunches collide Γ at a center-of-momentum energy $\sqrt{s}=1800 \mathrm{GeV} \mathrm{\Gamma}$ every $\frac{2 \pi \mathrm{~km}}{6 \times 3 \times 10^{8} \mathrm{~m} / \mathrm{sec}}=3.5 \mu \mathrm{sec}$ at locations "B0" and "D0F" where the CDF and D \emptyset detectors reside. The bunches are $\sigma_{L} \approx 60 \mathrm{~cm}(\mathrm{rms})$ in length and $\sigma_{R} \approx 40 \mu \mathrm{~m}$ in radius when they collide.

A continuous period of collider operation (a "store") lasts typically 10 hours. A store can be terminated deliberately Γ when the beams have diminished after many hours to a fraction of their initial intensities Γ or by accident Γ when a superconducting magnet quenches. The initiation of a store (a "shot") takes typically 2.5 hours. The luminosity Γ

$$
L=\frac{f N_{\mathrm{bunch}} N_{p} N_{\bar{p}}}{4 \pi \sigma_{R}^{2}}
$$

(where $f \approx 48 \mathrm{kHz}$ is the revolution frequency) Γ is limited by the $6 \times 10^{10} /$ hour rate at which antiprotons can be accumulated between shots.

During the 1994-95 running period (Run Ib) Γ the average instantaneous luminosity was $8 \times 10^{30} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ Гimplying (using $\sigma_{\mathrm{MB}}=50 \mathrm{mb}$) that on average there were 1.4 inelastic $p \bar{p}$ collisions per bunch crossing. The CDF experiment recorded $90 \mathrm{pb}^{-1}$ of data in roughly 10^{7} seconds of live time.

Whereas one may expect a bunch length $\sigma_{L} \approx 60 \mathrm{~cm}$ to distribute $p \bar{p}$ interactions over a length of $60 \mathrm{~cm} / \sqrt{2} \Gamma$ this length is in fact about 30 cm . The beam profile σ_{R}

[^11]varies along the beam axis (z coordinate): $\sigma_{R}^{2} \propto 1+\left(z / \beta^{*}\right)^{2} \Gamma$ where $\beta^{*} \approx 35 \mathrm{~cm}$. Thus Γ the density of $p \bar{p}$ collisions along z has the form
$$
\frac{N_{p}(z) N_{\bar{p}}(z)}{\sigma_{R}(z)^{2}} \propto \frac{\left(e^{-\frac{z^{2}}{2 \sigma_{L}^{2}}}\right)^{2}}{1+\left(z / \beta^{*}\right)^{2}}
$$
whose rms is 29 cm Гto be compared with 42 cm for the numerator alone.

3.2 CDF detector

The CDF detector [50] is a solenoidal magnetic spectrometer surrounded by 4π calorimetry Γ designed to study a broad range of final states in $p \bar{p}$ collisions. Below Γ we first define the CDF coordinate system and then describe the parts of the detector relevant to this measurement.

Figure 3.1: An elevation view of the $y>0 \Gamma z<0$ quarter of the CDF detector.

3.2.1 Coordinate system

CDF uses a right-handed coordinate system in which \hat{x} points away from the center of the Tevatron (north) $\Gamma \hat{y}$ points up Γ and \hat{z} points along the proton beam direction
(east). Distances are measured in centimeters from the center of the detector. The z-axis coincides with the nominal Tevatron beamline.

As the detector has approximate cylindrical symmetryГit is convenient to introduce a cylindrical coordinate system in which r is the distance from the z-axis and $\phi(0 \leq \phi<2 \pi)$ is the azimuthal angle such that $(x, y)=(r \cos \phi, r \sin \phi)$. We also define a polar angle $\theta(0 \leq \theta \leq \pi)$ Гsuch that $r=z \tan \theta$.

Rapidity $y=\frac{1}{2} \log \left(\frac{E+p_{z}}{E-p_{z}}\right)$ occurs frequently as a unit of relativistic phase space. In the ultrarelativistic limit $E=p \Gamma$ we can rewrite $e^{2 y}$ as the purely geometrical expression $\frac{\sqrt{1+\cot ^{2} \theta}+\cot \theta}{\sqrt{1+\cot ^{2} \theta}-\cot \theta}=\left(\cot \theta+\sqrt{1+\cot ^{2} \theta}\right)^{2} \Gamma$ so another convenient variable to use in a collider experiment is pseudorapidity $\eta=\log \left(\cot \theta+\sqrt{1+\cot ^{2} \theta}\right)=$ $\log \left(\cot \frac{\theta}{2}\right) .^{(2)}$ Since the most frequent processes in $p \bar{p}$ collisions distribute particles uniformly in pseudorapidityГCDF's calorimetry (described below) is uniformly segmented in η.

Momenta Γ energies Γ and masses are measured in GeV . The transverse ($x-y$) component of an energy or momentum vector Γ analogous to the r coordinate Γ is denoted E_{T} or p_{T} as a scalarГand \vec{E}_{T} or \vec{p}_{T} as a vector in the $x-y$ plane.

As a charged particle follows a helical trajectory in a uniform magnetic field Γ CDF uses five helix parameters $\Gamma c, \phi_{0}, d_{0}, z_{0}, \lambda \Gamma$ to describe a particle trajectory. The curvature Γc has a magnitude equal to the inverse diameter of the helix (projected into the $x-y$ plane) and is signed such that a particle having $c>0$ orbits counterclockwise; as it happens Γ CDF's magnetic field is oriented such that a positivelycharged particle has $c>0 . \phi_{0}$ is the angle (in the $x-y$ plane) of the particle's motion at its closest approach to the z-axis. d_{0} is the distance of closest approach to the z-axis Γ signed so that the (x, y) point of closest approach is $\left(-d_{0} \sin \phi_{0}, d_{0} \cos \phi_{0}\right)$. z_{0} is the particle's z position at its point of closest approach to the z-axis. $\lambda=\cot \theta$ is $\frac{p_{z}}{p_{T}}$. For magnetic field $\vec{B}=B \hat{z} \Gamma p_{T}=\frac{0.299792458 B}{2|c|} \Gamma$ where p_{T} is in $\operatorname{GeV} \Gamma B$ is in Gaussएand c is in cm^{-1}.

3.2.2 Solenoid

A 14116 Gauss solenoidal magnetic field is maintained in the region $r<150 \mathrm{~cm} \Gamma$ $|z|<250 \mathrm{~cm}$ by circulating a 4650 A current through 1164 turns of a superconducting coil. The field is oriented along $+\hat{z}$ and is uniform at the 0.1% level in the region $|z|<150 \mathrm{~cm}$ in which track measurements are made. The small nonuniformities Γ mapped out during detector construction Γ are treated as a perturbation in the track fitting software. NMR probes monitor B continuously during data taking Γ and any deviation from the nominal value is applied as a correction to measured

[^12]track momenta. In this magnetic field Γ a $p_{T}=30 \mathrm{GeV}$ particle deviates only 1.6 cm from a straight path by $r=150 \mathrm{~cm} \Gamma$ while a $p_{T}=0.3 \mathrm{GeV}$ particle produced at the origin does not escape the magnetic field radially. The solenoid presents 0.85 radiation lengths $\left(X_{0}\right)$ to a particle passing at normal incidence.

3.2.3 VTX

The VTX is a set of 28 time projection chambers Γ each 9.4 cm in length Γ providing $24 z$ measurements ($\sigma \approx 200 \mu \mathrm{~m}$) between $r=6.5 \mathrm{~cm}$ and $r=21 \mathrm{~cm}$ for $85<|z|<$ 132 cm and $16 z$ measurements between $r=11.5 \mathrm{~cm}$ and $r=21 \mathrm{~cm}$ for $|z|<85 \mathrm{~cm}$. Each module is segmented octagonally in ϕ; adjacent modules are offset 11.25° in ϕ to allow three-dimensional reconstruction of track segments that cross module boundaries.

The principal purpose of the VTX is to locate $p \bar{p}$ interaction vertices along the beam axis. A z-vertex measurement is needed to calculate the transverse component of calorimeter energies: for each calorimeter cell $i \Gamma E_{T}^{i}=E_{\text {total }}^{i} \sin \theta_{i} \Gamma$ where θ_{i} depends upon $z_{\text {vertex }}$. The positions of z-vertices are also used as seeds in the r - z component of CTC track reconstruction. A z-vertex measurement is also necessary for determining the beam position in the $x-y$ plane Γ as the Tevatron beamline has a significant slope Γ which varies from store to store Γ with respect to the z axis.

The presence or absence of VTX hits can be used to distinguish electrons and photons in the high $-\eta$ region in which CTC information is not available Γ and to identify electrons originating from photon conversion in the CTC inner cylinder ($r \approx 28 \mathrm{~cm}$).

Finally C the number of reconstructed VTX vertices per event is closely correlated with the number of $p \bar{p}$ interactions per bunch crossing「so it is sometimes used as a measure of luminosity.

3.2.4 CTC

The central tracking chamber (CTC) [51] is a 6156-channel cylindrical drift chamber that measures charged particle trajectories in the region $31<r<132 \mathrm{~cm} \Gamma$ $|z|<150 \mathrm{~cm}$. Eighty-four sense layers are arranged into five axial superlayers Γ which measure $r \phi$ at 12 radii spaced 0.707 cm apart Γ interleaved with four stereo superlayers Γ which measure $r \phi \pm z \tan \left(2.5^{\circ}\right)$ at six radii. The CTC geometry is illustrated in Figure 3.2. Each superlayer is divided into cells Γ each of which contains a row of sense (anode) wires and is bounded by two rows of field (cathode) wires Γ as shown in Figure 3.3. The wire planes are tilted 45° with respect to the radial direction; cells overlap such that a particle traveling radially crosses an average of 1.2 sense wire planes in each axial superlayer.

Drift electrons follow approximately azimuthal trajectories (the Lorentz angle is chosen to match the 45° cell tilt) at $51 \mu \mathrm{~m} / \mathrm{nsec}$. The maximum drift distance

Figure 3.2: Locations (y vs. $x \Gamma$ in cm) of sense wire planes on the CTC endplates Γ as seen from the east side of the detector. Field wire planes are not shown. In a righthanded coordinate system Γ the cells are tilted 45° counterclockwise with respect to the radial direction. (Many published illustrations draw the endplates as seen from the west Γ which we find counterintuitive.) Also drawn are a straight track at $\phi_{0}=0, d_{0}=0$ and a 1 GeV positive track at $\phi_{0}=0, d_{0}=0$.
is about 4 cm Г or 800 nsec . Leading and trailing edge times of sense-wire signals are recorded in 2 nsec bins by multiple-hit TDCs. The distribution of pulse widths gives a typical two-track separation of 0.2 cm .

The tilted-cell geometry greatly simplifies the problem of drift-velocity calibration Γ as every high $-p_{T}$ track samples the full range of drift distances within each superlayer. The corollary that a high- p_{T} track always produces at least one hit per superlayer with a short ($<80 \mathrm{nsec}$) drift time is exploited in an elegant trigger design [52].

Figure 3.3: Nominal endplate locations (y vs. $x \Gamma$ in cm) of CTC wires near $\phi=0$ in superlayers $0 \Gamma 1 \Gamma$ and 2 . Sense Γ potential Γ field Γ guard Γ and shaper wires are drawn as plus signs Γ dots Γ filled circles Γ open circles Γ and squares Γ respectively. The tracks from Figure 3.2 are also shown.

Hit residuals from helical track fits vary from $250 \mu \mathrm{~m}$ in the inner layers to $160 \mu \mathrm{~m}$ in the outer layers. (The z resolution for a stereo layer is a factor $1 / \tan \left(2.5^{\circ}\right)$ larger.) To predict actual track parameter resolutions ${ }^{\text {Chowever }}$.e.g. to obtain vertex or mass resolutions or to combine CTC and SVX information $م$ one must scale the hit resolutions by an empirical factor of $1.5-2.5$ Гfor which no satisfactory explanation has ever been found.

CTC resolutions observed in Run Ib data are $\frac{\sigma_{p_{T}}}{p_{T}^{2}}=0.09 \% \mathrm{GeV}^{-1} \Gamma \sigma_{d_{0}}=0.04 \mathrm{~cm} \Gamma$ $\sigma_{z_{0}}=0.7 \mathrm{~cm} .{ }^{(3)}$ The momentum resolution is measured in $Z \rightarrow \mu \mu$ decays [71] Γ after constraining the tracks to originate from the beamline. As the rule of thumb $\sigma_{1 / p_{T}} \sim \frac{\sigma_{\text {hit }}}{\sqrt{N_{\text {hits }} B L^{2}}}$ illustrates increasing the length over which track measurements are made from 100 cm to 130 cm improves momentum resolution by nearly a factor of two.

The CTC serves many purposes in this measurement. The presence of a high- p_{T} track that matches an electromagnetic shower is an essential part of CDF electron identification Гeven in the trigger (described below). We also use the absence of other CTC tracks near the electron to discriminate W and Z electrons from background. CTC tracks are used to identify $Z \rightarrow e e$ events that fake the $W \rightarrow e \nu$ signature when one electron lands in a region of poor calorimeter response. The CTC provides the direction vector for electron energies Γ needed to compute transverse energies or invariant masses. Comparing CTC momenta and CEM energies for electrons is the basis of the tower-to-tower calibration of the CEM.

[^13]
3.2.5 SVX

The silicon vertex detector (SVX') [53] is a four-layerГ 46080-channel silicon microstrip detector Γ with $60 \mu \mathrm{~m}$ strip pitch ($55 \mu \mathrm{~m}$ in the outermost layer). In the region $1.1<|z|<26.6 \mathrm{~cm}$ Гit provides $r \phi$ measurements with $13 \mu \mathrm{~m}$ resolution at radii of $2.9 \Gamma 4.3 \Gamma 5.7 \Gamma$ and 7.9 cm . The impact parameter resolution for tracks combining CTC and SVX information is well described by $\sigma_{\delta}=10 \mu \mathrm{~m}+\frac{40}{p_{T}} \mu \mathrm{~m} \mathrm{GeV} .{ }^{(4)}$

While the SVX plays a significant role in the study of heavy quark decays at CDF [this measurement uses it merely to determine the average Tevatron beam position on a run-by-run basis so that a beam constraint can be used to improve the CTC momentum resolution.

3.2.6 Calorimetry

Electromagnetic and hadronic calorimetry covers the pseudorapidity region $|\eta|<4.2$ $\left(2^{\circ}<\theta<178^{\circ}\right)$ in projective towers that cover $\Delta \eta \times \Delta \phi=0.1 \times 15^{\circ}$ in the central region $(|\eta|<1.1)$ and $0.1 \times 5^{\circ}$ in the plug and forward regions. The nearly 4π solid angle coverage is important for this measurement Γ in which the presence of a neutrino is inferred from an imbalance of transverse energy in the calorimetry.

As Figure 3.1 shows Γ CDF calorimetry is divided into several independent subsystems. Central (CEM) Гplug (PEM) Гand forward (FEM) electromagnetic shower detectors cover $|\eta|<1.1 \Gamma 1.1<|\eta|<2.4 \Gamma$ and $2.2<|\eta|<4.2$ ГrespectivelyГwith 1626 radiation lengths (X_{0}) of lead absorber. Behind these shower detectors are central (CHA) Гend wall (WHA) Гplug (PHA) Гand forward (FHA) hadronic calorimeters Γ covering $|\eta|<0.9 \Gamma 0.7<|\eta|<1.3 \Gamma 1.3<|\eta|<2.4$ Гand $2.3<|\eta|<4.2$ Гrespectively Γ with 4-8 nuclear interaction lengths of steel. The СЕМГСНАГ and WHA consist of alternating layers of absorber and plastic scintillator; the scintillation light is measured with two photomultiplier tubes per tower. The РЕМГРНАГFЕМГand FHA are alternating layers of absorber and multi-wire proportional chambers; the chamber cathodes are divided into pads to form the tower geometry.

CDF has several regions of low calorimeter response ("cracks") through which energetic particles can escape undetected: the $\theta=90^{\circ}$ region between the east and west halves of the CEMГ the azimuthal boundaries between CEM wedges Γ the $\theta \approx 30^{\circ}$ region between the СЕM and РЕМГ and the $\theta \approx 10^{\circ}$ region between the PEM and FEM. Fortunately all but the 10° region are well covered by the CTC Fwhich can identify escaping charged particles in the crack regions. Figure 3.4 illustrates the tower geometry and uses the QFL simulation program to show regions in which mean electron response is less than 50%.

[^14]

Figure 3.4: The grid $\Gamma \phi$ vs. $\eta \Gamma$ shows the tower segmentation of the CDF calorimetry. The shading indicates regions in which electron or photon response is less than 50% in the QFL detector simulation program. The regions of low response are $|\eta| \approx 2.4\left(10^{\circ}\right.$ region $) \Gamma|\eta| \approx 1.1\left(30^{\circ}\right.$ region $) \Gamma|\eta| \approx 0\left(90^{\circ}\right.$ region $) \Gamma$ the azimuthal boundaries between CEM wedges (ϕ cracks) Γ and the CEM chimney tower Γ through which the solenoid is accessed.

3.2.7 CEM

The central electromagnetic calorimeter (CEM) [54] provides electron and photon energy measurements in the region $|\eta|<1.1 \Gamma$ with a resolution $\sigma_{E} / E=$ $13.5 \% / \sqrt{E_{T}(\mathrm{GeV})} \oplus 1.5 \%^{(5)} \quad$ It is constructed as four arches Γ northeast Γ southeast Γ northwest Γ and southwest Γ each of which contains $12 \Gamma 15^{\circ}$ wedges. A wedge consists of alternating layers of polystyrene scintillator and aluminum-clad leadГdivided into ten towers in η. To maintain a constant thickness (in X_{0}) Гcompensating the $\sin \theta$ variation between towers Γ some lead layers are replaced with acrylic; the number of lead layers varies from 30 in the innermost $(|\eta| \approx 0.06)$ tower to 20 in the outermost $(|\eta| \approx 1.0 \Gamma \sin \theta \approx 0.64)$ tower. Light from each tower is collected by sheets of acrylic wavelength shifter at both azimuthal tower boundaries and guided to two phototubes per tower. The outer two towers in one wedge (called the "chimney towers") are missing to allow solenoid access Γ leaving 478 instrumented towers. Figure 3.5 is an illustration of a CEM wedge.

At a depth of $5.9 X_{0}$ (including the solenoid) Γ which is approximately the depth at which shower energy deposition peaks t the central strip chambers (CES) measure
${ }^{(5)}$ The first term is called the "stochastic term" and the second term is called the "constant term." The former is an intrinsic limitation due to shower fluctuations and PMT photoelectron fluctuations, while the latter is limited by the amount of data available for calibration.

Figure 3.5: A CEM wedge. The local coordinate systemГin which x points azimuthally is illustrated. The mostly empty region between the lead/scintillator sandwich and the phototubes is where the CHA resides.
the transverse shower shape with $1.4-2 \mathrm{~cm}$ segmentation Cto be compared with the approximately $25 \mathrm{~cm} \times 50 \mathrm{~cm}$ tower segmentation. The CES module in each wedge is a multi-wire proportional chamber with 64 anode wires oriented parallel to the beam axis Γ spaced 0.73 cm apart Γ and split at $|z| \approx 121 \mathrm{~cm}$; adjacent anode wires
are ganged together for readout Γ so the azimuthal segmentation is 1.45 cm . The cathodes are segmented into 128 strips with $\Delta z=1.67 \mathrm{~cm}$ for $|z|<121 \mathrm{~cm}$ and $\Delta z=2.01 \mathrm{~cm}$ for $|z|>121 \mathrm{~cm}$. Since an electron or photon shower typically spans several CES channels in each dimension 5 the position resolution is quite good: When CTC tracks from W electrons are extrapolated to the CES ($r \approx 184 \mathrm{~cm}$) Γ the CES and CTC shower positions match to $0.22 \mathrm{~cm}(\mathrm{rms})$ in azimuth and 0.46 cm (rms) in z. Both CES/CTC position match and CES shower shape are useful electron identification variables.

Between the outer radius of the CTC and the start of the СЕMГ a particle traverses $1.1 / \sin \theta X_{0}$ in the solenoid and other material Γ giving a photon a high probability of converting to $e^{+} e^{-}$before the CEM. This fact is exploited by the central pre-radiator (CPR) Гa set of multiwire proportional chambers located between the solenoid and the CEM.

Phototube gains are calibrated once per store using a Xenon flasher system. After long shutdowns Γ tower-to-tower gains are calibrated with radioactive sources to the 2% level Γ which is adequate for use in the trigger.

3.3 Trigger and DAQ

As we noted in Chapter 2 Γ a large amount of filtering is required to extract $W \rightarrow e \nu$ $(2.4 \mathrm{nb})$ and $Z \rightarrow e e(0.2 \mathrm{nb})$ from the 50 mb minimum-bias cross section. Most of this filtering is done by CDF's three-level trigger system [55 [56].

At a typical Run Ib luminosity of $8 \times 10^{30} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \Gamma$ the average number of $p \bar{p}$ interactions per bunch crossing is 1.4 Гgiving a typical minimum-bias event rate of $215 \mathrm{kHz} \mathrm{\Gamma} 75 \%$ of the 286 kHz bunch-crossing rate.

Using custom electronics to process analog calorimeter signals and identify muonchamber track segments Γ the Level 1 trigger makes its decision in less than the $3.5 \mu \mathrm{sec}$ crossing time Γ accepting typically $100 \mu \mathrm{~b}$ Г or a rate of 800 Hz (at $8 \times$ $10^{30} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$). The Level 1 trigger thus provides a typical rejection factor of 350 with no dead time. ${ }^{(6)}$

For each event accepted by Level 1Γ the Level 2 trigger system uses analog calorimeter signals $\Gamma m u o n$ track segments Γ and tracks from the CTC track processor (CFT). It forms clusters of energy in the calorimeter (corresponding to jets Γ electrons Γ or photons) Γ calculates \vec{E}_{T} imbalance in the calorimeter Γ and correlates CFT tracks with electron or muon candidates. Combinations of interesting objectsएsuch as two central electron/photon candidates Γ a central electron candidate matched to a track Γ or a central electron/photon candidate in coincidence with a large \vec{E}_{T} imbalance Γ can be used in the trigger decision. This decision takes typically $40 \mu \mathrm{sec} \Gamma$

[^15]which causes the detector to miss about 3% of bunch crossings at a Level 1 trigger rate of 800 Hz . Level 2 accepts typically $2 \mu \mathrm{~b}$ or 15 Hz (at typical luminosity) Γ providing a rejection factor around 50 .

For each event accepted by Level 2Γ the full detector (about 10^{5} electronics channels) is read out by the data acquisition system. This process takes typically $3 \mathrm{msec} \Gamma$ which causes the detector to miss roughly an additional 5% of bunch crossings at a Level 2 trigger rate of 15 Hz . The data are sparsified and formatted into an event record about 100 kilobytes in lengthГthen transmitted to the Level 3 triggerГwhich is a farm of commercial computers running software reconstruction algorithms on the full event data. Level 3 provides a rejection factor of $3-4 \Gamma$ accepting typically 600 nb Гor 5 Hz at a luminosity of $8 \times 10^{30} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$. All events passing Level 3 are spooled to tape for later processing. About 5% of events Γ called "Stream A「" are cached on disk for rapid processing-usually within hours of being recorded; Stream A comprises the Level 3 triggers for high- p_{T} leptons Γ photons Γ and jets Γ large $E_{T} \Gamma$ and $J / \psi \rightarrow \mu \mu$ candidates. A fraction of Level 3 output is monitored in real time to search for detector malfunctions Γ to derive calibration constants Γ to display events graphicallyГand to identify extremely unusual events.

3.3.1 Central electron triggers

We briefly describe the particular criteria imposed by the trigger to select the W and Z events used in this measurement. The Level 1 calorimeter trigger requires a single trigger tower ${ }^{(7)}$ signal above threshold (8 GeV for the CEM) in $E_{T} ;{ }^{(8)}$ to facilitate trigger efficiency measurements Γ this threshold is reduced to 4 GeV (for CHA and all EM calorimeters) every $40^{\text {th }}$ bunch crossing [58]. A separate dielectron trigger requires two CEM trigger towers above a $4 \mathrm{GeV} E_{T}$ threshold. These triggers combined accept a cross section of approximately $40 \mu \mathrm{~b} .{ }^{(9)}$

At Level 2Γ a $Z \rightarrow e e$ triggerГa $W \rightarrow e \nu$ triggerГand an inclusive electron trigger search for CEM clusters with $E_{T}>16 \mathrm{GeV}$ and hadronic energy fraction below 12.5%. The Z trigger requires two such clusters. The W trigger requires one such clusterГa transverse energy imbalance exceeding 20 GeV Гand a $>4 \mathrm{GeV}$ CES anode signal [59] in the CEM trigger tower Γ which suppresses triggers caused by sporadic discharges of single photomultiplier tubes. The inclusive electron trigger Γ which also serves as a backup trigger for both W and Z events Γ requires a CEM cluster matched in azimuth to a $>12 \mathrm{GeV}$ CFT track. Another backup trigger Cpotentially

[^16]of interest for off-shell $W \rightarrow e \nu$ events Γ requires a CEM cluster with $E_{T}>50 \mathrm{GeV}$ and hadronic energy fraction below 12.5% एwith no other requirements. These four triggers combined accept a cross section of approximately 200 nb .

The Level $2 W$ and Z triggers demonstrate an important CDF strategy: Triggers overlap to ensure that important signals are not missed. Of the $49843 W$ events we select in Chapter $4 \Gamma 99.8 \%$ pass either the \mathbb{E}_{T} trigger or the CFT trigger at Level 2. ${ }^{(10)}$ Of the 46190 events passing the CFT triggerГ95.3\% pass the ∇_{T} trigger; of the 47551 events passing the E_{T} trigger $\Gamma 92.6 \%$ pass the CFT trigger. In the absence of correlated sources of inefficiency Гone expects the two triggers combined to be 99.7% efficient-much better than either one alone.

At Level 3Γ there are several high- p_{T} electron triggers. The $Z \rightarrow e e$ trigger requires one CEM electron with $E_{T}>22 \mathrm{GeV}$ and $E_{\text {hadron }} / E_{\text {EM }}<0.125$ Гa corresponding CTC track with $p_{T}>13 \mathrm{GeV}$ Гand a second CЕМГРЕМГor FEM electron with $E_{T}>20 \Gamma 15$ Гor 10 GeV Trespectively. The $W \rightarrow e \nu$ trigger requires a CEM electron with $E_{T}>22 \mathrm{GeV}$ and $E_{\text {hadron }} / E_{\text {EM }}<0.125$ Гa corresponding CTC track with $p_{T}>13 \mathrm{GeV}$ Гand $E_{T}>22 \mathrm{GeV}$. A "no track" backup W trigger removes the W trigger's track requirement Γ imposes more stringent versions of the W trigger's other requirements- $E_{T}>25 \mathrm{GeV} \Gamma E_{\text {hadron }} / E_{\mathrm{EM}}<0.05 \Gamma E_{T}>25 \mathrm{GeV}$-and adds several additional electron identification requirements. ${ }^{(11)}$ The "no track" trigger prevents good W events from being lost if CTC tracking efficiency is slightly lower in Level 3 than offline-for instance because better calibration constants are available offline; it also provides a way to measure track-finding efficiency with $W \rightarrow e \nu$ events. The inclusive electron trigger requires a CEM electron with $E_{T}>18 \mathrm{GeV} \Gamma$ $E_{\text {hadron }} / E_{\text {EM }}<0.125$ Гseveral other electron identification requirementst ${ }^{(12)}$ and a corresponding track with $p_{T}>13 \mathrm{GeV}$. A backup inclusive electron trigger requires $E_{T}>50 \mathrm{GeV}$ and a corresponding track with $p_{T}>25 \mathrm{GeV}$ but makes no other requirements on the electron. These triggers combined accept a cross section of approximately $8 \mathrm{nb} \Gamma$ a factor of nearly 10^{7} below the 50 mb minumum bias cross section. ${ }^{(13)}$

[^17]
3.4 Data handling

3.4.1 Offline reconstruction

Typically within hours of being recorded Γ Stream A events are processed by a farm ${ }^{(14)}$ of 32 commercial UNIX-based computers running Fortran reconstruction software developed by CDF physicists [46]. A processor typically spends 20 seconds per event combining raw digitizations with calibration constants [suppressing known noise sources Γ and clustering detector-level objects-drift chamber and scintillator hit times and phototubeГМWРСГ and silicon strip pulse heights-into objects of interest in physics analysis-charged-particle trajectories Γ interaction vertices Γ jets Γ electron Γ photon Γ and muon candidates Γ and so on.

Offline reconstruction differs from Level 3 reconstruction in three ways. First Γ since more time is availableГa thorough reconstruction of the data from each detector component is performed offline for every event Γ computing much more than is necessary to make a trigger decision. Second Γ some calibration constants are derived in parallel with data-taking「and are thus not available in Level 3. Third Γ whereas the goal of Level 3 is irreversible data reduction through event filtering Γ the goal of offline reconstruction is to combine the raw data from each event with compact Γ high-level quantities that can be analysed quickly. ${ }^{(15)}$

The full Stream A output for Run IbГabout 200 kilobytes per event Γ is stored on $133 \Gamma 8 \mathrm{~mm}$ tapes.

3.4.2 Central electron datasets

From the full set of Stream A outputГevents passing Level 3 electron triggers are selected Γ and for these events Γ high-level event information (about 30 kilobytes per event) is extracted and written to disk at Fermilab [60]. The data on disk are divided (non-exclusively) into three data sets: 497446 inclusive electron eventsГ232909 W electron events Γ and $282181 Z$ electron events.

Running on Fermilab computers for $2-3$ days Γ we reduce these three data sets to 1.2 kilobytes per event Γ keeping all events. The reduced data sets Γ containing information about electrons Γ muons Γ tracks Γ vertices $\Gamma \not \#_{T} \Gamma$ trigger decisions Γ etc. Γ are stored in Berkeley Γ where they are repeatedly analyzed to extract summary information Гat a cost of several minutes per iteration.
${ }^{(14)}$ Since high-energy physics data are naturally divided into events, which in nearly all HEP computing tasks are treated independently (except for statistical summary information), HEP computing can almost always be sped up linearly with parallel processing.
${ }^{(15)}$ The offline reconstruction also writes a version of the output that contains only the compact, high-level quantities, without the raw data.

3.4.3 Inferred electron and neutrino momenta

Electron energy

Because CEM electrons deposit $80-100 \%$ of their energy in a single towerГnearly all of which is deposited in a single wedge The clustering algorithm used for CEM electrons is straightforward. A CEM electron (or photon) cluster comprises a seed tower (the tower containing most of the energy) and the two neighboring ("shoulder") towers in $\eta .^{(16)}$ The search for seed towers proceeds sequentially through the 48 CEM wedges. In each wedge towers with CEM energy above a 3 GeV threshold are sorted by energy. If any such towers are found Γ the one with highest energy forms a seed; the seed's shoulder tower(s) are marked ineligible to become seed towers; and the search through the wedge continues in decreasing order by energy. The electron energy is the sum of the energies in the seed tower and its shoulder tower(s). Because light transmitted to each light guide decreases exponentially with distance Γ each CEM tower energy is computed from the geometric mean of the two phototube pulse heights for that tower. Corrections to this energy are noted below.

By designГthe CEM minimizes azimuthal leakage of electron showers. ThusГreconstructed electron energies never include energy deposited in neighboring wedges. The test-beam response map and in-situ calibration procedure (described in Section 3.4.6) account on average for leakage by flattening electron response over the entire fiducial region of a wedge.

Electron direction vector

All CTC tracks ${ }^{(17)}$ are extrapolated to the calorimeter to determine whether they impact any of the electron cluster's towers. The number of such tracks Γ called $N_{3 D} \Gamma$ is stored for possible use as an electron identification variable. If $N_{3 D}=0 \Gamma$ the cluster is not considered an electron candidate in this measurement. Otherwise Γ the highest- p_{T} track impacting the electron cluster is deemed "the electron track." The electron track's helix parameters (without any beamline or vertex constraints) then define the electron direction: $\vec{E}=\frac{E}{\sqrt{1+\cot ^{2} \theta}}\left(\cos \phi_{0}, \sin \phi_{0}, \cot \theta\right)$.

[^18]
Recoil energy, ΣE_{T}, and E_{T}

We define the recoil energy vector \vec{u} and the total transverse energy ΣE_{T} as vector and scalar sums of tower transverse energies:

$$
\begin{aligned}
\vec{u} & =\sum_{i} E_{i} \sin \theta_{i}\left(\cos \phi_{i}, \sin \phi_{i}\right) \\
\Sigma E_{T} & =\sum_{i} E_{i} \sin \theta_{i}
\end{aligned}
$$

where i indexes all towers of all calorimeters out to $|\eta|<3.6 .{ }^{(18)}$ Towers with total energies below thresholds of ($100,150,200,185,445,730) \mathrm{MeV}$ in the (СЕМГРЕМГ FЕМГСНА/WНАГРНАГFНА) are excluded from the sum. For each tower $i \Gamma \sin \theta_{i}$ is computed using the z-vertex closest to the electron track Γ or using the electron track z_{0} if there is no z-vertex within 5 cm of the electron track. ${ }^{(19)}$

The electron seed and shoulder towers Γ as well as the CHA/WHA towers behind them Γ are excluded from the sum. If the shower has $\left|x_{\mathrm{CES}}\right|>6 \mathrm{cmI}^{(20)}$ then the azimuthal neighbors of the seed and shoulder towers are also excluded. Energies in excluded towers are replaced by an average value of approximately 30 MeV per tower. ${ }^{(21)}$ If there are multiple electron candidates Γ then \vec{u} and ΣE_{T} are computed with both one and two electrons subtracted. When we select W candidates Γ we use \vec{u} and ΣE_{T} with one electron subtracted; when we select Z candidates Γ we use \vec{u} and ΣE_{T} with two electrons subtracted.

In W events Γ we compute $\vec{E}_{T}=-\left(\vec{E}_{T}+\vec{u}\right)$.

3.4.4 Fiducial requirements

Because CDF calorimetry is designed with a tower geometry projecting from the origin Γ we impose a z-vertex fiducial cut at 60 cm (about 2σ) to limit the range of angles at which particles impact the calorimeter.

Because the outer layers of the CTC have the lowest occupancy the best resolution Γ and the largest weight in determining $p_{T} \mathrm{~T}^{(22)}$ we impose a fiducial cut at the outer CTC superlayer: We require that $|z|<150 \mathrm{~cm}$ when the track reaches a radius of 130 cm .

CDF has a standard set of CEM electron fiducial criteriaГdesigned to eliminate known regions of poor response Γ and codified in a software library procedure called

[^19]FIDELE. The procedure rejects $\left|x_{\mathrm{CES}}\right|>21 \mathrm{~cm}$ to avoid azimuthal boundaries Γ rejects $\left|z_{\text {CES }}\right|<9 \mathrm{~cm}$ to avoid the 90° region Γ rejects the outermost tower in the chimney wedge Γ and rejects the outermost tower (the $|\eta| \approx 1.0$ tower) in other wedges.

We note that the W mass analysis tightens the $|x|$ cut to 18 cm and the $|z|$ cut to 12 cm Гto stay even farther away from wedge boundaries. We discuss only the $|x|$ cut because it is a larger effect on the acceptance (14% vs. 1.5%). Figure 3.6 shows test beam response [61Г62] for 50 GeV electrons near the azimuthal boundary of a wedge. The steep drop in response clearly occurs outside of the standard fiducial region $|x|<21 \mathrm{~cm}$. We also observe that the E / p resolution is 4.98% for $|x|<18$ and 5.15% for $18<|x|<21$ एwhich implies (after subtracting out the p resolution) that the E resolution is only about 10% worse for $18<|x|<21$ than for $|x|<18$. Thus Γ we believe that the usual fiducial cuts are adequate for this measurement. When we refer hereafter to the CEM fiducial volume Γ we mean the CDF standard fiducial volume not the W mass modified fiducial volume.

Figure 3.6: CEM ϕ crack response in test beam.

3.4.5 Electron identification

We use several electron identification variables to separate W and Z electrons from multijet backgrounds. The figures in Chapter 4 demonstrate that these variables are highly effective.

Since hadrons typically interact later in the calorimeter than electrons Γ the ratio $E_{\text {hadron }} / E_{\text {EM }}$ of hadron calorimeter energy (summed over the towers behind the CEM seed and shoulder towers) to electromagnetic calorimeter energy can be used to purify an electron sample. Because the depth at which a high-energy electron or photon deposits its energy increases slowly (logarithmically) with energy we impose an energy-dependent cut: $E_{\text {hadron }} / E_{\mathrm{EM}}<0.055+0.045 \frac{E}{100 \mathrm{GeV}}$. This requirement has been demonstrated [63] to have high efficiency for test beam electrons over a wide range of energies.

Jets that appear to be electrons because a $\pi^{ \pm}$leaves a charged track and an overlapping π^{0} leaves an electromagnetic shower can be suppressed by requiring a good position match between the track and the shower. We require the shower z position Γ measured with CES cathode strip dataГand CTC track position to match within 5 cm . This is not a very stringent requirement: The rms mismatch for W electrons is 0.46 cm . A similar requirement can be imposed in the azimuthal (x) view Tusing the CES anode wire data but we avoid this requirement for two reasons: First Γ the (charge-weighted) Δx distribution can be pulled away from zero by bremsstrahlung Γ since electrons bend in the magnetic field while photons do not; second Γ each wire channel spans five towers in η Гso the wire data can be sensitive to the presence of underlying event particles in towers well outside of the electron cluster.

Eleven CES cathode channels「centered on the electron shower「are clustered to determine the shower z position discussed above. The distribution of pulse heights within these channels can be compared with test beam profiles. The quantity χ_{s}^{2} is a measure of consistency between the observed shower and a test beam electron shower. We require $\chi_{s}^{2}<20$. A corresponding CES anode variable $\Gamma \chi_{w}^{2} \Gamma$ is available Γ but we do not use it Γ for the same reasons that we do not use the CES $|\Delta x|$ variable.

We define a track isolation variable $N_{\text {cone }}{ }^{(23)}$ as the number of tracks of (unconstrained) $p_{T}>1 \mathrm{GeV}$ that lie in a cone $\Delta R<0.25^{(24)}$ around the electron track and have z_{0} within 5 cm of the electron's z vertex. A related variable that is sometimes used is $N_{3 D}$ Гmentioned in Section 3.4.3; we prefer the $N_{\text {cone }}$ variable because it rejects more background while preserving more signal Γ as one can infer from the numbers in Table 5.2. The $N_{\text {cone }}$ variable is the basis of the dijet background determination in Section 6.2.2.

[^20]Ref. [64] contains an excellent description of many electron identification variables used in CDF.

3.4.6 Corrections applied to the data

The CTC and CEM are complementary in many ways. The CEM measures a quantity proportional to momentum Wwhile the CTC measures the reciprocal of momentum. The CEM is charge symmetric Γ while the CTC is not. CTC response is relatively uniform over a large area Γ while CEM response can vary tower by tower. CTC cells are much smaller than CEM wedgesГso CEM and CTC positiondependent systematic effects tend to be easily separated. For these reasons Γ the quantity E / p - the ratio of CEM energy to CTC momentum - is an important ingredient in the calibration of both the CEM and the CTC.

As we discuss in Appendix D Γ systematic effects in the CEM tend to produce errors of the form $E \rightarrow E^{\text {true }}(1+\epsilon)$ (independent of charge) while CTC wireposition offsets tend to produce charge-dependent errors of the form $p_{T} \rightarrow p_{T}^{\text {true }}(1+$ $q \epsilon) .{ }^{(25)}$ Thus Γ the CEM is used to align the CTC (by subtracting E / p for positives and negatives) Γ and the CTC is used to calibrate the CEM (by averaging E / p for positives and negatives).

Track-level CTC corrections

By comparing E / p for positive and negative electrons as a function of $\phi_{0} \Gamma z_{0} \Gamma$ and $\cot \theta \Gamma$ the following track-level CTC alignment corrections are derived [65Г66]:

$$
\begin{aligned}
\frac{q}{p_{T}^{\mathrm{BC}}} \rightarrow \frac{q}{p_{T}^{\mathrm{BC}}} & -0.000056 \\
& -0.00040 \sin \left(\phi_{0}-3.0\right) \\
& -0.00028\left(\cot \theta+z_{0} / 81.3 \mathrm{~cm}\right)
\end{aligned}
$$

where p_{T}^{BC} is beam-constrained transverse momentum in GeV . Physically Γ the constant term and $\cot \theta$ - and z_{0}-dependent terms correspond to separate distortions of the east and west CTC endplates (illustrated in Appendix D) Γ while the ϕ-dependent term may correspond to a displacement of the SVX - and hence the SVX-derived beamline-with respect to the CTC axis. We correct p_{T}^{BC} in this way F but we note that p_{T}^{BC} has very limited use in this measurement: We require $p_{T}^{\mathrm{BC}}>15 \mathrm{GeV}$ in $W \Gamma Z \Gamma$ and inclusive electron selection in Chapter 4Γ and we use p_{T}^{BC} in calculating masses when we eliminate $Z \rightarrow e e$ events from the W sample in Section 6.1.1. In Appendix D Γ we verify the numerical magnitudes of these corrections Γ investigate their origin in terms of CTC geometry and show that they can be handled much more cleanly if CTC hit data are available.

[^21]
CEM calibration

After CTC momenta are corrected as described above $\Gamma E / p$ is used to remove systematic effects in CEM measurements [65] [using both the W electrons and a large sample of low-energy ($E_{T}>8 \mathrm{GeV}$) inclusive electrons. The basic strategy is to plot the mean of E / p in the window $0.8<E / p<1.25$ against variables in which one expects to find systematic effects. The 1994-95 run is divided into four time periods Γ two of which are bounded by long accelerator shutdowns. Within each of these periods Γ a relative gain factor is derived for each of the 478 CEM towers Γ with a statistical precision of $0.3-0.7 \%$ (depending on time period) for towers in the fiducial volume. ${ }^{(26)}$ An arch-dependent linear slope in time is also derived for each time period. Time-independent corrections are derived within each wedge as a function of $x_{\text {CES }}$ and $z_{\text {CES }}$.

Before the corrections derived from the data are appliedГa response map derived from test beam electrons [61Г62] is applied. Whereas tower energies are derived from the geometric mean of the two phototube pulse heights in the $p \bar{p}$ dataГtower energies in the test beam data were derived from the arithmetic mean; the test beam response map is thus corrected by a factor $\cosh \left(x_{\mathrm{CES}} / \lambda\right)$ where $\lambda \approx 80 \mathrm{~cm}$ is the scintillator attentuation length.

If these corrections (map and calibration combined) were not applied t the CEM constant term would increase from 1.5% to about 4.5%.

[^22]
Chapter 4

Event Selection

This analysis employs three electron-based data sets「selected from three groups of Level-3 central-electron triggers. We use a sample of $2206 Z \rightarrow e e$ candidates to constrain a theoretical model of W and $Z p_{T}$ spectra and to map out the calorimeter response to hadrons recoiling against the boson p_{T}; a 2012-event subset of these Z candidates is used to measure the calorimeter response to high- p_{T} electrons. We use a sample of 127040 electron candidate events Γ with no $\#_{T}$ requirement Γ to model multijet events that can mimic the $W \rightarrow e \nu$ signature. Finally「we use a sample of $49843 W \rightarrow e \nu$ candidate events to measure Γ_{W}.

While the W and Z samples do not overlap Γ the inclusive electron sample contains 99.5% of the events in the $Z \rightarrow e e$ sample and 95.3% of the events in the $W \rightarrow e \nu$ sample. ${ }^{(1)}$

The W and Z selection criteria in this analysis are Γ by design Γ similar to those of the CDF W mass analysis [00] Γ with two significant exceptions. First Γ because this measurement is statistically limited Γ we use the standard CDF electron fiducial criteria (discussed in Section 3.4.4) Гrather than the more restrictive W mass fiducial cuts Γ which would force us to discard 14% of the W sample and 27% of the Z sample. Second Γ because this measurement studies the tail of the W signal region we impose more stringent electron ID requirements to keep multijet backgrounds as small as possible. The general similarity between the two analyses provides a number of consistency checks Γ which we exploit throughout this dissertation.

4.1 $Z \rightarrow e e$ candidate selection

Table 4.1 lists the $Z \rightarrow e e$ selection criteria. We start from the 282182-event Run Ib EZA dataset described in Section 3.4.2. We keep only runs in which the detector

[^23]| | Cut | \# pass | \% fail | if last |
| :---: | :---: | :---: | :---: | :---: |
| A | Run Ib Z electron dataset | 282181 | - | - |
| B | No known detector problems | 273377 | 3.1 | 2.8 |
| C | Passes any $Z \rightarrow e e$ trigger | 273141 | 0.09 | 0.0 |
| D | Passes central electron Z trigger | 213344 | 21.9 | 0.0 |
| E | Central electron reconstructed | 213341 | 0.001 | - |
| F | First electron in CEM fiducial volume | 197151 | 7.6 | 7.7 |
| G | $E_{T}>25 \mathrm{GeV}$ | 153235 | 22.3 | 0.5 |
| H | Electron track $p_{T}^{\mathrm{BC}}>15 \mathrm{GeV}$ | 89022 | 41.9 | 4.0 |
| I | z-vertex in fiducial region | 80710 | 9.3 | 4.5 |
| J | CTC fiducial volume | 78377 | 2.9 | 2.4 |
| K | Second CEM electron candidate exists | 40755 | 48.0 | - |
| L | Second electron in CEM fiducial volume | 37349 | 8.4 | 6.7 |
| M | $E_{T}>25 \mathrm{GeV}$ | 28549 | 23.6 | 0.3 |
| N | Electron track $p_{T}^{\mathrm{BC}}>15 \mathrm{GeV}$ | 10862 | 38.0 | 3.3 |
| O | CTC fiducial volume | 10571 | 2.9 | 2.5 |
| P | $\left\|z_{0}^{\text {ele1 }}-z_{0}^{\text {ele2 }}\right\|<5 \mathrm{~cm}$ | 9934 | 6.0 | 0.6 |
| Q | $\cos \left(\phi_{0}^{\text {ele1 }}-\phi_{0}^{\text {ele2 }}\right)<0.95$ | 9356 | 5.8 | 0.0 |
| R | $70 \mathrm{GeV}<M^{e e}<110 \mathrm{GeV}$ | 5515 | 41.1 | 5.5 |
| S | $p_{T}^{e e}<50 \mathrm{GeV}$ | 5320 | 3.5 | 3.0 |
| T | Tracks have opposite electric charge | 3849 | 27.7 | 0.05 |
| U | Identification cuts「first electron | 2206 | 42.7 | 8.5 |
| V | Identification cuts「second electron | 2012 | 8.9 | 8.9 |

Table 4.1: $Z \rightarrow e e$ candidate events passing successive selection criteria. The last column gives the fraction (\%) of events failing a given cut if that cut is applied after all other cuts. Electron ID cuts are detailed in Tables 4.2 and 4.3.

	Cut	\# pass	\% fail	if last
A	Table 4.1Гlines A-S	5320	-	-
B	$E_{\text {hadron }} / E_{\text {EM }}$ consistent with electron	2823	46.9	1.3
C	Track/CEM position match (z-view)	2715	3.8	0.1
D	Transverse shower shape (z-view)	2499	8.0	1.8
E	Electron track is isolated	2214	11.1	8.3
F	Tracks have opposite charge	2206	0.4	0.4

Table 4.2: $Z \rightarrow e e$ candidate events passing successive electron ID cuts applied to first electron. (The electrons are ordered randomly.) The last column gives the fraction (\%) of events failing a given cut if that cut is applied after all other cuts. See Section 3.4.5 for definitions of the electron ID variables.

	Cut	\# pass	\% fail	if last
A	Table 4.2Гlines A-E	2214	-	-
B	$E_{\text {hadron }} / E_{\text {EM }}$ consistent with electron	2171	1.9	1.3
C	Track/CEM position match (z-view)	2169	0.1	0.1
D	Transverse shower shape $(z$-view $)$	2134	1.6	1.5
E	Electron track is isolated	2013	5.7	5.6
F	Tracks have opposite charge	2012	0.05	0.05

Table 4.3: $Z \rightarrow e e$ candidate events passing successive electron ID cuts applied to second electron. The last column gives the fraction (\%) of events failing a given cut if that cut is applied after all other cuts.
and trigger were believed to be in good working order Γ then verify that each event in fact passes one of the EZA Level-3 triggers. We next look specifically for a CEM electron trigger Γ and check that events contain a central electron candidate. If an event contains two central electron candidates Γ we select one of them at random to be labeled "the first electron."

We require the first electron to be in the CEM fiducial volume Γ as described in Section 3.4.4. Using the energy measured in the CEM and the trajectory measured in the СТСГand applying the corrections described in Section 3.4.6 एwe define the electron energy vector \vec{E} and require $E_{T}>25 \mathrm{GeV} \Gamma$ which exceeds the Level-3 trigger threshold by about four times the CEM resolution. We next require $p_{T}^{\mathrm{BC}} \Gamma$ measured by the CTCГ to exceed 15 GeV Гwhich exceeds the Level-3 $p_{T}>13 \mathrm{GeV}$ requirement by several times the p_{T} resolution. We also impose fiducial-volume cuts at the beamline and at the outer radius of the СТСГas described in Section 3.4.4.

We then look for a second central electron and impose the same $E_{T} \Gamma p_{T}^{\mathrm{BC}} \Gamma$ and CEM and CTC fiducial requirements. Since two electrons from Z decay must originate from the same point at the beamline Γ we check that the electrons were constrained to the same z-vertex Γ or to two z-vertices less than 5 cm apart. ${ }^{(2)}$

To eliminate a class of background events in which the reconstruction software finds two electron candidates in a single electromagnetic jet Γ we require the two electrons to be separated by at least 18.2° in azimuth $(\cos \Delta \phi<0.95)$; since in these events the same track is often assigned to both electron candidates Γ it is convenient to remove them before calculating $M^{e e}$. Figure 4.1 shows the distribution of dielectron invariant mass $\Gamma M^{e e} \Gamma$ for events passing the above cuts. We require $70 \mathrm{GeV}<M^{e e}<110 \mathrm{GeV}$; the $Z \rightarrow e e$ resonance ($\Gamma_{Z}=2.49 \mathrm{GeV}$) is well contained within this window. Because this measurement studies low- $p_{T} Z$ and W events Γ which are qualitatively different from the $Z, W+$ jets events found at high p_{T} Гwe require $p_{T}^{e e}<50 \mathrm{GeV}$. ${ }^{(3)}$

5320 events satisfy these selection criteria. In 3849 of these events Γ the two electrons have opposite charge; using the like-sign pairs as an estimate of dijet backgrounds Γ we estimate that about 40% of the 3849 opposite-sign events are dijet background. Figure 4.2 shows $M^{e e}$ distributions for opposite-sign and like-sign pairs after this initial $Z \rightarrow e e$ selection.

Up to this point Γ we define "electron candidate" very loosely Γ as a high- E_{T}

[^24]

Figure 4.1: $M^{e e}$ spectrum after minimal event selection (Table 4.1Гlines A-Q).

Figure 4.2: $M^{e e}$ spectra (opposite sign Γ solid points; like sign Γ open points) before electron ID requirements (Table 4.1Гlines A-S).
electromagnetic shower having $E_{\text {hadron }} / E_{\mathrm{EM}}<0.125^{(4)}$ and an associated high- p_{T} track. As a result Γ we observe an unacceptably high background rate.

As detailed in Table 4.2 एwe next impose on the first electron the identification criteria described in Section 3.4.5 Г after which 2206 opposite-sign and 8 like-sign events remain. The estimated opposite-sign background fractionГLS/OSГis 0.4% two orders of magnitude lower than the 40% before the ID cuts. We will refer to the 2206 opposite-sign events as "the $Z \rightarrow e e$ sample." Figure 4.3 shows the $M^{e e}$

[^25]spectrum for this sample．

Figure 4．3：$M^{e e}$ spectra（opposite sign「solid points；like sign「open points）after electron ID requirements on one leg（Table 4．1 lines A－U）．

Imposing electron identification criteria on the second electron「as detailed in Ta－ ble 4.3 Fimproves the estimated signal－to－background by another order of magnitude Γ leaving 2012 opposite－sign events and only one like－sign event－hence an estimated 0.05% background fraction．We will refer to the 2012 opposite－sign events as＂the tight $Z \rightarrow e e$ sample．＂Figure 4.4 shows the $M^{e e}$ spectrum for this sample．

Figure 4．4：$M^{e e}$ spectra（opposite sign Γ solid points；like sign （open points）after electron ID requirements on both legs（Table 4．1 Гlines A－V）．

	Cut	\# pass	\% fail	if last
A	Run Ib inclusive central electron dataset	497446	-	-
B	No known detector problems	482763	3.0	2.9
C	Passes either CEM inclusive electron trigger	482707	0.01	-
D	Passes 18 GeV CEM inclusive electron trigger	426923	11.6	2.4
E	Central electron found by reconstruction software	426922	0.0002	-
F	Electron in CEM fiducial volume	379962	11.0	9.8
G	$E_{T}>25 \mathrm{GeV}$	175450	53.8	50.1
H	Electron track $p_{T}^{\text {BC }}>15 \mathrm{GeV}$	159481	9.1	5.9
I	z-vertex in fiducial region	150705	5.5	5.3
J	CTC fiducial volume	147508	2.1	2.1
K	CTC impact parameter <0.5 cm	145982	1.0	0.8
L	$Z \rightarrow e e$ removal	140896	3.5	3.7
M	$E_{\text {hadron }} / E_{\text {EM }}$ consistent with electron	128126	9.1	8.8
N	Track/CEM position match $(z$-view $)$	127096	0.8	0.8
O	Transverse shower shape $(z$-view $)$	127040	0.04	0.04

Table 4.4: Inclusive electron events passing successive selection cuts. The last column gives the fraction (\%) of events failing a given cut if that cut is applied after all other cuts.

4.2 Inclusive electron candidate selection

Table 4.4 lists the selection criteria for the inclusive electron sample used to study multijet backgrounds. We start from the 497446 -event Run Ib EIA dataset described in Section 3.4.2. We eliminate runs with known detector problems Γ verify that the event passes the inclusive electron triggerГand look for a central electron candidate. If several central electron candidates are found Γ we choose the one with highest E_{T}.

The selection continues in parallel with the $W \rightarrow e \nu$ candidate selection described below Γ except that the $Z_{T} \Gamma u \Gamma$ track isolation Γ and $M_{T}<200 \mathrm{GeV}$ requirements are not imposed. Figure 4.5 shows the E_{T} spectrum for the 127041 surviving events.

4.3 $W \rightarrow e \nu$ candidate selection

Table 4.5 lists the $W \rightarrow e \nu$ selection criteria. We start from the 232909-event Run Ib EWA dataset described in Section 3.4.2. We eliminate runs with known detector problems Γ verify that the event passes the $W \rightarrow e \nu$ triggerГ and look for a central electron candidate. If several central electron candidates are found Γ we choose the one with highest E_{T}.

	Cut	\# pass	\% fail	if last
A	Run Ib W central electron dataset	232909	-	-
B	No known detector problems	225402	3.2	2.9
C	Passes CEM $W \rightarrow e \nu$ trigger	225051	0.16	0.0
D	Central electron found by reconstruction software	225048	0.001	-
E	Electron in CEM fiducial volume	201995	10.2	8.2
F	$E_{T}>25 \mathrm{GeV}$	187249	7.3	4.1
G	Electron track $p_{T}^{\mathrm{BC}}>15 \mathrm{GeV}$	118870	36.5	4.2
H	z-vertex in fiducial region	105338	11.4	5.6
I	CTC fiducial volume	103030	2.2	2.5
J	$\#_{T}>25 \mathrm{GeV}$	70143	31.9	5.1
K	$u<20 \mathrm{GeV}$	58182	17.1	8.3
L	CTC impact parameter $<0.5 \mathrm{~cm}$	57900	0.5	0.2
M	$Z \rightarrow e e$ removal	57201	1.2	1.2
N	$E_{\text {hadron }} / E_{\text {EM }}$ consistent with electron	55741	2.6	1.0
O	Track/CEM position match (z-view)	54813	1.7	1.0
P	Transverse shower shape (z-view)	53643	2.1	1.4
Q	Electron track is isolated	49851	7.1	7.1
R	$M_{T}<200 \mathrm{GeV}$	49843	0.02	0.02

Table 4.5: $W \rightarrow e \nu$ candidate events passing successive selection cuts. The last column gives the fraction (\%) of events failing a given cut if that cut is applied after all other cuts.

Figure 4.5: The solid points show the E_{T} spectrum for inclusive electrons passing cuts A-O in Table 4.4. The W peak near $\frac{1}{2} M_{W}$ is prominent; multijet background peaks at low E_{T}. For comparison Γ the open points show the E_{T} spectrum for the subset of these events in which the electron track is isolated.

We impose fiducial cuts and require $E_{T}>25 \mathrm{GeV} \Gamma p_{T}^{\mathrm{BC}}>15 \mathrm{GeV}$. We compute the recoil transverse energy vector $\vec{u} \Gamma$ as described in Section 3.4.3 Γ define $\vec{E}_{T}=$ $-\left(\overrightarrow{E_{T}}+\vec{u}\right) \Gamma$ and require $Z_{T}>25 \mathrm{GeV} \Gamma u<20 \mathrm{GeV}$. The $E_{T} \Gamma p_{T}^{\mathrm{BC}} \Gamma$ and Z_{T} cuts are selected to be several resolutions above the trigger thresholds. As shown in Figure 4.6Γ the u cut reduces multijet backgrounds substantially Γ while preserving about 90% of W signal; in addition Γ the transverse mass resolution is much better at low u. To reject cosmic rays Γ we require the electron track to pass within 0.5 cm of the beamline. We reject $Z \rightarrow e e$ decays in which one electron lands in a region of low calorimeter response Γ by searching for a second high- p_{T} track that can be combined with the first electron to make a mass near M_{Z}. Finally . to reduce multijet backgrounds Γ we impose the electron identification cuts described in Section 3.4.5. 49851 events remainCof which 49843 have $M_{T}<200 \mathrm{GeV}$. Figure 4.7 plots $M_{T}(e, \nu)$ for this sampleГand Figure 4.8 is a graphical display of an event satisfying all criteria.

4.4 Checks of $W \rightarrow e \nu$ event selection

We perform checks of the rejection rates of most of the requirements imposed on $W \rightarrow e \nu$ candidates Γ to ensure that each step of the selection is well understood. These checks are summarized in Table 4.6 and described below.

We simulate $W \rightarrow e \nu$ events using the CDF detector simulation program QFLГ as described in Chapter 5 5 to predict inefficiencies for all fiducial requirements Γ the p_{T}^{BC} cut Γ and the Z-removal procedure. The larger z-vertex inefficiency in the data is expected because the actual z-vertex distribution has longer tails than a Gaussian

Cut	data \% fail	\% predict	how
CEM fiducial volume	8.2	6.7	simulation
$E_{T}>25 \mathrm{GeV}$	4.1	-	Figure 5.23
$p_{T}^{\mathrm{BC}}>15 \mathrm{GeV}$	4.2	3.8	simulation
z-vertex fiducial volume	5.6	2.4	simulation
CTC fiducial volume	2.5	2.6	simulation
$E_{T}>25 \mathrm{GeV}$	5.0	-	Figure 5.23
$u<20 \mathrm{GeV}$	8.3	8.2	Z data+sim+bkg
CTC impact parameter	0.2	0.2	Z data
Z removal	1.2	1.1	simulation
$E_{\text {hadron }} / E_{\text {EM }}$	1.0	1.3	Z data
$\Delta z_{\text {track,CES }}$	1.0	0.1	Z data
transverse shower profile	1.4	1.5	Z data
track isolation cut	7.1	7.3	W data+sim+bkg

Table 4.6: Comparison of cut failure rates in data (for each cut if it is applied after all others) with expectations.
distribution. The 94.4% efficiency we observe for $\mid z$-vertex $\mid<60 \mathrm{~cm}$ is consistent with $95.6 \pm 1.0 \%$ found in Ref. [49]. ${ }^{(5)}$

While we do not explicitly calculate the number of events expected to fail the E_{T} or E_{T} cuts Γ we note (see Figure 5.23) that the E_{T} and E_{T} shapes are modeled well by the simulation Γ even near 25 GeV .

We use the $Z \rightarrow e e$ data to check inefficiencies of the CTC impact parameter Γ $E_{\text {hadron }} / E_{\mathrm{EM}} \Gamma \Delta z_{\text {track, CES }} \Gamma$ and transverse shower profile criteria. We find disagreement only in the $\Delta z_{\text {track, CES }}$ cut. We believe that most of these events are caused by CTC mismeasurements in the $r-z$ view: relaxing the $\left|z_{0}^{\text {ele1 }}-z_{0}^{\text {ele2 }}\right|$ requirement in the $Z \rightarrow e e$ selection raises the $\Delta z_{\text {track, CES }}$ inefficiency in $Z \rightarrow e e$ events to 0.8%.

We check the u requirement using a combination of Z data Γ simulation Γ and background shape prediction Γ as follows. Since the W and $Z p_{T}$ spectra are not identical Γ we use the Z data (without the $p_{T}<50 \mathrm{GeV}$ cut) only to predict that the $u>35 \mathrm{GeV}$ fraction is 3.3%. Then we use the W simulation (which only generates $p_{T}<50 \mathrm{GeV}$) to predict that $20 \mathrm{GeV}<u<35 \mathrm{GeV}$ is 4.75% of $u<35 \mathrm{GeV} \mathrm{\Gamma}$ and combine to obtain 7.9%. Finally Γ we account for an estimated 450 multijet background events Γ about half of which have $u>20 \mathrm{GeV}$ Гto obtain 8.4% Гin good agreement with 8.3% seen in the data.

The track isolation requirement rejects 7.1% of data events. We expect a 4.8% inefficiency for real W events Γ as described in Section 5.3. From Table 6.2 Γ we expect about three background events to fail the track isolation cut for every one that passes「and from Table 6.3Гwe expect 450 ± 110 dijet background events that pass. Thus Γ we predict a $\frac{3 \times 450}{49843}=2.7 \pm 0.7 \%$ rate of track isolation failures due to backgrounds. Averaging 75% inefficiency for $4 \times 450=1800$ multijet background events with 4.8% inefficiency for the remaining $49843-450=48043$ events Γ we predict $7.3 \pm 0.7 \%$ Гin good agreement with the observed rate. The predicted contribution from tridents (bremsstrahlung photons that produce $e^{+} e^{-}$pairs) alone rises from 1.3% at $E_{T} \approx 40 \mathrm{GeV}$ to 2.5% at $E_{T} \approx 100 \mathrm{GeV}$.

[^26]

Figure 4.6: (Top) Distributions of recoil energy (u) for $Z \rightarrow e e$ data (solid points) Γ whose p_{T} spectrum is similar to that of W events Γ and for a background sample of photon conversion data (open points). (Note logarithmic y-axis.) Both distributions are normalized to unity. The structure in the background shape near $u=50 \mathrm{GeV}$ is a result of the $E_{T}>25 \mathrm{GeV}$ and $E_{T}>25 \mathrm{GeV}$ cuts. For $u<50 \mathrm{GeV} \Gamma \vec{E}_{T}$ and \vec{E}_{T} must point in opposite directions; for $u>50 \mathrm{GeV} \Gamma \vec{E}_{T}$ and \vec{E}_{T} can be either aligned or antialigned. To illustrate this point Γ the solid histogram shows the subset of the background for which $\vec{E}_{T} \cdot \vec{E}_{T}<0$. (Bottom) The integrated distributions. The figure illustrates that a $u<20 \mathrm{GeV}$ cut is useful for rejecting background while preserving about 90% of the signal in W events.

Figure 4.7: The solid points show the $M_{T}(e, \nu)$ spectrum for events passing all cuts in Table 4.5. For comparison Γ the open points show the M_{T} spectrum for events failing one or more of the electron ID cuts (lines N-Q).

CDF Preliminary

Figure 4.8: A typical event passing all cuts in Table 4.5.

Chapter 5

W and Z Lineshape Simulation

This analysis extracts a measured value for Γ_{W} from the observed $M_{T}(e, \nu)$ lineshape. A crucial component in such an analysis is a prediction of the M_{T} distribution as a function of Γ_{W}. Following the standard practice of high-energy physics Γ we predict this spectrum using Monte Carlo methods.

We need several ingredients to model the M_{T} lineshape. We must generate W bosons with correct distributions of (in general off-shell) mass Γ longitudinal momentumГpolarizationГand transverse momentumГand decay them properlyГincluding radiative decays $W \rightarrow e \nu \gamma$. We must then place each event into the CDF detector Γ modeling the spread in z of $\bar{p} p$ collisions Γ and trace the initial-state particles through the detectorГsimulating the detector's response to electrons Γ photons Γ and recoiling hadrons. The kinematic and geometric acceptance cuts applied to the data must be applied consistently to simulated events. Finally contributions of important background processes must be included in the spectra.

We describe these ingredients below in more detail.

5.1 Event generation

The first stage of the Monte Carlo calculation「called "event generationl" produces a list of initial-state particles-electrons Γ positrons Γ photons Γ and neutrinos-and their trueГunsmeared momenta.

We use a zeroth-order $\left(p_{T}(W)=0\right)$ generator Γ TOYGEN [67] Γ developed by the UA2 collaboration and currently used in the CDF W mass analysis [68Г00]. TOYGEN produces weighted $\bar{p} p \rightarrow W \rightarrow e \nu \gamma$ events with boson mass $M=\sqrt{\hat{s}}=$ $\sqrt{x_{1} x_{2} s}$ and rapidity $y=\operatorname{arcsinh}\left(\frac{p_{z}}{M}\right)=\frac{1}{2} \log \left(\frac{x_{1}}{x_{2}}\right) \Gamma$ with distribution

$$
\begin{equation*}
\frac{d \sigma}{d x_{1} d x_{2}} \propto \sum_{i j} f_{i / p}\left(x_{1}\right) f_{j / \bar{p}}\left(x_{2}\right) \cdot\left|V_{i j}\right|^{2} \cdot \frac{\hat{s}}{\left(\hat{s}-M_{W}^{2}\right)^{2}+\left(\frac{\hat{\Gamma} \Gamma_{W}}{M_{W}}\right)^{2}} \tag{5.1}
\end{equation*}
$$

where i, j sum over quark flavors and $V_{i j}$ is the CKM matrix．For the present analysis Γ the most important feature of Equation 5.1 is the \hat{s} dependence Γ which is a convolution of the＂momentum－dependent＂Breit－Wigner distribution ${ }^{(1)}$（the last factor in 5．1）with the falling parton luminosity（the first factor）．We use the parton distribution functions（the functions $f_{i}(x)$ ）from set MRS－R2［27］．

The momenta of $e \Gamma \nu \Gamma \gamma$ are distributed according to a calculation by Berends and Kleiss［29］．The W is then boosted Γ with a new p_{z} chosen to preserve longitudinal rapidity $y=\frac{1}{2} \log \left(\frac{E+p_{z}}{E-p_{z}}\right) \Gamma$ so that its p_{T} distribution $\frac{d N}{d p_{T} d y}$ is given by the NLO Arnold－Kauffman［31］calculation Γ with nonperturbative（low $p_{T}(W)$ ）component parameterized by Ladinsky and Yuan［35］．A reweighting technique $\overline{\text { described in }}$ Section 5．4．3 Гaccounts for the variation of $\frac{d N}{d p_{T}}$ with $\sqrt{\hat{s}}$ ．

TOYGEN also generates $Z \rightarrow e e \gamma$ events Γ using the same calculations for radia－ tive decay and boson p_{T} ．

The initial states generated by TOYGEN contain only electrons「neutrinos「and photons Γ boosted from the W or Z rest frame to the laboratory frame．No particle－ by－particle description is provided of recoil energyГinitial－state gluon radiation Γ or additional minimum－bias events from the $p \bar{p}$ bunch crossings in which the W and Z bosons are produced．Such a particle－level description is difficult to calculate theoretically「because perturbation theory does not apply「and difficult to simulate reliably Γ because the detector＇s response to individual low－momentum hadrons is difficult to measure．InsteadГwe use an empirical model described below．

5．2 Detector simulation overview

Two detector simulation programs are used in this analysis．For most results Γ we use the SSD simulation Гdeveloped by this author and described in Appendix B．Its advantages are that it runs relatively quickly Γ that it is easily modified or extended Γ and that this author understands exactly what set of effects it simulates．We also use the standard CDF detector simulation Q QLГto perform some checks of the electron and photon simulation Γ and to simulate lost－Z backgrounds．The advantages of QFL are that it has been well tested by a large number of physicists and that it simulates several effects not found in SSD．${ }^{(2)}$ Where possibleГwe look for agreement between the simple simulation Γ the comprehensive simulation Γ and the data．

Because the generator does not produce a list of recoil particles Γ neither simu－ lation directly models the effect of hadrons recoiling against the boson p_{T} ．When using either simulation Γ we draw the recoil energy vector $\Gamma \vec{u} \Gamma$ from a model that is tuned with minimum－bias and Z data．Given a value of the true $\vec{p}_{T}(W)$ vector Γ the

[^27]model generates an observed recoil vector \vec{u} from a distribution. The recoil model is described in detail in Section 5.5.

Both simulation programs output data in a format that closely resembles the format of the real data Γ allowing the same analysis program to process both real and simulated events. We have found that this approach eliminates an enormous number of trivial sources of error in comparing data and simulation.

All electron ID variables are simulated in QFLГ while SSD simulates only the track isolation variable. Since the track isolation cut is the most stringent electron identification criterion that we apply (see Table 4.5) Γ it is important to model it carefully. Neither simulation directly models the contribution of underlying-event particles to the track isolation variable; as described in Section 5.3Γ we use the W data to simulate this effect.

Estimated backgrounds from $W \rightarrow \tau \nu \rightarrow e \nu \nu \nu \Gamma Z \rightarrow e e \Gamma$ and QCD multijet events are added to the $M_{T}(e, \nu)$ spectrum by hand. Background determination is discussed in Chapter 6.

5.3 Simulating $N_{\text {cone }}$ with W events

Since the $N_{\text {cone }}$ track isolation variableГdefined in Section 3.4.5 plays an important role in this measurement Γ it is useful to have a technique to model its effect on W and Z signal distributions. We consider two contributions to the $N_{\text {cone }}$ distribution for W and Z signal: $e^{+} e^{-}$pair production by bremsstrahlung photons Γ which is modeled within both the SSD and the QFL detector simulations Γ and underlying event contributions Γ which we simulate using the "W list" technique described in this section. ${ }^{(3)}$

Figure 5.1 shows $N_{\text {cone }}$ distributions for TOYGEN Z electrons simulated with SSD. The fraction outside the $N_{\text {cone }}=0$ bin is 1.4%. Below we will combine this information with the W list result.

For each of the 49843 events in the W sample Γ we write to a binary file $u \Gamma \phi(\vec{u}) \Gamma$ $\phi\left(\vec{E}_{T}\right) ;(\eta, \phi)$ for each track of $p_{T}>1 \mathrm{GeV}$ within 5 cm in z of the electron vertex; and the run and event number for debugging. ${ }^{(4)}$ We read this binary file (about 1.5 MB) into a data structure in memory t then arrange the data into $40 u$ bins Γ from 0 to 20 GeV . To simulate the $N_{\text {cone }}$ variable for a Monte Carlo W event Γ we randomly choose an event from the correct u bin「and rotate the W list event so that $\phi(\vec{u})$ is the same for the two events. If the real electron in the W list event is within 30° of the MC electronTwe choose a different W list event from the same u bin. Since the
${ }^{(3)}$ While overlaying Monte Carlo particles and real data events is a well known simulation technique in hadron collider physics, our use of this method was inspired by the work of Andrew Gordon in Ref. [69].
${ }^{(4)}$ Most of these quantities are in practice stored as 16 -bit integers, to save space.

Figure 5.1: $N_{\text {cone }}$ distribution for TOYGEN Z events simulated with SSD. The $N_{\text {cone }}>0$ fraction is 1.4%. Note that the $N_{\text {cone }}=0$ point is off-scale in the left-hand plot. These results are in excellent agreement with an earlier study that simulated W electrons with QFL [70].
p_{T} and $\left|\Delta z_{0}\right|$ cuts on the tracks have already been made in writing the W list Γ we simply count tracks in a cone around the MC electron to simulate $N_{\text {cone }}$. ${ }^{(5)}$

Figure 5.2 shows some predictions of this simulation of the underlying event's contribution to $N_{\text {cone }}$. The predicted inefficiency is 3.4% Гwhich we can combine with the SSD prediction to obtain 4.8% Гin good agreement with the $5 \pm 1 \%$ inefficiency observed in the Z data.

While it would be straightforward to extend this technique to model the inefficiencies of the shower shape $\left(\chi_{s}^{2}\right)$ and $E_{\text {hadron }} / E_{\mathrm{EM}}$ cuts Γ by overlaying QFL electron showers with data from the underlying event Γ we decided that it would make no sense to do so for this measurement: As Table 4.5 shows Γ each of the other electron ID cuts removes $1-1.5 \%$ of W events (if it is applied last) Γ while the track isolation cut rejects 7%. We model the most important variable $\Gamma N_{\text {cone }} \Gamma$ very well Γ and that seems adequate.

Table 5.1 summarizes the results of the SSD and W list $N_{\text {cone }}$ predictions and combines them into a single predicted $N_{\text {cone }}$ distribution for W and Z signal electrons.

Because the $N_{\text {cone }}$ cut uses a fixed track p_{T} threshold of 1 GeV Γ we expect highenergy electrons Γ whose secondary particles are proportionally more energetic Γ to

[^28]

Figure 5.2: (Top) $N_{\text {cone }}$ distribution predicted by W list. The $N_{\text {cone }}>0$ fraction is 3.4%. (Bottom) Probability to have $N_{\text {cone }}>0$ (SSD contribution is not included) vs. u and $\Delta \phi\left(\vec{E}_{T}, \vec{u}\right)$.
fail the $N_{\text {cone }}$ cut more frequently than low-energy electrons. The $N_{\text {cone }}$ inefficiency predicted by the combined SSD and W-list simulation increases from 4.8% for $M_{T}<$ 100 GeV to 6% for $M_{T}=200 \mathrm{GeV}$. The physical processes that cause this decrease in efficiency-bremsstrahlung and pair production-are well understood Γ and the model successfully predicts the $N_{\text {cone }}$ inefficiency observed in both the Z data and the W data. ${ }^{(6)}$ Thus Γ we feel that we can trust the simulation to model this modest

[^29]| $N_{\text {cone }}$ | SSD | W list | combined |
| ---: | :---: | :---: | :---: |
| 0 | 0.9857 | 0.9657 | 0.9519 |
| 1 | 0.0072 | 0.0315 | 0.0380 |
| 2 | 0.0070 | 0.0027 | 0.0096 |
| >2 | 0.0001 | 0.0001 | 0.0005 |

Table 5.1: Prediction for W and Z signal electron $N_{\text {cone }}$ distribution combining results from the SSD simulation (which models the contribution from bremsstrahlung and pairproduction) and the W list (which models the underlying event contribution).
dependence on electron energy.

5.4 Tuning the simulation

The $M_{T}(e, \nu)$ lineshape simulation requires a number of inputs Γ many of which have associated uncertainties. These inputs include electron energy scale Γ electron resolution $\Gamma W p_{T}$ distribution Γ and calorimeter response to the hadronic energy recoiling against the W. The ability to constrain these quantities from the data (usually the $Z \rightarrow e e$ sample) will set the scale for many of the systematic errors we assign to the measured W width.

5.4.1 Electron energy scale

We check the electron energy scale in the $Z \rightarrow e e$ sample (after the corrections described in Section 3.4.6) with a one-parameter binned log-likelihood fitГusing 40 mass bins from 70 GeV to 110 GeV . ${ }^{(7)}$ We compute the log-likelihood for a Monte Carlo template of a given energy scale to produce the observed set of $Z \rightarrow e e$ events Γ and fit a parabola to $-2 \log (L)$ vs. energy scale.

Since effects sensitive to electron ID cutsГsuch as underlying event energy「hard bremsstrahlungГand leakage into the hadronic calorimeterГmay affect the electron response Γ we use the "tight $Z \rightarrow e e$ sampleए" in which electron ID cuts are applied to both electrons. We find $M_{Z}=91.240 \pm 0.068 \mathrm{GeV}$ Vi.e. that we must multiply the Monte Carlo energies by 1.00059 ± 0.00075 to match the data. (See Figure 5.3.)

As a check of the fitting procedure We fit the unscaled Monte Carlo distribution and find a scale factor of 1.00001 ± 0.00003. The Monte Carlo statistical error is a factor of 25 smaller than the data statistical error. (The fitting templates use 1.35 million MC events Γ after all cuts.)

[^30]| Cuts | $M_{Z}(\mathrm{GeV})$ | scale ($\frac{\text { data }}{\mathrm{MC}}$) | \# OS | \# LS |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \hline \Delta z_{\text {track,CES }} \Gamma N_{\text {cone }} \Gamma \\ & E_{\text {hadron }} / E_{\mathrm{EM}} \Gamma \chi_{s}^{2}<20 \end{aligned}$ | 91.240 ± 0.068 | 1.00059 ± 0.00075 | 2012 | 1 |
| $\begin{aligned} & \hline \Delta z_{\text {track }, \text { CES }} \Gamma N_{\text {cone }} \Gamma \\ & E_{\text {hadron }} / E_{\mathrm{EM}} \Gamma \chi_{s}^{2}<10 \\ & \hline \end{aligned}$ | 91.281 ± 0.069 | 1.00104 ± 0.00076 | 1929 | 1 |
| $\begin{aligned} & \Delta z_{\text {track }, \mathrm{CES}} \Gamma N_{\text {cone }} \Gamma \\ & E_{\text {hadron }} / E_{\mathrm{EM}} \Gamma \chi_{s}^{2}+\chi_{w}^{2}<20 \end{aligned}$ | 91.293 ± 0.075 | 1.00117 ± 0.00082 | 1639 | 0 |
| $\begin{aligned} & \Delta z_{\text {track }, \text { CES }} \Gamma N_{\text {cone }} \Gamma \\ & E_{\text {hadron }} / E_{\mathrm{EM}} \end{aligned}$ | 91.244 ± 0.067 | 1.00063 ± 0.00074 | 2077 | 1 |
| $\Delta z_{\text {track }, \mathrm{CES}} \Gamma N_{\text {cone }}$ | 91.193 ± 0.066 | 1.00007 ± 0.00073 | 2128 | 3 |
| $\Delta z_{\text {track }, \mathrm{CES}} \Gamma N_{3 D}$ | 91.156 ± 0.072 | 0.99967 ± 0.00079 | 1823 | 10 |
| $\begin{aligned} & \Delta z_{\text {track, CES }} \Gamma N_{3 D} \Gamma \\ & \left\|x_{\text {cal }}\right\|<18 \mathrm{~cm} \\ & \hline \end{aligned}$ | 91.136 ± 0.082 | 0.99944 ± 0.00090 | 1376 | 5 |
| $\begin{aligned} & \Delta z_{\text {track }, \mathrm{CES}} \Gamma N_{3 D} \Gamma \\ & \left\|x_{\text {cal }}\right\|<18 \mathrm{~cm} \Gamma \\ & \left\|z_{\text {cal }}\right\|>12 \mathrm{~cm} \\ & \hline \end{aligned}$ | 91.105 ± 0.084 | 0.99911 ± 0.00092 | 1329 | 5 |
| $\begin{aligned} & N_{3 D} \Gamma \\ & \left\|x_{\text {cal }}\right\|<18 \mathrm{~cm} \Gamma \\ & \left\|z_{\text {cal }}\right\|>12 \mathrm{~cm} \\ & \hline \end{aligned}$ | 91.089 ± 0.084 | 0.99893 ± 0.00092 | 1343 | 9 |
| $\begin{aligned} & N_{3 D} \Gamma \text { no } P_{T}^{Z} \text { cut } \Gamma \\ & \left\|x_{\text {cal }}\right\|<18 \mathrm{~cm} \Gamma \\ & \left\|z_{\text {cal }}\right\|>12 \mathrm{~cm} \end{aligned}$ | 91.112 ± 0.082 | 0.99919 ± 0.00090 | 1384 | 9 |

Table 5.2: Dependence of CEM energy scale (inferred from Z mass) on electron selection criteria. These cuts are applied to both electrons.

We have found that making other reasonable choices of electron selection criteria can change the observed energy scale at the 0.1% level. In particular Γ the scale factor that we fit is 0.16% (about 1.6σ Гsince the errors are nearly 100% correlated) higher than the $M_{Z}=91.095 \pm 0.090 \mathrm{GeV}$ reported in Ref. [71]. Table 5.2 shows the dependence of the fitted M_{Z} on electron selection criteria. Using cuts similar to those in Ref. [71] Γ we find a result in much better agreement $\Gamma M_{Z}=91.112 \pm$ 0.082 GeV .

We will divide the observed CEM energies by a factor 1.0006. In addition to the statistical error of 0.08% एwe conservatively assign a systematic error of 0.17% for the unexplained variation of M_{Z} with electron selection cuts Γ even though some of this variation may be statistical in origin $o r$ may cancel when W and Z electrons are selected using identical criteria. Adding these values in quadrature Γ the uncertainty we assign to the CEM energy scale is 0.2%.

Cuts	κ	\# OS	\# LS
(both legs)	$1.47_{-0.25}^{+0.22} \%$	2012	1
$\Delta z_{\text {track, } \mathrm{CES}} \Gamma N_{\text {cone }} \Gamma$			
$E_{\text {hadron }} / E_{\mathrm{EM}} \Gamma \chi_{s}^{2}$			
(one leg)	$1.71_{-0.22}^{+0.20} \%$	2206	8
$\Delta z_{\text {track, } \mathrm{CES}} \Gamma N_{\text {cone }} \Gamma$			
$E_{\text {hadron }} / E_{\mathrm{EM}} \Gamma \chi_{s}^{2}$			
(both legs)	$1.49_{-0.33}^{+0.28} \%$	1329	5
$\Delta z_{\text {track, } \mathrm{CES}} \Gamma N_{3 D} \Gamma$			
$\left\|x_{\text {cal }}\right\|<18 \mathrm{~cm} \Gamma$			
$\left\|z_{\text {cal }}\right\|>12 \mathrm{~cm}$			
(one leg)	$1.71_{-0.25}^{+0.23} \%$	1826	79
$\Delta z_{\text {track, } \mathrm{CES}} \Gamma N_{3 D} \Gamma$			
$\left\|x_{\text {cal }}\right\|<18 \mathrm{~cm} \Gamma$			
$\left\|z_{\text {cal }}\right\|>12 \mathrm{~cm}$			

Table 5.3: Dependence of CEM constant term κ (inferred from $Z \rightarrow e e$ mass spectrum) on electron selection criteria.

5.4.2 Electron resolution

Fitting the same $Z \rightarrow e e$ mass distribution Γ we find the CEM constant term to be $\kappa=1.47_{-0.25}^{+0.22} \% \Gamma$ consistent with the $1.64 \pm 0.3 \%$ reported in Ref. [71] Γ but with a slightly lower central value. (See Figure 5.3.) We find that applying ID cuts to only one electron gives results closer to those found in Ref. [71]. Table 5.3 shows the value of κ obtained for various sets of selection criteria. We add the 0.2% difference in quadrature with the 0.25% statistical error and take κ to be $1.5 \pm 0.3 \%$.

Figure 5.4 shows $Z \rightarrow e e$ mass spectra for data and Monte Carlo「using $\kappa=1.5 \% \Gamma$ $M_{Z}=91.1863 \mathrm{GeV}[16] \Gamma$ and $\Gamma_{Z}=2.49 \mathrm{GeV} \Gamma$ with data CEM energies divided by 1.0006 .

5.4.3 $W p_{T}$ distribution

Nonperturbative parameters

In the Ladinsky-Yuan [35] parameterization introduced in Chapter 2Γ the p_{T} spectrum at a given $\tau=\hat{s} / s$ is most sensitive to g_{2} Гwhile g_{1} and g_{3} control the variation with τ. Thus Γ we vary the g_{2} parameter to obtain the best fits to the $Z p_{T}^{e e}$ and

Figure 5.3: (Top) $-2 \log (L)$ vs. CEM energy scale for $Z \rightarrow e e$ data. The fitted energy scale is 1.00059 ± 0.00075. (Bottom) $-2 \log (L)$ vs. CEM constant term κ. The fitted resolution is $1.47_{-0.25}^{+0.22} \%$.
$\Delta \phi^{e e}$ spectra (while leaving g_{1} and g_{3} at the LY fitted values of 0.1 and -1.5 Гrespectively). The $p_{T}^{e e}$ fit gives $g_{2}=0.69_{-0.09}^{+0.10} \Gamma$ and the $\Delta \phi$ fit gives $g_{2}=0.46_{-0.10}^{+0.11}$. ${ }^{(8)}$ (See Refs. [72] and [73] for other fits to these parameters.) Figure 5.5 shows the sensitivity of $p_{T}^{e e}$ and $\Delta \phi^{e e}$ distributions to g_{2} ГFigure 5.6 plots $-2 \log (L)$ vs. g_{2} Гand Figure 5.7 compares the Z data with the best fits. We average the results of the two fits and take $g_{2}=0.6 \pm 0.2 \Gamma$ which agrees well with the LY value $g_{2}=0.58_{-0.2}^{+0.1}$.

[^31]

Figure 5.4: (Top) $Z \rightarrow e e$ mass distribution Γ for data (solid points) and simulation (open circles) Γ using $M_{Z}=91.186 \mathrm{GeV}$ and $\kappa=1.5 \% \Gamma$ with the data CEM energies divided by 1.0006. (Bottom) Same as above Con a semilogarithmic scale. The data and simulation agree well: χ^{2} is 45.0 for 37 degrees of freedom「and the Kolmogorov-Smirnov (KS) confidence level is 66%.

We briefly investigate systematic effects in determining g_{2} from the $Z \rightarrow e e$ data and the largest potential effect we find is modeling the electron acceptance in ϕ. If we fit the $p_{T}^{e e}$ spectrum for Monte Carlo data with $|x|<18 \mathrm{~cm}$ fiducial cuts Γ generated at $g_{2}=0.60 \Gamma$ to templates made with $|x|<21 \mathrm{~cm}$ fiducial cuts Γ we mismeasure g_{2} to be 0.45 . Varying the CEM constant term from $\kappa=1.0 \%$ to $\kappa=2.0 \% \Gamma$ for generated $g_{2}=0.6 \Gamma$ and fitting to templates with $\kappa=1.5 \% \Gamma$ we find that the fitted g_{2} varies from 0.58 to 0.65 . Varying the CEM energy scale from 0.9950 to 1.0050 ए we find that the fitted g_{2} varies from 0.59 to 0.62 . Ignoring the
magnetic field in extrapolating electrons to the calorimeter and doubling the ϕ_{0} resolution in the simulation both produce biases smaller than 0.01 in g_{2}. Varying skew parameter s (see below) by $0.0028 \mathrm{GeV}^{-1}$ changes the measured g_{2} by 0.04 . Except for using inconsistent fiducial cuts Γ which would be a mistake rather than a legitimate source of error Γ the biases considered are much smaller than the quoted uncertainty of 0.2 .

For the fit to the $\Delta \phi$ distribution Γ doubling the ϕ_{0} resolution in the simulation also biases g_{2} by less than 0.01Γ while comparing $|x|<18 \mathrm{~cm}$ data to $|x|<21 \mathrm{~cm}$ templates produces a much larger bias-a fitted g_{2} value of 0.28 .

Figure 5.5: (Top) Simulated $p_{T}^{e e}$ spectra for $Z \rightarrow e e$ with nonperturbative parameter g_{2} taking values 0.2 (solid points)Г0.6 (histogram)Гand 1.0 (open circles). Higher values of g_{2} produce harder p_{T} spectra. (Bottom) Simulated $\Delta \phi^{e e}$ distributions for g_{2} values 0.2Γ 0.6 Гand 1.0. Smaller values of g_{2} produce a larger peak at $p_{T} \approx 0$ and thus $\Delta \phi \approx \pi$.

Figure 5.6: $(\mathrm{Top})-2 \log (L)$ vs. g_{2} for $p_{T}^{e e}$ spectrum. The fit prefers $g_{2}=0.69_{-0.09}^{+0.10}$. (Bottom) $-2 \log (L)$ vs. g_{2} for $\Delta \phi^{e e}$ spectrum. The fit prefers $g_{2}=0.46_{-0.10}^{+0.11}$.

Skew parameter

As Figure 5.5 shows varying g_{2} changes the shape but not the normalization of the $p_{T}<15 \mathrm{GeV}$ part of the p_{T}^{Z} spectrum. We can imagine at least two effects that could cause the observed ratio of high $-p_{T}$ to low- $p_{T} Z$ events to deviate slightly from the Ladinsky-Yuan calculation: First Γ the calculated ratio depends upon the QCD coupling constant $\alpha_{s}\left(M_{Z}\right) \Gamma$ which must be determined from experiment; second Γ the event selection efficiency as a function of p_{T} may not be modeled perfectly in the simulation. It is useful to be able to constrain the size of these effects directly from

Figure 5.7: (Top) $Z \rightarrow$ ee $p_{T}^{e e}$ spectrum for data (solid points) and simulation (open circles) Γ using nonperturbative parameter $g_{2}=0.6$ and skew value $-0.0028 \mathrm{GeV}^{-1}$. The KS confidence level is 13%. (Bottom left) Same as above Con a semilogarithmic scaleГand with a larger range in p_{T}. $\mathrm{KS}=19 \%$. (Bottom right) $\Delta \phi^{e e}$ spectra. $\mathrm{KS}=26 \%$.
the Z data.
We introduce a " p_{T} skew parameter" $s \Gamma$ with which we reweight the W and Z p_{T} spectra as follows:

$$
\begin{equation*}
\frac{d N}{d p_{T}} \rightarrow \frac{d N}{d p_{T}}\left(1+s p_{T}\right) \tag{5.2}
\end{equation*}
$$

Fitting the Z data (Figure 5.8) Γ we find $s=-0.0028 \pm 0.0021 \mathrm{GeV}^{-1}$. The data are consistent with no skew Γ but prefer to reduce the MC p_{T} spectrum at high p_{T}. We use $s=-0.0028 \mathrm{GeV}^{-1}$ by default in the W and Z simulation; in Chapter 7Γ
we vary s as a source of error in measuring Γ_{W}.
Reno [74] has noted that the ratio of W and $Z p_{T}$ spectra can be predicted with much more confidence than the individual spectra. By reweighting the calculated Z p_{T} spectrum to match the dataएthen applying the same weighting function to the calculated $W p_{T}$ spectrumएwe leave the most reliable feature of the calculation-the ratio of W and Z spectra-unchanged.

Figure 5.8: $-2 \log (L)$ vs. $Z p_{T}$ skew parameter s. A fit to $0<p_{T}<50 \mathrm{GeV}$ prefers $s=-0.0028 \pm 0.0021 \mathrm{GeV}^{-1}$.

Mass dependence

Another $W p_{T}$ effect that we need to consider is the dependence of the p_{T} spectrum on $\sqrt{\hat{s}} \Gamma$ since TOYGEN uses the p_{T} spectrum for $\sqrt{\hat{s}}=M$ only. To include this effect Γ we apply a weight $F\left(p_{T}, \sqrt{\hat{s}}\right)$ to the TOYGEN output. The function F is a fit by Mark Lancaster [75] Гof the form

$$
\begin{gathered}
F\left(p_{T}, \sqrt{\hat{s}}\right)=P_{0}+P_{1} p_{T}+P_{2} p_{T}^{2} \\
P_{i}=A_{i}+B_{i} \sqrt{\hat{\hat{s}}}+C_{i}(\sqrt{\hat{s}})^{2}+D_{i}(\sqrt{\hat{s}})^{3}
\end{gathered}
$$

to a large $W \rightarrow e \nu$ Monte Carlo sample generated using the Charlemagne program of Ellis et al [36Г37] which includes $\sqrt{\hat{s}}$ dependence in its W and $Z p_{T}$ calculations. F is normalized so that $\frac{\int d p_{T} F\left(p_{T}, \sqrt{\hat{s}}\right)}{\int d p_{T}}=1$ and $F\left(p_{T}, M_{W}\right)=1 \Gamma$ i.e. the weight does not change the p_{T}-integrated $\sqrt{\hat{s}}$ spectrum and does not change the p_{T} spectrum for $\sqrt{\hat{s}}=M_{W}$. Figure 5.9 shows the calculated variation of the $W p_{T}$ spectrum with $\sqrt{\hat{s}}$.

Figure 5.9: Simulated $W p_{T}$ spectraГusing $F\left(p_{T}, \sqrt{\hat{s}}\right)$ weight function described in the text. We plot the true (generated) p_{T} for simulated events after all analysis requirements except $E_{T}>25 \mathrm{GeV}$ and $u<20 \mathrm{GeV}$ have been imposed. The histogram is for all $\sqrt{\hat{s}}$ values; the solid points are the $\sqrt{\hat{s}}>100 \mathrm{GeV}$ subset; and the open circles are the $\sqrt{\hat{s}}>120 \mathrm{GeV}$ subset. The spectra have been normalized to unit area.

5.5 Recoiling hadrons

Modeling the recoil measurement \vec{u} accurately is important Γ because the \vec{u} resolution is the largest component in the M_{T} resolution and (as we will show in Chapter 7) is a dominant systematic error in this analysis. An empirical model is required because a particle-level simulaton of \vec{u} is difficult both theoretically and experimentally. ${ }^{(9)}$

Given a \vec{p}_{T}^{W} or \vec{p}_{T}^{Z} vector Γ the recoil model chooses a vector \vec{u} of observed energy recoiling against the W or Z. To simplify the notation Γ we define $\left.u_{1}=\vec{u} \cdot \frac{\overrightarrow{p_{T}}}{\left|\overrightarrow{p_{T}}\right|} \right\rvert\,$ and define u_{2} to be the perpendicular component. We assume that \vec{u} is Γ on average Γ parallel to $-\vec{p}_{T}$ Гi.e. $\left\langle u_{2}\right\rangle=0$. We also assume that u_{1} and u_{2} fluctuate independently.

The recoil model we describe has three main ingredients: first Γ the shape of the resolution function that describes fluctuations of u_{1} and u_{2} about their mean values; second Γ the p_{T}-dependent mean of u_{1} (denoted μ_{1}) by which the u_{1} resolution function is translated; third Γ a p_{T}-dependent scale factor on the u_{1} and u_{2} resolution functions. Below Γ we first derive a shape for the resolution function based largely upon minimum-bias data and then perform a fit in which this basic shape is translated and scaled to match the $Z \rightarrow e e$ data.

[^32]
5.5.1 Shape of resolution function

We make an assumption「first used by the UA2 collaboration Γ that the \vec{u} resolution in low- $p_{T} W$ and Z events closely resembles the \vec{u} resolution in minimum-bias events. Minimum-bias events have a broad distribution of $\Sigma E_{T} \Gamma$ but for a given ΣE_{T} value Γ the $u_{x, y}$ resolution is well described by a Gaussian distribution Γ whose standard deviation we label σ_{MB}. The variation of σ_{MB} with ΣE_{T} is well described by a simple power law Γ

$$
\begin{equation*}
\sigma_{\mathrm{MB}}\left(\Sigma E_{T}\right)=0.324 \mathrm{GeV}\left(\frac{\Sigma E_{T}}{1 \mathrm{GeV}}\right)^{0.577} \tag{5.3}
\end{equation*}
$$

as shown in Figure 5.10. The minimum-bias $u_{x, y}$ distributions can thus be described by the resolution function

$$
\begin{equation*}
\frac{d N}{d u_{x, y}}=\int d\left(\Sigma E_{T}\right) \frac{d N}{d\left(\Sigma E_{T}\right)} \frac{1}{\sigma_{\mathrm{MB}}\left(\Sigma E_{T}\right)} G\left(\frac{u_{x, y}}{\sigma_{\mathrm{MB}}\left(\Sigma E_{T}\right)}\right) \tag{5.4}
\end{equation*}
$$

where $G(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$. The factor of $\frac{1}{\sigma_{\mathrm{MB}}}$ is for normalization. To model W and Z events Γ we replace $\frac{d N}{d\left(\Sigma E_{T}\right)}$ in Equation 5.4 with the ΣE_{T} distribution from the $Z \rightarrow e e$ data. As illustrated in Figure 5.11Γ this spectrum is well described by the gamma distribution

$$
\begin{equation*}
\frac{d N}{d\left(\Sigma E_{T}\right)} \propto\left(\frac{\Sigma E_{T}}{21.05 \mathrm{GeV}}\right)^{2.068} e^{-\Sigma E_{T} / 21.05 \mathrm{GeV}} \tag{5.5}
\end{equation*}
$$

Thus Γ we can define a resolution function Cgraphed in Figure 5.12Γ

$$
\begin{equation*}
S_{M B}\left(u_{x, y}\right) \propto \int d\left(\Sigma E_{T}\right)\left(\frac{\Sigma E_{T}}{21.05 \mathrm{GeV}}\right)^{2.068} \frac{e^{-\Sigma E_{T} / 21.05 \mathrm{GeV}}}{\sigma_{\mathrm{MB}}\left(\Sigma E_{T}\right)} G\left(\frac{u_{x, y}}{\sigma_{\mathrm{MB}}\left(\Sigma E_{T}\right)}\right) \tag{5.6}
\end{equation*}
$$

which we use as the shape of the \vec{u} resolution in the W and Z data. Below Γ we scale the argument of $S_{M B}$ as a function of p_{T}^{Z} to match the Z data.

5.5.2 Fit of resolution function to Z data

We expect μ_{1} to be a smooth Γ monotonic function of $p_{T}^{Z} \Gamma$ and we expect the u_{1} and u_{2} resolutions to increase slowly with p_{T}^{Z}. To turn these statements into a parametric description of the data Γ we perform an unbinned likelihood fit to the u_{1} and u_{2} distributions in the Z data as a function of $p_{T}^{e e}$. The likelihood function is

$$
\begin{equation*}
L=\frac{1}{\sigma_{1} \sigma_{2}} S_{\mathrm{MB}}\left(\frac{u_{1}-\mu_{1}}{\sigma_{1}}\right) S_{\mathrm{MB}}\left(\frac{u_{2}}{\sigma_{2}}\right) \tag{5.7}
\end{equation*}
$$

Figure 5.10: Observed $u_{x, y}$ resolutions vs. ΣE_{T} in minimum-bias data. The power law $\sigma_{x, y}=0.324\left(\Sigma E_{T}\right)^{0.577}$ describes the data very well. (Data and fit courtesy of Mark Lancaster [73].)

Figure 5.11: The data points are the ΣE_{T} spectrum of $Z \rightarrow e e$ data. The curve is a fit to the form $A\left(\frac{\Sigma E_{T}}{C}\right)^{B-1} e^{-\Sigma E_{T} / C} \Gamma$ a gamma distribution. The values $B=3.068 \Gamma$ $C=21.05 \mathrm{GeV}$ describe the data well. For comparisonΓ the $W \Sigma E_{T}$ spectrumГnormalized to the number of Z events Γ is drawn as a histogram. The W and $Z \Sigma E_{T}$ spectra are similar but clearly distinguishable. We use the Z spectrum because it has a lower background level and it is not subject to the bias of the $\mathscr{F}_{T}>25 \mathrm{GeV}$ and $u<20 \mathrm{GeV}$ cuts applied in the W data.
where

$$
\begin{align*}
\mu_{1} & =\min \left(0, A+B p_{T}^{e e}+C\left(p_{T}^{e e}\right)^{2}\right) \tag{5.8}\\
\sigma_{1} & =D+E p_{T}^{e e}
\end{align*}
$$

Figure 5.12: Resolution function S_{MB} (Equation 5.6).

$$
\sigma_{2}=F+G p_{T}^{e e}
$$

Note that $\sigma_{1,2}$ are dimensionless; they are simply p_{T}-dependent scale factors for the argument of S_{MB}. Including parameter A allows μ_{1} to reach zero at a p_{T} value that is comparable to the p_{T} resolution $(\approx 1 \mathrm{GeV})$; events at very low p_{T} contain little information about $\mu_{1} \Gamma$ as the direction of the \vec{p}_{T} vector is not well determined. A fit to the data yields these values:

$$
\begin{align*}
& A=+0.713 \pm 0.077 \mathrm{GeV} \tag{5.9}\\
& B=-0.569 \pm 0.018 \\
& C=-0.00406 \pm 0.00068 \mathrm{GeV}^{-1} \\
& D=0.928 \pm 0.030 \\
& E=0.0244 \pm 0.0028 \mathrm{GeV}^{-1} \\
& F=0.962 \pm 0.029 \\
& G=0.0121 \pm 0.0024 \mathrm{GeV}^{-1}
\end{align*}
$$

Figure 5.13 graphs the functions $\mu_{1} \Gamma \sigma_{1} \Gamma$ and $\sigma_{2} \Gamma$ using the fitted parameters. As shown in Figures 5.14 and 5.15 Гthis model provides an excellent description of the $2206 Z \rightarrow e e$ events.

We have fitted μ_{1} and $\sigma_{1,2}$ as functions of measured $p_{T}^{e e}$ in the data. What we need in the simulation Γ however Γ are μ_{1} and $\sigma_{1,2}$ as functions of true p_{T}^{W} or p_{T}^{Z}. Thus Γ some sort of "unsmearing" procedure is needed to undo the effect of $p_{T}^{e e}$ measurement error in the data. The technique we use is to fit \vec{u} in both the Z data and the Z simulation output as a function of smeared $p_{T}^{e e}$ and to consider the ratio $R\left(p_{T}^{e e}\right) \equiv \frac{f^{\text {data }}\left(p_{T}^{e e}\right)}{f^{\operatorname{sim}(}\left(p_{T}^{e e}\right)}\left(\right.$ where f refers generically to $\mu_{1} \Gamma \sigma_{1} \Gamma$ or σ_{2}) to be a p_{T}-dependent

Figure 5.13: Recoil model response and resolution functions (Equation 5.8). We have plotted $-\mu_{1}\left(p_{T}\right) / p_{T}$ instead of $\mu_{1}\left(p_{T}\right)$ so that $\mu_{1} \Gamma \sigma_{1} \Gamma$ and σ_{2} can be shown together. Note that σ_{1} and σ_{2} are dimensionless. The solid curves are the fits to the data Γ and the dashed curves are what is used as a function of true p_{T} in the simulation to match what is observed as a function of measured p_{T} in the data.
correction factor to be applied in the next iteration of the simulation. Whereas we derive the corrections $R\left(p_{T}\right)$ as functions of $p_{T}^{\text {smeared }} \Gamma$ we modify the simulation by applying these same corrections as functions of $p_{T}^{\text {true }}$. (We make no attempt to convert $R\left(p_{T}^{\text {smeared }}\right)$ into some related function $R^{\prime}\left(p_{T}^{\text {true }}\right)$; we just use the same function.) The procedure works because of two useful facts: first Donce the iteration has converged Γ the fit parameters will be the same for data and simulation Γ i.e. $A^{\text {data }-} G^{\text {data }}$ will approximately equal $A^{\text {sim }}-G^{\text {sim }} \Gamma$ and each function $R \approx 1$; second Γ $p_{T}^{\text {smeared }}(e e)$ is a good approximation for $p_{T}^{\text {true }}(Z) \Gamma$ i.e. the $p_{T}^{e e}$ resolution is small compared to the \vec{u} resolution Γ so $R\left(p_{T}^{\text {true }}\right) \approx R\left(p_{T}^{\text {smeared }}\right)$. Then Γ if the fit returns parameters $A^{\text {data }}-G^{\text {data }}$ for data and $A^{\text {sim }}-G^{\text {sim }}$ for simulation Γ we modify $\mu_{1} \Gamma \sigma_{1} \Gamma$ and σ_{2} in the simulation as follows: ${ }^{(10)}$

$$
\begin{align*}
& \mu_{1} \leftarrow \mu_{1} \cdot \frac{A^{\text {data }}+B^{\text {data }} p_{T}^{\text {true }}+C^{\text {data }}\left(p_{T}^{\text {true }}\right)^{2}}{A^{\text {sim }}+B^{\text {sim }} p_{T}^{\text {true }}+C^{\text {sim }}\left(p_{T}^{\text {true }}\right)^{2}} \tag{5.10}\\
& \sigma_{1} \leftarrow \sigma_{1} \cdot \frac{D^{\text {data }}+E^{\text {data }} p_{T}^{\text {true }}}{D^{\text {sim }}+E^{\text {sim }} p_{T}^{\text {true }}}
\end{align*}
$$

[^33]

Figure 5.14: (Top) Mean of u_{1} (component of recoil energy \vec{u} parallel to $\vec{p}_{T}^{e e}$) vs. $p_{T}^{e e}$ in Z events (solid points Γ data; open circles Γ simulation). The solid curve is the fit to the data $\left(\mu_{1}\left(p_{T}\right)\right.$ in Equation 5.8). (Bottom) As above) but the fit to the data is subtracted from both data and simulation.

$$
\sigma_{2} \leftarrow \sigma_{2} \cdot \frac{F^{\text {data }}+G^{\text {data }} p_{T}^{\text {true }}}{F^{\text {sim }}+G^{\text {sim }} p_{T}^{\text {true }}}
$$

Before the first iteration $\Gamma \mu_{1} \Gamma \sigma_{1} \Gamma$ and σ_{2} are just the curves fitted to the data; before the second iteration $\Gamma \mu_{1} \Gamma \sigma_{1} \Gamma$ and σ_{2} are the data curves multiplied by the first iteration's correction factors. After two iterations Γ the simulation and data give consistent fit parameters $\left(\chi^{2}<0.001\right)$. ${ }^{(11)}$

[^34]

Figure 5.15: (Top) $\left(u_{1}-\mu_{1}\left(p_{T}\right)\right) / \sigma_{1}\left(p_{T}\right)$ Гfor Z data (solid points) and simulation (open circles) Γ where the μ_{1} and σ_{1} functions are from Equations 5.8 and 5.9. KS $=16 \%$. The curve is the min-bias resolution function S_{MB} (Equation 5.6). One of the 2206 data events lies outside the limits of the graph: the event has $M^{e e}=107 \mathrm{GeV} p_{T}^{e e}=19 \mathrm{GeV} \mathrm{\Gamma}$ $u_{1}=-53 \mathrm{GeV} \mathrm{\Gamma} \mu_{1}\left(p_{T}\right)=-12 \mathrm{GeV}$. (Bottom) $u_{2} / \sigma_{2}\left(p_{T}\right)$ for Z data (solid points) and simulation (open circles) Γ where the σ_{2} function is from Equations 5.8 and 5.9. KS $=79 \%$. The curve is the min-bias resolution function. No events lie outside the limits of the graph. In both upper and lower plots t the shape is very well modeled over several orders of magnitude. Note that $\sigma_{1,2}$ are dimensionless.
it seems relatively foolproof.

Figure 5.16: (Top) Recoil energy u for $Z \rightarrow e e$ data (solid points) and MC (open circles). $\mathrm{KS}=89 \%$. (Bottom) Component u_{1} of \vec{u} along the $\bar{p}_{T}^{\text {ee }}$ unit vector Γ for $Z \rightarrow e e$ data (solid points) and MC (open circles). KS $=75 \%$.

5.5.3 Results of the recoil model

As shown in Figures 5.14-5.16 Гincorporating this model into the $Z \rightarrow e e$ simulation reproduces recoil distributions in the Z data very well.

Before we can sensibly compare the output of the recoil model Γ which is tuned from a sample of $2206 Z$ events Γ with the 49843 -event W data sample Γ we need a mechanism for evaluating the effect of finite Z statistics on W Monte Carlo predictions. To assign a recoil model uncertainty to simulated W spectra Γ we use the covariance matrix from the model tuning procedure to throw multinormal septuplets
($A-G$) of random numbers Γ producing a set of 54 alternative models that represent statistical variations from the fitted parameters Γ and generate a W dataset with each of these models.

Because the W sample is so much larger than the Z sample Γ the level of agreement between the W data recoil distributions and the simulated spectra varies considerably within the space of recoil model parameters that are consistent with the Z data. For instance Γ when comparing the u variable in the W data with the 54 simulated spectra厂we find that χ^{2} (for 40 bins) varies from 33 to 158Γ while the KS probability varies from 34% to $<10^{-5}$. For the u_{\perp} variable $\Gamma \chi^{2}$ (for 40 bins) varies from 49 to 124 Гand the KS probability varies from 19% to $<10^{-5}$. Of the 54 models $\Gamma 3$ have KS probability $>5 \%$ for both u and u_{\perp} Гand 12 have KS probability $>1 \%$ for both; all of these 12 have $P\left(\chi^{2}\right)>18 \%$ in the recoil model covariance matrix.

The alternative set of model parameters that agrees best (best χ^{2}) with the u spectrum in the W data also agrees well with the central value of the Z fit: $\chi^{2}=6.4$ for 7 fitted parameters $(A-G)$. The values of $A-G$ are $0.704 \Gamma-0.568 \Gamma-0.00435 \Gamma$ $0.919 \Gamma 0.0263 \Gamma 0.899 \Gamma$ and 0.0148Γ respectively with units as in Equation 5.9. We refer to this particular set of model parameters as the " W-data-preferred" parameters. A more formal procedure for choosing the W-data-preferred values would be to minimize a combined χ^{2} that accounts for deviations from the Z fit and for disagreement with the u distribution in the W data. Since we demonstrate that a solution exists in which both χ^{2} contributions are reasonable Γ we feel that the more formal procedure is not necessary.

In Chapter 7Γ we use the variation of fitted Γ_{W} within these 54 alternative recoil models as a measure of systematic error Γ and we show that the difference between the central value of the Z fit and the W-data-preferred parameters is small in comparison with the quoted uncertainty.

Figures 5.17-5.19 compare simulated recoil spectra to the W data. We display the simulated spectra from the W-data-preferred model parameters. In the captions Γ we include information about the full range of model parameters.

5.6 Checking the simulation

In this section we compare some predictions of TOYGEN and SSD with the data and we compare some predictions of SSD with those of QFL.

5.6.1 Comparisons with the data

At the beginning of this chapter [we noted several important ingredients in the lineshape simulation. As we tuned the simulation's electron response Γp_{T}^{Z} spectrum Γ and recoil response Γ we showed that the tuning produced good agreement between data

Figure 5.17: Magnitude of recoil energy $\bar{u} \Gamma$ in W events. (Solid points Γ data Γ open circles Γ simulation.) Data mean and rms are $6.52 \pm 0.03 \mathrm{GeV}$ and $4.365 \pm 0.014 \mathrm{GeV}$; MC mean and rms are 6.49 GeV and $4.33 \mathrm{GeV} . \mathrm{KS}=34 \%$. The 54 model variations discussed in the text have mean $6.58 \pm 0.05 \mathrm{GeV}$ and $\mathrm{rms} 4.32 \pm 0.015 \mathrm{GeV} \Gamma$ where the uncertainty reflects finite Z statistics in tuning the model; the best Z fit has mean 6.56 GeV Гrms $4.32 \mathrm{GeV} \Gamma$ and $\chi^{2}=60.3$. In the $W \mathrm{MC}$ spectraГelectron and photon quantities have been simulated with SSD Γ the track isolation cut has been simulated Γ and backgrounds have been added. The barely-visible histogram is the background shape.
and simulation. Here Γ we show the level of agreement between data and simulation in several other areas.

First Γ we consider geometric acceptance. Figure 5.20 shows the z-vertex distribution for W data and simulation. While there is room for improvement over the simple Gaussian model used in SSDГthe agreement is adequate for this measurement. Figure 5.20 also shows the ϕ_{0} distribution ffolded into half of a 15° calorimeter wedge to improve the statistical power of the data. The simulation reproduces the sculpting effect that the calorimeter fiducial requirements have on the ϕ_{0} distribution. Figure 5.21 shows the $|z|$ distributions of real and simulated W electrons at the CES and at the outer superlayer of the СТСГ at which fiducial cuts in z are imposed. These plots give us confidence in both the modeling of the acceptance and the generation of W bosons with the correct angular distribution.

Because at moderate $x\left(x \approx \frac{1}{20}\right.$ for Tevatron Z production) quarks are more likely to be found in the proton and antiquarks are more likely to be found in the antiproton Γ we expect Z bosons to have a net polarization. Because the weak interaction predicts both odd and even terms in $\cos \theta^{*}$ for the electrons in Z decay Γ we expect the angular distributions of e^{+}and e^{-}to be distinct. Thus Γ comparing the $\cos \theta^{*}$ distribution for e^{+}in data with the predictions for e^{+}and e^{-}in the simulation Γ as we do in Figure 5.22Γ is an interesting check of boson production

Figure 5.18: (Top) $u_{\|}$(component of recoil parallel to electron direction). (Solid points Γ data; open circles Γ MC.) Data mean and rms are $-477 \pm 24 \mathrm{MeV}$ and $5.44 \pm 0.02 \mathrm{GeV}$. MC mean and rms are -486 MeV and $5.40 \mathrm{GeV} . \mathrm{KS}=23 \%$. The 54 model variations have mean $-495 \pm 13 \mathrm{MeV}(-430 \mathrm{MeV}$ without BG) Γ rms $5.44 \pm 0.03 \mathrm{GeV}$; the best Z fit has mean $-482 \mathrm{MeV} \Gamma \mathrm{rms} 5.44 \mathrm{GeV}$ Гand $\chi^{2}=47.2$. (Bottom) u_{\perp} (component orthogonal to electron direction) for final recoil model parameters. (Solid points Γ data; open circles Γ MC.) Data rms is $5.64 \pm 0.02 \mathrm{GeV}$. MC rms is 5.63 GeV . $\mathrm{KS}=19 \%$. The 54 model variations have rms $5.69 \pm 0.04 \mathrm{GeV}$; the best Z fit has $\mathrm{rms} 5.67 \mathrm{GeV} \Gamma \chi^{2}=68.2$.
and decay in TOYGEN. The e^{+}data are in good agreement with the e^{+}prediction and are clearly capable of distinguishing the e^{+}and e^{-}predictions. Note that we have not divided out the acceptance for either data or simulation. The lower half of Figure 5.22 checks that Z bosons are produced with a reasonable rapidity distribution by comparing longitudinal momentum spectra for data and simulation.

Figure 5.19: (Top) Mean component of recoil along electron direction as a function of total recoil energy. (Center) Mean component of recoil along electron direction as a function of transverse mass. In the region $M_{T} \approx 100 \mathrm{GeV} \Gamma$ the mean $u_{\|}$decreases Γ indicating that many of these events are on-shell W s that have $M_{T}>M_{W}$ because the electron is boosted and the $W p_{T}$ underestimated. The shape is modeled reasonably well. (Bottom) Angle between electron and recoil energy vector. $\mathrm{KS}=49 \%$.

Finally Γ the E_{T} and E_{T} spectra in W events Γ shown in Figure 5.23 Гare sensitive to a wide range of simulation inputs Γ including electron energy resolution Γ the W p_{T} spectrum Γ the recoil modelГand backgrounds (discussed in Chapter 6).

Figure 5.20: (Top) z-vertex distribution from W data (solid points) and SSD simulation (histogram). The simulation uses a Gaussian distribution एwhich is clearly not statistically compatible with the dataГbut which approximates the shape reasonably well. The simulation models the spread in z of $p \bar{p}$ collisions adequately for this measurement. (Bottom) $\phi_{0} \bmod 15^{\circ}$ of W electron (to match the 15° calorimeter segmentation) Γ folded in half along the $\phi_{0}=7.5^{\circ}$ axis. (Solid points Γ data; histogramГSSD simulation.) The electron ϕ_{0} distribution is sculpted by the CEM fiducial requirement $\left|x_{\text {cal }}\right|<21 \mathrm{~cm}$ (measured by the CESГat $r \approx 184 \mathrm{~cm}) \Gamma$ which eliminates the outer 12.5% of each 15° wedge. The ϕ_{0} acceptance contributes to the p_{T}^{Z} acceptance at low p_{T}^{Z}. The KS probability is 17% while χ^{2} is 108 for 50 bins Γ indicating that the shape is modeled well overall but poorly in a few bins.

5.6.2 Checks with QFL

As a consistency check on the simulation of the electron variables Γ we fit $M_{Z} \Gamma \kappa \Gamma$ and g_{2} for a sample of approximately $1601000 Z \rightarrow e e$ events (after all cuts) generated

Figure 5.21: (Top) Distribution of $|z|$ at the $\operatorname{CES}(r \approx 184 \mathrm{~cm})$ in W data (solid points) and SSD simulation (histogram). The shape is modeled well Γ except for the CES module boundary at $z \approx 121 \mathrm{~cm} . \chi^{2}$ is 148 for 90 bins Γ while the KS probability is 36%. (Bottom) Distribution of $|z|$ at CTC superlayer $8(r=130 \mathrm{~cm})$ in W data (solid points) and SSD simulation (histogram). χ^{2} is 87 for 75 bins Гand the KS confidence level is 46%. These plots show that the acceptance in z is modeled well at the radii at which CEM and CTC fiducial requirements are imposed.
with TOYGENएsimulated with QFLГ and processed with the same analysis code used for the data. We set QFL's CEM constant term to 1.5% and we measure $\kappa=1.54 \pm 0.03 \%$. We use $g_{2}=0.6$ in the generator and measure $g_{2}=0.63 \pm 0.01$ by fitting the p_{T} spectrum and $g_{2}=0.585 \pm 0.014$ by fitting the $\Delta \phi$ spectrum.

Because QFL uses a more sophisticated model of calorimeter response than SSDT we must define what we mean by energy scale in QFL before we can compare Z masses in the two simulations. If we calibrate QFL using a sample of

Figure 5.22: (Top) $\cos \left(\theta^{*}\right)$ (in the Z boson rest frame) for e^{+}in Z data (solid points) and SSD simulation (solid histogram); the dashed histogram is the prediction for e^{-}. $\chi^{2}=26$ for 32 bins $\Gamma \mathrm{KS}=46 \%$. The charge asymmetry is evident: if we compare the e^{+}data to the e^{-}simulation Γ then $\chi^{2}=69$ and $\mathrm{KS}<10^{-5}$. (The distribution does not resemble textbook plots of $\cos \left(\theta^{*}\right)$ because the large acceptance effects have not been unfolded.) (Bottom) Z boson longitudinal momentum in data (solid points) and SSD simulation (histogram). $\chi^{2}=52$ for 50 bins $\Gamma \mathrm{KS}=62 \%$. These plots suggest that the boson polarization Γ weak decay「and rapidity distribution have been properly implemented in TOYGEN.
$E=40 \mathrm{GeV}$ electrons Disabling bremsstrahlung in the inner detector material Γ we

Figure 5.23: (Top) Electron E_{T} spectrum of W data (solid points) compared with simulation (open circles). $\mathrm{KS}=4 \%$. (Bottom) E_{T} spectrum of W data (solid) compared with simulation (open). $\mathrm{KS}=18 \%$. Both of these plots are shown for nominal simulation input $\Gamma_{W}=2.077 \mathrm{GeV}$ Гnot the final fitted value. The dribble is the background.
measure $M_{Z}^{\mathrm{QFL}} / M_{Z}^{\mathrm{SSD}}-1=-0.075 \pm 0.027 \% .{ }^{(12)}$ Using $E=40 \mathrm{GeV}$ photons Γ disabling pair production in the inner detector material Γ we measure $-0.319 \pm 0.032 \%$. In SSD Гboth electron and photon response are unity in the absence of inner-detector material. Once an electron from W or Z decay has traversed the inner detector Γ

[^35]about 10% of its energy is carried by photons on average. Thus Γ a fair comparison with SSD is $0.9 \times(-0.075 \%)+0.1 \times(-0.319 \%)=-0.10 \pm 0.03 \% \Gamma$ which is well within the 0.2% uncertainty we assigned to the energy scale in Section 5.4.1. ${ }^{13)}$ In Chapter 7Γ when we fit Γ_{W} in $W \rightarrow e \nu$ events simulated with QFL as a further checkए we will set QFL's energy scale such that QFL and SSD agree on M_{Z}.

[^36]
Chapter 6

Backgrounds

In this chapter Γ we discuss several event-selection criteria specifically designed to remove backgrounds from the $W \rightarrow e \nu$ sample Γ demonstrate that these criteria are effective for rejecting background Γ and estimate the sizes and kinematic shapes of backgrounds remaining in the $W \rightarrow e \nu$ sample.

6.1 $Z \rightarrow e e$

6.1.1 $Z \rightarrow e e$ removal

It is very improbable for a well-measured $Z \rightarrow e e$ event to fake the $W \rightarrow e \nu$ signature: $\mathbb{E}_{T}>25 \mathrm{GeV}$ is unlikely to arise from recoil resolution alone Γ and the presence of a second high- p_{T} electron makes $u<20 \mathrm{GeV}$ unlikely. ${ }^{(1)}$ One way to illustrate this point is to note that none of the $2206 Z \rightarrow e e$ candidate events surviving cuts A-U of Table 4.1 is found among the $49843 W \rightarrow e \nu$ candidate events of Table 4.5. Thus Γ we do not expect the W sample to contain $Z \rightarrow e e$ events in which two electrons Γ with energies measured by the calorimeter Γ form an invariant mass near M_{Z}.

Rather Γ we expect a $Z \rightarrow e e$ event to pass the $W \rightarrow e \nu$ selection if one of the electrons lands in a region of poor calorimeter response (see Section 3.2.6) Гso that its energy is badly undermeasured. In the region $|\eta|<1$. 2 Гcovered by the CTCГwe can find these events by searching for a track whose momentum can be combined with the first electron to form a mass near M_{Z}.

To prevent the Z removal from eliminating too many non- Z events Γ we impose several requirements on electron+track Z candidates. We consider all tracks that

[^37]have $p_{T}^{\mathrm{BC}}>15 \mathrm{GeV}$ ए that have been fitted using both axial and stereo CTC information Γ and that are consistent with originating from the same z position along the beamline as the first electron. We also require $\Delta \phi($ electron, track $)>3 \pi / 4 \Gamma$ which is equivalent to requiring that the reconstructed $Z p_{T}$ not be too large. Figure 6.1 shows that this cut is about $96.4 \pm 0.5 \%$ efficient. ${ }^{(2)}$ We then require $75<M($ electron, track $)<105 \mathrm{GeV}$. Requiring opposite charge Γ we remove 699 Z candidates. By looking at like-sign events Γ we estimate that 81 ± 9 of the 699 are fake. Figure 6.2 (Top) shows mass distributions for opposite-sign and like-sign combinations. The shape agrees well with a QFL simulation. Figure 6.2 (Bottom) shows the track positions extrapolated to the CEM and folded into a single 15° calorimeter wedge. Clearly most of the Z candidates' tracks are near azimuthal wedge boundaries Γ or in the 90° and 30° regions. We estimate residual Z contamination below.

Figure 6.1: (Left) $\Delta \phi(e e)$ distribution for $Z \rightarrow e e$ data. Out of 2075 events $\Gamma 75$ have $\Delta \phi<3 \pi / 4$. (Right) Integrated distribution.

6.1.2 Residual $Z \rightarrow e e$ background

Because most of CDF's calorimeter cracks Γ described in Section 3.2.6 Γ are in the region $|\eta|<1.2 \Gamma$ where the CTC can efficiently find high- p_{T} tracks Γ we expect in most cases to be able to find a lost Z electron's track in the CTC. To estimate the number of Z events remaining after the Z-removal procedure Γ we simulated 10^{6} TOYGEN $Z \rightarrow e e$ events with QFL and ran both the Z and the W analysis codes

[^38]| Region | OS data | LS data | OS-LS | MC |
| :---: | :---: | :---: | :---: | :---: |
| $\|x\|<21 \mathrm{~cm} \Gamma\|z\|<10 \mathrm{~cm}$ | 128 | 8 | 120 | 106 |
| $\|x\|<21 \mathrm{~cm} \Gamma 210<\|z\|<280 \mathrm{~cm}$ | 138 | 20 | 118 | 89 |
| $10<\|z\|<210 \mathrm{~cm}$ | 317 | 38 | 279 | 304 |

Table 6.1: Number of $Z \rightarrow$ electron + track candidates found in the 90° region Γ the 30° region Гand the azimuthal boundaries between CEM wedges. Opposite-sign and like-sign combinations are listed separately Γ to provide a background estimate. The distribution matches a Monte Carlo prediction reasonably well.
on the output. We apply cuts $\mathrm{A}-\mathrm{U}$ in Table 4.1 to both data and MC and normalize the MC to the 2206 data events.

Using this normalization factor Γ we scale the number of MC electron+track events found by the W analysis code and predict that 570 such events should be found in the data to be compared with $699-81=618$ actually found in the data. The data and prediction agree at the 10% level Γ which is well within the uncertainty we assign below to the MC prediction.

We can argue in two ways that tracking efficiency (which may be optimistic in QFLГespecially at high $|\eta|$) is not causing us to miss a large number of Z electrons in the 30° region. First Γ we look at the ratio of electron+track Z candidates in the 30° and 90° regions. (See Table 6.1 and Figure 6.3.) This ratio is 0.84 ± 0.02 in QFL and 0.98 ± 0.13 in the data. There is reasonably good agreement and no evidence of a deficit of events in the 30° region in the data. Second Γ we can make a crude estimate of tracking inefficiency in the 30° region by plotting tracking efficiency vs. η (as determined in Ref. [76]) and plotting the η distribution of Z candidates removed from the W data sample. As shown in Figure 6.4Γ the rapid falloff in tracking efficiency begins somewhat beyond the 30° region (i.e. we have efficient tracking into at least part of the PEM). This method estimates a negligible three Z events lost in the η region in which the tracking efficiency begins to fall.

By counting the number of MC $Z \rightarrow e e$ events that pass through the W analysis code without being flagged as Z candidates Γ we can estimate the number of $Z \rightarrow e e$ events remaining in the real W sample. The QFL simulation predicts 170 ± 85 events. As shown in Figure 6.5 [about half of these events are predicted to arise from the 10° region $(|\eta| \approx 2.5)$ between the PEM and FEM calorimeters. Because there is no charged particle tracking in this η region the prediction is not trivial to test with data. Thus Γ we have assigned a large systematic uncertainty.

Using completely different methods Γ Andrew Gordon [00] predicts 32 lost Z events in the region $|\eta|<1.2$ and 8 in $|\eta|>1.2$. The differences are understandable. The prediction for $|\eta|<1.2$ is lower because Andrew searches for tracks of $p_{T}^{\mathrm{BC}}>10 \mathrm{GeV}$ and has no $M(e$, track $)$ and $\Delta \phi(e$, track $)$ requirements. If we apply these relaxed criteria to the simulation Γ we predict 20 lost Z events in $|\eta|<1.2$.

Additionally「Andrew assumes a 7% tracking inefficiency in the 30° region; adding this assumption Γ we predict 30 events Γ in good agreement with Andrew's 32. The prediction for $|\eta|>1.2$ is much lower because Andrew assumes perfect electron response in the 10° region Γ while QFL assumes a substantial region of poor response at the PEM-FEM boundary. The $Z \rightarrow e e$ events lost in the 10° region are not as important in this analysis as those lost in more central regions Γ as the former tend to have very low transverse mass.

Figure 6.6 shows some predicted properties of lost Z events. We predict that 57% of lost Z events Γ or 95 ± 50 events Γ have $65<M_{T}<100 \mathrm{GeV} \Gamma$ that 3.1% (5.3 ± 2.7 events) have $M_{T}>100 \mathrm{GeV} \Gamma$ and that $1.6 \%(2.7 \pm 1.4$ events $)$ have $M_{T}>110 \mathrm{GeV}$.

6.2 Multijet background

6.2.1 Track isolation

To discriminate between electrons from W and Z decay which tend not to have other charged particles nearby Γ and electron candidates from non-electroweak sources $I^{(3)}$ we use the $N_{\text {cone }}$ track isolation variable defined in Section 3.4.5. Figure 6.7 shows Z_{T} distributions in inclusive electrons (Table 4.4) for various values of $N_{\text {cone }}$; by inspection of the $E_{T}>25 \mathrm{GeV}$ region Γ about 95% of W s have $N_{\text {cone }}=0$ and an insignificant fraction have $N_{\text {cone }}>2$; in Section 5.3 एwe predicted that 0.05% of real $W \rightarrow e \nu$ events Cor about 25 events have $N_{\text {cone }}>2$. We require $N_{\text {cone }}=0$ to obtain a clean sample of W electrons.

Figure 6.8 shows the effect of a track isolation cut in the Z data (Table 4.2 Cuts $\mathrm{A}-\mathrm{D})$. The figure illustrates that even after other ID requirements are imposed Γ events having $N_{\text {cone }}>2$ are dominated by background. Note that electron ID cuts are applied only to the "first" electron Cto make the comparison between W and Z events as fair as possible. Figure 6.9 shows the effect of the track isolation cut when the other electron ID cuts (Table 4.2 Гcuts ВГСГand D) are not applied. The figure demonstrates that the $N_{\text {cone }}$ variable is a powerful discriminant against background Γ even in a relatively impure sample. In neither figure is there any evidence that real $Z \mathrm{~s}$ remain in the $N_{\text {cone }}>2$ background sample.

Figure 6.10 shows the \mathbb{E}_{T} distribution for W candidates with $N_{\text {cone }}=0$ and >2. Again we think we can safely say that the W contamination in the $N_{\text {cone }}>2$ sample is not large.
${ }^{(3)}$ We note some examples of these sources in Appendix C.

6.2.2 Residual QCD background

We estimate the number of dijet background events remaining in the W sample by extrapolating from the $N_{\text {cone }}>2$ region to the $N_{\text {cone }}=0$ region Γ using a sample of inclusive electrons with low E_{T} to obtain the $N_{\text {cone }}$ distribution for dijet events. We have two methods to estimate the M_{T} shape of these background events. The first method (described in Appendix C) uses a sample of photon conversion events to model the \vec{E}_{T} and \vec{u} distributions of the background. The second method just uses the M_{T} shape of the $N_{\text {cone }}>2$ events in the W sample. The two methods give consistent results.

In predicting the number of dijet background events remaining in the W sample Γ we assume that W candidates with $N_{\text {cone }}>2$ are pure background. We also assume that the $N_{\text {cone }}$ shape of the dijet background remaining in the W sample is similar to the $N_{\text {cone }}$ shape of inclusive electron events that have a small E_{T}. We use three subsamples of the inclusive electron sample (which is defined in Table 4.4) to estimate this $N_{\text {cone }}$ shape: $E_{T}<10 \mathrm{GeV} ; 10 \mathrm{GeV}<\mathbb{E}_{T}<20 \mathrm{GeV}$; and $E_{T}<15 \mathrm{GeV}, u<30 \mathrm{GeV}$. Using the numbers from Table 6.2Γ we infer that for every background event with $N_{\text {cone }}>2 \Gamma$ there are 1.3 ± 0.4 background events with $N_{\text {cone }}=0$.

Returning to the W sampleГwe apply all cuts from Table 4.5 Гbut replace $N_{\text {cone }}=$ 0 with $N_{\text {cone }}>2$ Гand we find 347 events five of which have $M_{T}>100 \mathrm{GeV}$ and two of which have $M_{T}>110 \mathrm{GeV}$. (See Figure 6.11.) Thus Γ we expect 450 ± 110 total dijet background events. ${ }^{(4)}$ If we use the M_{T} shape of the $N_{\text {cone }}>2$ events as the M_{T} shape of the background Γ we predict 6 ± 3 background events at $M_{T}>100 \mathrm{GeV}$ and 3 ± 2 at $M_{T}>110 \mathrm{GeV}$. Using the M_{T} shape fit from the photon conversion data instead (see Figure 6.12) Γ we predict 10 ± 3 events at $M_{T}>100 \mathrm{GeV}$ and 5 ± 2 at $M_{T}>100 \mathrm{GeV}$. We will use the shape from the conversions and use 10 ± 4 and 5 ± 3 as the number of dijet background events with $M_{T}>100 \mathrm{GeV}$ and $M_{T}>110 \mathrm{GeV}$ respectively. As a checkГwe predict 200 ± 50 dijet background events ($0.56 \pm 0.14 \%$) in the 35557 events in the region $65 \mathrm{GeV} \leq M_{T}<100 \mathrm{GeV} \Gamma$ which is consistent with Andrew Gordon's estimate of $0.39 \pm 0.20 \%$ [00].

Given an estimate of QCD backgrounds in the W sample Γ we can use the data in Table 6.2 to estimate the number of real W events rejected by the $N_{\text {cone }}=0$ cut in Table 4.5. We estimate 800 ± 150 dijet events in the $N_{\text {cone }}=1$ bin and 350 ± 50 in the $N_{\text {cone }}=2$ binCleaving $1900 \pm 150 \mathrm{~W}$ events in $N_{\text {cone }}=1$ and 450 ± 50 in $N_{\text {cone }}=2$. The inefficiency of the $N_{\text {cone }}=0$ cut for real W events is then $4.7 \pm 0.3 \% \Gamma$ consistent with both the $5 \pm 1 \%$ found for Z electrons in Section 6.2.1 and the 5% (1.5% from tridents and 3.5% from the underlying event) found with SSD and the W list in Section 5.3.

[^39]| Cuts | events | $N_{\text {cone }}=0$ | $N_{\text {cone }}=1$ | $N_{\text {cone }}=2$ | $N_{\text {cone }}>2$ | $\frac{N_{\text {cone }}=0}{N_{\text {cone }}>2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E_{T}<10$ | 37171 | 22.8% | 37.4% | 18.7% | 21.0% | 1.1 |
| $10<\mathbb{E}_{T}<20$ | 27419 | 24.5% | 44.0% | 15.5% | 16.0% | 1.5 |
| $E_{T}<15, u<30$ | 34715 | 21.7% | 45.4% | 17.9% | 15.1% | 1.4 |
| $E_{T}>25, u<20$ | 50582 | 93.9% | 4.7% | 1.2% | 0.26% | 360 |
| Table 4.5 cuts | 53643 | 92.9% | 5.0% | 1.5% | 0.65% | 140 |
| veto EIA | 3131 | 77.0% | 10.0% | 6.2% | 6.8% | 11 |

Table 6.2: (First four lines) Distribution of track isolation variable $N_{\text {cone }}$ for three background-enriched samples and for a W-enriched sampleГall selected from the inclusive electron dataset. We infer that for dijet background events $\Gamma \frac{N_{\text {cone }}=0}{N_{\text {cone }}>2}=1.3 \pm 0.4$. (Last two lines) We also include Γ for reference Γ the $N_{\text {cone }}$ distribution for the $W \rightarrow e \nu$ sample Γ selected with all cuts listed in Table 4.5 except $N_{\text {cone }} \Gamma$ and for the subset of those events that fails the Level-3 inclusive electron trigger. We estimate a QCD background fraction of $0.4 \pm 0.1 \%$ for the inclusive-electron W events $\Gamma 0.9 \pm 0.2 \%$ for the Table $4.5 W$ events Γ and $12 \pm 3 \%$ for the Table $4.5 W$ events that fail the inclusive-electron trigger.

6.3 $W \rightarrow \tau \nu \rightarrow e \nu \nu \nu$

The process $W \rightarrow \tau \nu \rightarrow e \nu \nu \nu$ looks just like $W \rightarrow e \nu \Gamma$ but with reduced E_{T} and E_{T} and at a rate reduced by $B(\tau \rightarrow e \nu \nu)$. Calculating this background is simply a Monte Carlo exercise. To predict this rate F we use TOYGEN and QFL. We find $\frac{N(W \rightarrow \tau \rightarrow e)}{N(W \rightarrow e)}=1.8 \pm 0.2 \%$ for $M_{T}<200 \mathrm{GeV} \mathrm{\Gamma or} 0.7 \pm 0.1 \%$ for $65 \mathrm{GeV} \leq M_{T}<$ 100 GeV . We also find that 0.46% of these $W \rightarrow \tau \rightarrow e$ events have $M_{T}>100 \mathrm{GeV}$ and 0.28% have $M_{T}>110 \mathrm{GeV}$.

Normalizing to $(49843-170-450) / 1.018=48353$ (see Table 6.3) estimated $W \rightarrow e \nu$ events in the W data sample Γ we expect $870 \pm 100 W \rightarrow \tau \rightarrow e$ events in all $\Gamma 4 \pm 1$ with $M_{T}>100 \mathrm{GeV}$ Гand 2.5 ± 1 with $M_{T}>110 \mathrm{GeV}$. Figure 6.13 shows the expected M_{T} shape of this background.

As a check Γ we predict $\frac{0.007}{1.007} \times 5718=40 \pm 5 W \rightarrow \tau \rightarrow e$ events (neglecting other backgrounds) in the $65 \mathrm{GeV} \leq M_{T}<100 \mathrm{GeV}$ region of the Run Ia electron W mass sample. The value computed in that analysis is 45 events [77].

6.4 Cosmic rays

A few obvious cosmic rays found in an early hand-scan of $M_{T}>100 \mathrm{GeV}$ events motivated us to impose an 0.5 cm cut on the electron track's impact parameter with respect to the beamline $\Gamma d_{\text {beam }}$. In fact most cosmic rays fail the $p_{T}^{\mathrm{BC}}>15 \mathrm{GeV}$ cut Γ so the $d_{\text {beam }}$ cut has little effect. ${ }^{(5)}$ If the $\left|d_{\text {beam }}\right|<0.5 \mathrm{~cm}$ cut is applied after all other cuts Γ it removes 0.2% of the W sample Γ consistent with an $0.23 \pm 0.08 \%$ inefficiency measured in $Z \rightarrow e e$ tracks $\Gamma i l l u s t r a t e d ~ i n ~ F i g u r e ~ 6.14 . ~$

We use the $d_{\text {beam }}$ distribution to estimate residual cosmic ray contamination in the W sample. To do this Γ we remove the $\left|d_{\text {beam }}\right|<0.5 \mathrm{~cm}$ cut and replace the $p_{T}^{\mathrm{BC}}>15 \mathrm{GeV}$ cut with a $p_{T}>15 \mathrm{GeV}$ cut Γ so that electrons with large impact parameter are allowed in the sample. Since about 0.22% of real W electrons will fail a $\left|d_{\text {beam }}\right|<0.5 \mathrm{~cm}$ cut Γ we go all the way out to $\left|d_{\text {beam }}\right|>2.5 \mathrm{~cm}$ to select a sample enriched in cosmic rays. We find 24 events passing cuts A-M in Table 4.5 (with $d_{\text {beam }}$ removed and p_{T}^{BC} replaced by p_{T}). This subsample appears to be a combination of cosmic ray events and events with a dense jet Chence poor tracking resolution Γ near the "electron" track. After applying cuts N-R from Table 4.5 [we have nine events with $\left|d_{\text {beam }}\right|>2.5 \mathrm{~cm} \Gamma$ all of which look like cosmic ray events. An example event is shown in Figure 6.15. Figure 6.16 shows $d_{\text {beam }}$ and M_{T} distributions for the $\left|d_{\text {beam }}\right|>2.5 \mathrm{~cm}$ events.

[^40]| Source | $M_{T}<200$ | $65 \leq M_{T}<100$ | $100 \leq M_{T}<200$ | $110 \leq M_{T}<200$ |
| :---: | :---: | :---: | :---: | :---: |
| $Z \rightarrow e e$ | 170 ± 85 | 95 ± 50 | 5 ± 3 | 3 ± 1.5 |
| dijets | 450 ± 110 | 200 ± 50 | 10 ± 4 | 5 ± 3 |
| $W \rightarrow \tau \rightarrow e$ | 870 ± 100 | 250 ± 30 | 4 ± 1 | 2.5 ± 1 |
| cosmic rays | 0_{-0}^{+1} | 0 | 0 | 0 |
| total BG | 1490 ± 170 | 545 ± 80 | 19 ± 5 | 10.5 ± 3.5 |
| candidates | 49843 | 35557 | 456 | 215 |

Table 6.3: Summary of background estimates.

If we make the conservative assumption that cosmic rays have a flat distribution in impact parameter ${ }^{(6)}$ and the rather bold assumption that tracking efficiency does not vary rapidly with $d_{\text {beam }}$ out to $\left|d_{\text {beam }}\right| \sim 15 \mathrm{cmI}^{(7)}$ we can estimate the number of cosmic rays passing $\left|d_{\text {beam }}\right|<0.5 \mathrm{~cm}$ to be $9 \times \frac{0.5}{15-2.5}=0.36$ events. We think it is safe to quote 0_{-0}^{+1} as the residual cosmic ray background.

6.5 Summary of backgrounds

We summarize the background estimates in Table 6.3 and Figure 6.17.

[^41]

Figure 6.2: (Top) Invariant mass of first electron and high- p_{T} track of opposite sign (solid points) and same sign (open circles). There are 699 OS events and 81 LS events. The solid histogram is the mass spectrum predicted by the simulation (described in Section 6.1.2) Γ normalized to 618 events and added to the 81 LS events in the data. χ^{2} is 14.6 for 14 degrees of freedom. (Bottom) x vs. z (in CES local coordinates) for track that is second leg of Z candidate. The "box" histogram shows the OS candidates Γ and the crosses show the LS background. The OS events are predominantly from calorimeter wedge boundaries and the $\theta=90^{\circ}$ and $\theta \approx 30^{\circ}$ regions. There is some excess of LS events in the crack regions Γ presumably from cases in which the E_{T} is caused by a lost jet. We expect most such events to be eliminated by the electron ID cuts (which are after the Z removal in the event selection). Note that the z axis extends well beyond the physical length of the CEM so that high $-\eta$ tracks can be conveniently plotted.

Figure 6.3: x vs. z (in CES local coordinates) for data and QFL Z-removal candidates. The points are the data; the histogram is a QFL simulation. The simulation is normalized to the $2206 Z$ data events Γ as described in the text.

Figure 6.4: (Top) Detector η distribution of tracks found by Z-removal procedure. (Bottom Left) Tracking efficiency vs. η measured in Ref. [76]. The falloff in efficiency begins beyond the 30° region. (Bottom Right) We estimate about three Z candidates lost in the region in which $0 \ll \epsilon<1 \Gamma$ by multiplying found candidates by $1 / \epsilon-1$ (which clearly says nothing about the region in which $\epsilon \ll 1$).

Figure 6.5: η distribution of lost Z electrons in QFL. The $90^{\circ} \Gamma 30^{\circ} \Gamma$ and 10° regions are evident. (The histogram is merely connecting the points Γ to guide the eye.)

Figure 6.6: Shapes and sizes predicted by QFL for the remaining Z events lurking in the W sample. The quantities histogrammed are (a) transverse mass; (b) missing transverse energy; (c) magnitude of recoil energy (with only one electron subtracted); (d) number of reconstructed electron candidates; (e) transverse energy of the second electron Γ if it is reconstructed; (f) azimuthal angle between first and second electrons Γ if second is reconstructed.

Figure 6.7: E_{T} distributions from inclusive electrons (see Table 4.4) Γ for $N_{\text {cone }}=0,1,2$, and >2 (solid circlesГopen circles Γ solid triangles Γ open squares Γ respectively).

Figure 6.8: (Top) $Z \rightarrow e e$ mass distribution Γ for events in which the first electron passes ID cuts. Opposite sign pairs are the solid points and like sign pairs are the open circles. There are 2206 OS events and 8 LS events. (Center) Same as above but $0<N_{\text {cone }} \leq 2$. There are 142 OS events and 38 LS events. (Bottom) Same as aboveГ but $N_{\text {cone }}>2$. There are 57 OS events and 48 LS events. No significant number of Z electrons have $N_{\text {cone }}>2 ; 5 \pm 1 \%$ of Z electrons have $0<N_{\text {cone }} \leq 2$.

Figure 6.9: (Top) $Z \rightarrow e e$ mass distribution Γ for events in which the first electron passes $N_{\text {cone }}=0$ cut. (Other electron ID cuts are not applied.) Opposite sign pairs are the solid points and like sign pairs are the open circles. There are 2314 OS events and 39 LS events. (Center) Same as aboveГbut $0<N_{\text {cone }} \leq 2$. There are 453 OS events and 346 LS events. (Bottom) Same as aboveГbut $N_{\text {cone }}>2$. There are 1082 OS events and 1086 LS events. No significant number of Z electrons have $N_{\text {cone }}>2 ; 5 \pm 1 \%$ of Z electrons have $0<N_{\text {cone }} \leq 2$.

Figure 6.10: (Top) E_{T} distribution for W candidates Γ without $E_{\text {hadron }} / E_{\mathrm{EM}} \Gamma \Delta z_{\text {track, CES }} \Gamma$ or χ_{s}^{2} cuts. The solid points are the $N_{\text {cone }}=0$ sample Γ which shows a clear Jacobian peak. The open circles are the $N_{\text {cone }}>2$ sample Γ which shows no Jacobian peak. Both distributions are normalized to unity. (Bottom) Same as aboveГafter the electron ID cuts have been applied.

Figure 6.11: (Top) Transverse mass distribution for events passing all W cuts. (Bottom) Transverse mass distribution for events passing all W cuts Γ including $E_{\text {hadron }} / E_{\mathrm{EM}} \Gamma$ $\Delta z_{\text {track }, \mathrm{CES}}$ Гand $\chi_{s}^{2} \Gamma$ but with track isolation $N_{\text {cone }}>2$ instead of $N_{\text {cone }}=0$.

Figure 6.12: (Top) Histogram is M_{T} spectrum for QCD background predicted by fitting photon conversion data. Points are $N_{\text {cone }}>2$ data in W sample. The shapes agree very well. $\mathrm{KS}=45 \%$. Both are normalized to the 450 background events expected in the data. (Bottom) $N_{\text {cone }}=0$ data plus the above two plots Γ with a logarithmic y-axis.

Figure 6.13: (Top) Transverse mass shape of $W \rightarrow \tau \nu \rightarrow e \nu \nu \nu$ background. When normalizing to the size of the W electron dataset Γ we expect the size of this background to be 870 ± 100 events. (Bottom) Simulated $W \rightarrow e \nu$ signal and $W \rightarrow \tau \nu \rightarrow e \nu \nu \nu$ background overlaid and normalized to the size of the data.

Figure 6.14: (Top) Impact parameter $\Gamma d_{\text {beam }} \Gamma$ for both tracks in $Z \rightarrow e e$ events. Out of 4412 tracks in 2206 events $\Gamma 10$ (or $0.23 \pm 0.08 \%$) have $\left|d_{\text {beam }}\right|>0.5 \mathrm{~cm}$. (Bottom) Mass distribution for $Z \rightarrow e e$ events in which either leg has $\left|d_{\text {beam }}\right|>0.5 \mathrm{~cm}$. Since the distribution is strongly peaked near M_{Z} Гwe conclude that the $d_{\text {beam }}$ failures are dominated by real Z events.

Figure 6.15: A cosmic ray candidate that survives all cuts except $\left|d_{\text {beam }}\right|$ and p_{T}^{BC}.

Figure 6.16: Impact parameter and transverse mass distributions for events with $\left|d_{\text {beam }}\right|>2.5 \mathrm{~cm}$. In the lower plots Γ all cuts in Table 4.5 are applied Γ except for the $\left|d_{\text {beam }}\right|$ and p_{T}^{BC} cuts Γ as described in the text. For the upper plots Γ the last four cuts in Table 4.5 are also omitted.

Figure 6.17: Shapes and sizes of predicted backgrounds Γ on linear and logarithmic scales.

Chapter 7

Extracting Γ_{W} from the Data

We now have all of the ingredients we need to make predicted M_{T} spectra for a range of Γ_{W} values. In this chapter Γ we extract a central value for the W width from the data and quantify sources of error.

7.1 Fitting for Γ_{W}

We use the simulation described in Chapter 5 to predict M_{T} spectra for $\Gamma_{W}=$ $1.5,1.6, \ldots, 2.8 \mathrm{GeV}$ normalize each spectrum to $49843-1490=48353$ expected signal events in the region $M_{T}<200 \mathrm{GeV} \Gamma$ and add the 1490 -event background shape (Figure 6.17ГTable 6.3) to the predicted spectra.

We then perform a binned likelihood fit over the region $110 \leq M_{T}<200 \mathrm{GeV} \mathrm{\Gamma}$ in which we allow the contents of each data bin to fluctuate with Poisson statistics about the template bin contents. We fit a third-order polynomial to $-2 \log (L)$ vs. Γ_{W} and find $\Gamma_{W}=2.23 \pm 0.16$ (stat) GeV. The result is shown in Figure 7.1. Figure 7.2 shows the data with the best fit superimposed. The background size and shape are shown as well. A fit to the region $100 \leq M_{T}<200 \mathrm{GeV}$ (not shown) yields the value $\Gamma_{W}=2.27_{-.12}^{+.13}$ (stat) GeV .

7.2 Sources of error

To compute the effect of each source of systematic error Γ we generate Monte Carlo M_{T} spectra spanning the allowed range of that source of error (e.g. for $\pm 0.2 \%$ in CEM energy scale) and fit those spectra to the original M_{T} templates. We do this separately for fits to $M_{T}>110 \mathrm{GeV} \Gamma M_{T}>100 \mathrm{GeV} \Gamma$ and $M_{T}>90 \mathrm{GeV}$.

To compute the \vec{u} model uncertainty Γ we use the 54 simulated W datasets Γ described in Section 5.5.3 Гin which the recoil model parameters are varied within the statistical errors of the fit to the Z data. The rms spread of Γ_{W} fitted from

Figure 7.1: We perform a binned likelihood fit over the region $110 \leq M_{T}<200 \mathrm{GeV} \mathrm{\Gamma}$ where we allow the contents of each data bin to fluctuate with Poisson statistics about the template bin contents. We normalize the template to the total number of events in the $M_{T}<200 \mathrm{GeV}$ region of the data before fitting. We fit a third-order polynomial to $-2 \log (L)$ vs. Γ_{W} and find $\Gamma_{W}=2.23 \pm 0.16$ (stat) GeV .
these MC datasets $\Gamma 20 \mathrm{MeV}$ for $M_{T}>110 \mathrm{GeV} \Gamma 40 \mathrm{MeV}$ for $M_{T}>100 \mathrm{GeV}$ Гand 65 MeV for $M_{T}>90 \mathrm{GeV} \Gamma$ is the \vec{u} model uncertainty due to finite Z statistics alone-a lower bound on the true uncertainty. Because the same Z sample is used both to fit the recoil model parameters and to decide what set of variables is needed for the fitГsystematic effects due to choice of parameterization can only be revealed as discrepancies between the Z data and the Z recoil simulation. The excellent agreement observed between the Z data and the recoil model allows us only to rule out systematic effects larger than the statistical uncertainty. Thus Γ we inflate the statistical error by a factor 1.5 (rounded up from $\sqrt{2}$) to account for subtleties in the modeling that we may not yet have enough $Z \mathrm{~s}$ to notice Γ resulting in a $(30,60,100) \mathrm{MeV}$ uncertainty on Γ_{W} for the fit to $M_{T}>(110,100,90) \mathrm{GeV}$. The difference in fitted Γ_{W} between the W-data-preferred model parameters Γ discussed in Section 5.5.3 Гand the central value of the Z fit is $(5,10,35) \mathrm{MeV}$ Гwhich is much smaller than the quoted recoil model uncertaintyए so we do not consider it as an additional source of error.

Andrew Gordon [78] has examined E / p distributions 5 comparing CEM energy scale and CTC momentum scale Γ for electrons from W and Z decays separately. He finds that the ratio of energy scales extracted from the Z and W samples is $0.9994 \pm 0.0017 \Gamma$ which (assuming linearity of the track momentum measurement) shows no evidence for CEM nonlinearity. Noting that $\langle E\rangle=49.9 \pm 0.1 \mathrm{GeV}$ in the Z sample and $\langle E\rangle=42.3 \mathrm{GeV}$ in the W sample Γ we extract a 1σ uncertainty on the ability to measure a CEM nonlinearity of $\frac{0.0017}{49.9-42.3}=0.00022 \mathrm{GeV}^{-1}$. A nonlinearity

Figure 7.2: Data with best fit overlayed. The size and shape of the summed backgrounds are also shown. The KS fit confidence level is 78% for the entire $40<M_{T}<200 \mathrm{GeV}$ region Гand 84% for the $100<M_{T}<200 \mathrm{GeV}$ region alone.
of $0 \pm 0.00022 \mathrm{GeV}^{-1}$ produces a $(40,50,60) \mathrm{MeV}$ uncertainty on Γ_{W} for the fit to $M_{T}>(110,100,90) \mathrm{GeV}$.

Varying the CEM energy scale by $\pm 0.2 \%$ yields a $(25,40,95) \mathrm{MeV}$ uncertainty on Γ_{W} for $M_{T}>(110,100,90) \mathrm{GeV}$. Varying the background rates within the uncertainties quoted in Table 6.3 varies Γ_{W} by 40 MeV for $M_{T}>110 \mathrm{GeV}$ and 30 MeV for $M_{T}>100 \mathrm{GeV}$. We have not quantified this source of error for $M_{T}>$ 90 GeV .

We generated Monte Carlo samples using a variety of modern parton distribution functions. These distributions span a range of $\alpha_{s}\left(M_{Z}\right)$ values Γ which affects the Q^{2} evolution of the structure functions Γ and hence the parton luminosity. The CTEQ2 M and CTEQ-2ML distributions are included because they do not incorporate the

PDF	$\alpha_{s}\left(M_{Z}\right)$	$M_{T}>110$	$M_{T}>100$	$M_{T}>90$
MRS-R2	0.120	-	-	-
MRS-R1	0.113	+50 MeV	+40 MeV	+30 MeV
CTEQ-2M	0.110	+55 MeV	+40 MeV	+20 MeV
CTEQ-2ML	0.118	-5 MeV	-5 MeV	-15 MeV
CTEQ-4M	0.116	+15 MeV	+10 MeV	+5 MeV
CTEQ-5M1	0.119	+10 MeV	+5 MeV	0 MeV
min shift		-5 MeV	-5 MeV	-15 MeV
max shift		+55 MeV	+40 MeV	+30 MeV

Table 7.1: Observed shifts in Γ_{W} when Monte Carlo samples generated with a variety of parton distribution functions are fit to templates generated with the MRS-R2 PDF. Fitting the data to templates generated with these PDFs would shift the fitted Γ_{W} in the opposite direction.
measured CDF W charge/rapidity asymmetry. The α_{s} value is evidently a much more important effect than the W asymmetry constraint. Because the distribution of offsets Γ shown in Table 7.1Γ is asymmetric Γ we cover the observed variation by shifting the quoted Γ_{W} value by the average of the maximum and minimum shifts and taking half of the maximum difference between shifts as a systematic uncertainty. We shift the $M_{T}>(110,100,90) \mathrm{GeV}$ value by $(-25,-20,-10) \mathrm{MeV}$ and assign an uncertainty of $(30,25,25) \mathrm{MeV}$.

Varying the $W p_{T}$ skew parameter by $\pm 0.0028 \mathrm{GeV}^{-1}$ changes Γ_{W} by $(15,30,50)$ MeV for the fit to $M_{T}>(110,100,90) \mathrm{GeV}$. Varying the assumed value of the W mass by $\pm 110 \mathrm{MeV}$ changes Γ_{W} by $(10,20,50) \mathrm{MeV}$. Varying the CEM resolution and the g_{2} parameter of the $W p_{T}$ spectrum change the $M_{T}>100 \mathrm{GeV}$ and $M_{T}>$ 110 GeV results by less than 10 MeV ; we have not evaluated these two sources of error for $M_{T}>90 \mathrm{GeV}$. Varying the g_{3} parameter of the $W p_{T}$ spectrum by $\pm 0.2 \mathrm{GeV}^{-1}$ from its nominal value $g_{3}=-1.5 \mathrm{GeV}^{-1}$ changes the fitted Γ_{W} by $(<10,<10,10) \mathrm{MeV}$. ${ }^{(1)}$

As a check of the electron and photon modeling in the SSD simulation Γ we simulated $5 \times 10^{6} W \rightarrow e \nu \gamma$ events (1.3×10^{6} events after all cuts) with QFL and fitted the resulting M_{T} spectrum with the SSD templates used to fit the data. We observe a shift of $(+15,+30,+30) \mathrm{MeV}$ for $M_{T}>(110,100,90) \mathrm{GeV} .{ }^{(2)}$ We include the magnitude of this difference as a source of error.

Table 7.2 summarizes the uncertainties in the measured Γ_{W} that we have considered. We noted in Chapter 1 that the insight that makes this measurement feasible is to observe that many sources of systematic error decrease at high transverse mass Γ where there is good separation between on-shell and off-shell W bosons. Since the high- M_{T} region contains fewer events Γ however Γ one expects a larger statistical error at high transverse mass. Table 7.2 demonstrates that the $M_{T}>100 \mathrm{GeV}$ region is near optimal for minimizing the total error on the measured W width: The statistical error rises from 100 MeV to 160 MeV as we move the left side of the fitting window from 90 GeV to 110 GeV एwhile the systematic error decreases from 175 MeV to 80 MeV .

We thus quote the $M_{T}>100 \mathrm{GeV}$ fit shifted -20 MeV for the PDF variation noted above Γ as the final result: $\Gamma_{W}=2.25_{-0.12}^{+0.13}$ (stat) ± 0.11 (syst) GeV .

[^42]| | | $M_{T} \geq 110$ | $M_{T} \geq 100$ | $M_{T} \geq 90$ |
| :---: | :---: | :---: | :---: | :---: |
| Source | Variation | $\Delta \Gamma(\mathrm{MeV})$ | $\Delta \Gamma(\mathrm{MeV})$ | $\Delta \Gamma(\mathrm{MeV})$ |
| \vec{u} model | Z fit $1.5 \sigma(\mathrm{stat})$ | 30 | 60 | 100 |
| CEM nonlinearity | $\pm 0.00022 \mathrm{GeV}^{-1}$ | 40 | 50 | 60 |
| CEM scale | 1.0006 ± 0.0020 | 25 | 40 | 95 |
| backgrounds | Table 6.3 | 40 | 30 | $*$ |
| $W p_{T}$ (skew) | $-.0028 \pm .0028 \mathrm{GeV}^{-1}$ | 15 | 30 | 50 |
| $e^{ \pm}, \gamma$ simulation | SSD vs. QFL | 15 | 30 | 30 |
| PDF | see text | 30 | 25 | 25 |
| M_{W} | $80.356 \pm 0.110 \mathrm{GeV}$ | 10 | 20 | 50 |
| CEM resolution | $1.5 \pm 0.3 \%$ | <10 | <10 | $*$ |
| $W p_{T}\left(g_{2}\right)$ | $0.6 \pm 0.2 \mathrm{GeV}^{2}$ | <10 | <10 | $*$ |
| $W p_{T}\left(g_{3}\right)$ | $-1.5 \pm 0.2 \mathrm{GeV}^{-1}$ | <10 | <10 | 10 |
| all systematics | | 80 | 110 | 175 |
| statistics | | 160 | 125 | 100 |
| total | | 180 | 165 | 200 |

Table 7.2: Summary of uncertainties. Entries marked by an asterisk in the $M_{T}>90 \mathrm{GeV}$ column have not been evaluated Γ but are expected not to be dominant sources of error. The $M_{T}>100 \mathrm{GeV}$ fit clearly minimizes the total error.

Chapter 8

Conclusions

By fitting the transverse mass lineshape in $W \rightarrow e \nu$ events recorded in $90 \mathrm{pb}^{-1}$ of $1.8 \mathrm{TeV} p \bar{p}$ collisions Γ we have measured the W boson total decay width $\Gamma \Gamma_{W} \Gamma$ to a precision of 8%. The best individual measurements of Γ_{W} to date [42Г 43] Γ each of which has a precision of $4 \% \Gamma$ extract Γ_{W} by combining a measurement of the branching ratio $B(W \rightarrow e \nu)$ with a Standard Model calculation for $\Gamma(W \rightarrow$ $e \nu$). The measurement presented in this dissertation $\Gamma \Gamma_{W}=2.25_{-0.12}^{+0.13}$ (stat) \pm 0.11 (syst) GeV Гis a factor of two more precise than the best direct measurement to date [22]. The result is consistent with the Standard Model prediction [20Г16] Γ $2.09 \pm 0.01 \mathrm{GeV}$ Гand with the average of other measurements $[16] \Gamma 2.07 \pm 0.06 \mathrm{GeV}$. Figure 8.1 compares the result of this measurement with previous direct and indirect measurements and with the Standard Model prediction.

There are now two complementary methods to measure the W width: the direct method used in this dissertation and the R method described in Chapter 1. It is always desirable to show that consistent measurements of a given physical quantity can be made using a variety of experimental methods Γ with complementary sources of error.

This measurement also demonstrates our understanding of charged-current phenomena at $\hat{s}>M_{W}^{2}$. We understand the region well enough to model its M_{T} lineshape successfullyГusing only one free parameter $\Gamma \Gamma_{W} \Gamma$ whose measured value is consistent with Standard Model predictions.

In making this measurement Γ we have produced independent background calculations Γ a recoil model Γ and fits for the Z mass Γ electron resolution Γ and $Z p_{T}$ spectrumГas well as an independent simulation that models electron bremsstrahlung in the inner detector material. These by-products can be used for systematic checks of the CDF W mass analysis.

In future direct Γ_{W} measurements Γ it should be possible to observe Standard Model radiative corrections to the W width that cancel in the branching ratio $\frac{\Gamma(W \rightarrow e \nu)}{\Gamma_{W}} \Gamma$ and hence are unobservable in the R measurement. In the data taking period scheduled to begin in the year $2000 \Gamma \mathrm{CDF}$ expects to record at least $2000 \mathrm{pb}^{-1}$
of data exceeding the size of the data set used in this measurement by more than a factor of 20 . If all errors scale as $1 / \sqrt{N} \mathrm{I}^{(1)}$ a 35 MeV precision may be possible from CDF's electron data alone. In addition Γ it should be possible for both CDF and $D \varnothing$ to make this measurement in both electron and muon channels Γ reducing the statistical error even further.

[^43]

Figure 8.1: Comparison with other measurements.

Bibliography

[1] S. GlashowГ Nucl. Phys. 22579 (1961).
[2] S. WeinbergГ Phys. Rev. Lett. 191264 (1967).
[3] A. Salam in Elementary Particle TheoryГedited by N. Svartholm (Almquist and WiksellsГStockholmГ1969)Гp. 367.
[4] W. BardeenГH. FritzschГM. Gell-Mann in Scale and Conformal Symmetry in Hadron PhysicsГedited by R. Gatto (WileyГNew YorkГ1973)Гp. 139.
[5] D. Gross Γ F. Wilczek Γ "Asymptotically Free Gauge Theories" Phys. Rev. D8 3633 (1973).
[6] S. Weinbergए"Nonabelian Gauge Theories of the Strong Interactions" Phys. Rev. Lett. 31494 (1973).
[7] G. Baur et alГ "Production of Anti-Hydrogen" Phys. Lett. B368 251 (1996).
[8] M. KobayashiГT. Maskawa " "CP Violation in the Renormalizable Theory of Weak Interaction" Prog. Theor. Phys. 49652 (1973).
[9] N. Cabibbo「"Unitary Symmetry and Leptonic Decays" Phys. Rev. Lett. 10 531 (1963).
[10] R. CahnГ G. Goldhaber Γ The Experimental Foundations of Particle Physics Γ (Cambridge University PressГ1989).
[11] C.S. Wu et al Γ "Experimental Test of Parity Conservation in Beta Decay" Phys. Rev. 1051413 (1957).
[12] R. GarwinГL. LedermanГM. Weinrich Γ "Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muonए" Phys. Rev. 1051415 (1957).
［13］J．FriedmanГ V．Telegdi Γ＂Nuclear Emulsion Evidence for Parity Non－ Conservation in the Decay Chain $\pi^{+} \rightarrow \mu^{+} \rightarrow e^{+}$＂Phys．Rev． 1051681 （1957）．
［14］F．J．Hasert et al Γ＂Observation of Neutrino Like Interactions without Muon or Electron in the Gargamelle Neutrino Experiment「＂Phys．Lett．46B 138 （1973）．
［15］G．Arnison et al（UA1 Collaboration）Γ＂Experimental Observation of Iso－ lated Large Transverse Energy Electrons with Associated Missing Energy at $\sqrt{s}=540$ GeVI＂Phys．Lett．122B 103 （1983）；＂Intermediate－Vector－Boson Properties at the CERN Super Proton Synchrotron Collider＂Europhys．Lett． 1327 （1986）．
［16］R．M．Barnett et al（Particle Data Group）Г＂Review of Particle PhysicsF＂Phys． Rev．D54 1 （1996）and 1997 off－year partial update for the 1998 edition at WWW location http：／／pdg．lbl．gov
［17］W．J．MarcianoГА．SirlinГ＂Radiative Corrections to Neutrino－Induced Neutral－ Current Phenomena in the $S U(2)_{L} \times U(1)$ Theory＂Phys．Rev．D22 2695 （1980）．
［18］M．SwartzГ＂High Energy Tests of the Electroweak Standard Model＂＂XVI International Symposium on Lepton－Photon Interactions（AugustГ1993）．
［19］D．H．Perkins Introduction to High Energy Physics（Third Edition）（Addison－ WesleyГReadingГМАГ1987）．
［20］J．L．RosnerГМ．P．WorahГТ．TakeuchiГ＂Oblique Corrections to the W Widthए＂ Phys．Rev．D49 1363 （1994）．
［21］R．M．Barnett et al（Particle Data Group）$\Gamma^{" R e v i e w ~ o f ~ P a r t i c l e ~ P h y s i c s 5 " ~ P h y s . ~}$ Rev．D54 1 （1996）．
［22］F．Abe et al（CDF Collaboration）Γ＂Direct Measurement of the W Boson Width「＂Phys．Rev．Lett． 74342 （1995）．
［23］V．BargerГА．D．MartinГR．J．N．PhillipsГ＂Perpendicular e $e \nu$ Mass from W De－ cayl＂Z．Phys．C21 99 （1983）．
［24］J．SmithГW．L．van NeervenГJ．A．M．VermaserenГ＂Transverse Mass and Width of the W Boson「＂Phys．Rev．Lett． 501738 （1983）．
［25］S．E．Kopp Γ＂A Measurement of the Ratio $R=\sigma \cdot B(p \bar{p} \rightarrow W \rightarrow e \nu) / \sigma \cdot B(p \bar{p} \rightarrow$ $\left.Z^{0} \rightarrow e^{+} e^{-}\right)$in $p \bar{p}$ Collisions at $\sqrt{s}=1800 \mathrm{GeVP}$ Ph．D．thesis Γ University of Chicago（AugustГ1994）．
［26］E．EichtenГІ．HinchliffeГК．LaneГС．QuiggГ＂Supercollider Physics＂Rev．Mod． Phys． 56579 （1984）．
[27] A.D. MartinГR.G. RobertsГW.J. StirlingГ "Parton Distributions: a Study of the New HERA Data α_{s} Гthe GluonГand $p \bar{p}$ Jet Production「" Phys. Lett. B387 419 (1996).
[28] V.D. BargerГR.J.N. PhillipsГCollider Physics (Addison-WesleyГReadingГМАГ 1987).
[29] F.A. BerendsГR. Kleiss ГJ.P. RevolГJ.P. VialleГ"QED Radiative Corrections and Radiative Decays of the Intermediate Weak Bosons Produced in ProtonAntiproton Collisions" Z. Phys. C27 155 (1985); F.A. Berends R R. Kleiss Γ "Hard Photon Effects in $W^{ \pm}$and Z_{0} decay" Z. Phys. C27 365 (1985).
[30] P.B. Arnold Γ M. Reno Γ "The Complete Computation of High- $p_{T} W$ and Z Production in Second-Order QCDF" Nucl. Phys. B319 37 (1989).
[31] P.B. ArnoldГR.P. Kauffman Γ " W and Z Production at Next-to-Leading Order: from Large q_{T} to Small" Nucl. Phys. B349 381 (1991).
[32] C. Davies Γ W.J. Stirling Γ "Nonleading Corrections to the Drell-Yan CrossSection at Small Transverse MomentumI" Nucl. Phys. B244 337 (1984).
[33] J. CollinsГ D. SoperГ "Back to Back Jets in QCDP" Nucl. Phys. B193 381 (1981); errata Nucl. Phys. B213 545 (1983); "Back to Back Jets: Fourier Transform from b to $k_{T} \mathrm{~T}$ Nucl. Phys. B197 446 (1982).
[34] J. CollinsГD. SoperГG. StermanГ"Transverse Momentum Distribution in DrellYan Pair and W and Z Boson Production" Nucl. Phys. B250 199 (1985).
[35] G.A. LadinskyГC.P. YuanГ"Nonperturbative Regime in QCD Resummation for Gauge Boson Production at Hadron Colliders" Phys. Rev. D50 4239 (1994).
[36] R.K. Ellis Γ S. Veseli " W and Z Transverse Momentum Distributions: Resummation in q_{T}-Spacel" Nucl. Phys. B511 649 (1998).
[37] R.K. EllisГD.A. RossГS. Veseli Γ "Vector Boson Production in Hadronic Collisions" Nucl. Phys. B503 309 (1997).
[38] F. Abe et al (CDF Collaboration) Γ "Two Jet Invariant Mass Distribution at $\sqrt{s}=1.8$ TeVP" Phys. Rev. D41 1722 (1990).
[39] R. Ansari et al (UA2 Collaboration) Γ "Measurement of the Standard Model Parameters from a Study of W and Z Bosons" Phys. Lett. B186 440 (1987).
[40] F. Abe et al (CDF Collaboration) Γ "Measurement of the Ratio $\sigma(W \rightarrow$ $e \nu) / \sigma(Z \rightarrow e e)$ in $\bar{p} p$ Collisions at $\sqrt{s}=1.8$ TeVI" Phys. Rev. Lett. 64152 (1990).
[41] J. Alitti et al (UA2 Collaboration) Γ "An Improved Determination of the Ratio of W and Z Masses at the CERN $\bar{p} p$ Collider" Phys. Lett. B276 354 (1992).
[42] F. Abe et al (CDF Collaboration) Γ "Measurement of the Ratio $\sigma \cdot B(W \rightarrow$ $e \nu) / \sigma \cdot B\left(Z^{0} \rightarrow e^{+} e^{-}\right)$in $\bar{p} p$ Collisions at $\sqrt{s}=1.8$ TeVГPhys. Rev. Lett. 73 220 (1994).
[43] S. Abachi et al (D \emptyset Collaboration) Γ " W and Z Boson Production in $\bar{p} p$ Collisions at $\sqrt{s}=1.8$ TeVI" Phys. Rev. Lett. 751456 (1995).
[44] D \varnothing Collaboration Γ " $D \varnothing$ Results on W Boson Properties" submitted to the International Europhysics Conference on High Energy Physics, August 19-26Г 1997ГJerusalemГIsrael.
[45] P.H. Hansen Γ "LEP II Physics" CERN PPE/98-001Г submitted to CERN School of Physics 1997ГMenstrup Denmark.
[46] R. Blair et al (CDF II Collaboration) Γ "CDF II Technical Design Reportए" Fermilab-Pub-96/390-E (NovemberГ1996).
[47] J. Marriner et alए "Run II Handbook" WWW document http://www-bd.fnal.gov/lug/runII_handbook/RunII_index.html
[48] H. WenzelГ "The Primary Interaction Vertex" CDF Note 4066 (February 1997).
[49] W. BadgettГP. Derwent Γ "Event z Vertex Cut Efficiency as a Luminosity Correction for Run Ial" CDF Note 2703 (JulyГ1994).
[50] F. Abe et alГ"The CDF Detector: an OverviewT" Nucl. Inst. Meth. A271 387 (1988).
[51] F. Bedeschi et al "Design and Construction of the CDF Central Tracking Chamber" Nucl. Inst. Meth. A268 50 (1988).
[52] G.W. Foster et al Γ "A Fast Hardware Track Finder for the CDF Central Tracking Chamberl" Nucl. Inst. Meth. A269 93 (1988).
[53] P. Azzi et al "SVX': the New CDF Silicon Vertex Detector" Nucl. Inst. Meth. A360 137 (1995).
[54] L. Balka et al "The CDF Central Electromagnetic Calorimeter"" Nucl. Inst. Meth. A267 272 (1988).
[55] D. Amidei et alГ"A Two Level Fastbus Based Trigger System for CDF厂" Nucl. Inst. Meth. A269 51 (1988).
[56] E. Barsotti et alГ"Fastbus Data Acquisition for CDFT" Nucl. Inst. Meth. A269 82 (1988).
［57］R．Blair et alГ＂Trigger Cross－Sections for the 1991 Runl＂CDF Note 1467 （МауГ 1991）．
［58］John Wahl private communication about the 4 GeV prescaled $\times 40 \mathrm{~L} 1$ calorimeter trigger．
［59］D．Amidei et al＂New Shower Maximum Trigger for Electrons and Photons at CDF厂＂CDF Note 2740 （JulyГ1994）．
［60］D．Glenzinski et al Γ documented on computer fnald．fnal．gov in file cdf\＄w＿z＿data：［ana．val＿1b］aaareadme．txt
［61］K．Yasuoka et al Γ＂Response Maps of the CDF Central Electromagnetic Calorimeter with Electrons＂Nucl．Inst．Meth．A267 315 （1988）．
［62］K．Yasuoka et al＂Performance of Response Maps of the CDF Central Elec－ tromagnetic Calorimeter with Electrons＂CDF Note 399 （MarchГ1987）．
［63］S．KoppГJ．WahlГ＂Search for $W^{\prime} \rightarrow e \nu$＂CDF Note 2541 （JuneГ1994）．
［64］F．Ukegawa ${ }^{\text {＂Bottom Quark Production in } 1.8-\mathrm{TeV} \text { Proton－Antiproton Colli－}}$ sions＂Ph．D．ThesisГUniversity of Tsukuba（SeptemberГ1991）．
［65］L．NodulmanГK．ByrumГ＂CEM Calibration for 1b（but not 1c）P＂CDF Note 3477 （JanuaryГ1996）．
［66］L．NodulmanГ＂On False Curvatures in 1bF＂CDF Note 4056 （FebruaryГ1997）．
［67］UA2 TOYGEN Monte Carlo「unpublished．
［68］K．Einsweiler et al Γ＂The Measurement of the W Mass in the Muon Channell＂ CDF Note 4064 （FebruaryГ1997）．
［69］A．Gordon Γ＂$W P_{T}$ Recoil Model for the 1B W Mass Measurement＂CDF Note 3994 （DecemberГ1996）．
［70］W．Ashmanskas Γ＂Direct Measurement of Γ_{W} with Run Ib Electrons＂CDF Note 4137 （AugustГ1997）．
［71］M．LancasterГ＂Lepton Resolutions for the Run 1B W Mass AnalysisP＂CDF Note 4046 （February「1997）．
［72］D．Reher Γ＂P_{T}^{W} and P_{T}^{Z} Modeling for Run 1B W Mass Analysis＂CDF Note 4069 （FebruaryГ1997）．
［73］M．Lancaster Γ＂Recoil Modeling for the Run 1B W Mass Analysis＂CDF Note 4048 （FebruaryГ1997）．
[74] M.H. Reno Γ "Relative Distributions of W 's and Z 's at Low Transverse Momental" Phys. Rev. D49 4326 (1994).
[75] M. LancasterГprivate communication.
[76] Q. FanГ A. Bodek "A Stand-Alone SVX Track-Finding Routine for High- p_{T} Tracks Originating from the Beam Positionl" CDF Note 3585 (MarchГ1996).
[77] F. Abe et al (CDF Collaboration) 「"Measurement of the W Boson Mass" Phys. Rev. D52 4784 (1995).
[78] A. Gordon Г"Material and CEM Scale Calibration Using E / p from W Eventsए" CDF Note 4013 (AugustГ1997).
[79] C.P. YuanГprivate e-mail communicationГМау 8 Г1998.
[80] Y.S. Tsai "Pair Production and Bremsstrahlung of Charged LeptonsT" Rev. Mod. Phys. 46815 (1974); errata Rev. Mod. Phys. 49421 (1977).
[81] M.D. Peters Γ "A Measurement of B Meson Oscillations Using Inclusive Leptons in Proton-Antiproton Collisions at 1.8 TeVI" PhD thesisए University of CaliforniaГBerkeley (1997).

Appendix A

Details for CDF Physicists

This appendix contains various details that are important to fellow CDF physicists but unintelligible to the typical reader.

- Run Ib Z electron dataset means the EZA PAD dataset on FNALD m maintained by Andrew Gordon and documented in CDF\$W_Z_DATA: [ANA.VAL_1B] AAAREADME. TXT. SimilarlyГRun Ib inclusive electron dataset and Run Ib W electron dataset refer to the EIA and EZA datasets Γ respectively.
- No known detector problems means that bit 0 is set in the status returned by BADRUNГindicating that the detector is in good working order Γ with the possible exception of the muon systems (which we do not use). The good run list is maintained by Dan Hennessey and Andy Beretvas. We use the version dated October 30Г1996.
- Any $Z \rightarrow e e$ trigger means ELEA_CEM_22_ZГELEA_CEM_22_Z_V1Гor ELEA_PEM_20_Z. Central electron $Z \rightarrow e e$ trigger means the first two of these three. Note that ELEA_CEM_22_Z was replaced by ELEA_CEM_22_Z_V1 for runs 57899 Г58146 Гand ≥ 58166 Гto remove the Level $3 \mathrm{had} / E M$ cut.
- Central electron reconstructed means that an ELES bank exists with REGELE $=0$. (No such bank is found in 0.001% of events passing the L3 W electron trigger; hand scanning reveals jets with had/EM fraction close to 0.125 .)
- A CEM electron is in the CEM fiducial volume if FIDELE returns 0 for that electron. Regions removed are tower 9 (east and west) Γ the chimney towers $\Gamma|z|<9 \mathrm{~cm} \Gamma$ and $|x|>21 \mathrm{~cm}$.
- The electron track is the QTRK track whose number is given by TRPELE in the ELES bank; we usually beam constrain this track with $\operatorname{TRKSVC}(0,0,0,-1)$.

FIDELE failure	data fraction	QFL fraction
ϕ cracks	5.4%	4.8%
90° crack	1.7%	1.1%
tower 9	0.7%	0.6%
Σ others	0.3%	0.2%
total	8.1%	6.7%

Table A.1: Distribution of FIDELE failure reasons for data and QFL W electrons. The CEM response in the crack regions may fall to zero faster in QFL than in the real detector; looking at E / p vs. position for the "second" (unbiased) electron in Z events may shed some light on CEM calorimeter cracks.

- CTC fiducial volume means track stays in CTC through SL8; in practice Γ we require $\left|z_{0}+130 \mathrm{~cm} \cdot \cot \theta\right|<150 \mathrm{~cm}$.
- $E_{\text {hadron }} / E_{\text {EM }}$ consistent with electron means HAD3ELE from the ELES bank is less than $0.055+0.045 \frac{E}{100 \mathrm{GeV}}$.
- Track/CEM position match (z-view) means ZSTELE and ZEXELE from the ELES bank differ by less than 5 cm .
- Transverse shower shape (z-view) means CHSELE from the ELES bank is less than 20 .
- In the Z removal (Section 6.1.1) $\Gamma^{\text {"consistent with originating from the same }}$ z position" means that TRKSVC constrains the two tracks either to the same vertex or to two vertices less than 5 cm apart. Also note that in computing M (electron, track) we use ELES-bank information for the first electron and the beam-constrained track momentum for the second electron.

Appendix B

Detector Simulation

The SSD detector simulation Γ developed by this author Γ traces electrons Γ positrons Γ and photons through a simple model of the CDF detector.

We describe the detector as a set of thin surfaces. We currently implement two types of surface-"disk" and "shell"-though it is straightforward to add others. A disk $D\left(Z, R_{1}, R_{2}\right)$ is a locus $z=Z \Gamma R_{1}<r<R_{2}$ Гand a shell $S\left(R, Z_{1}, Z_{2}\right)$ is a locus $r=R \Gamma Z_{1}<z<Z_{2}$. A large portion of the Run I CDF detector can be described using these two surface types alone. ${ }^{(1)}$ We make the simplifying assumption that all measurements and all interactions with detector material take place at these thin surfaces. Figure B. 1 shows the SSD model of the Run I CDF detector. In the $z-r$ plane of the figure Γ disks are vertical line segments Γ and shells are horizontal line segments.

We trace particles as helices (possibly with zero curvature) through the detector in steps. We step either through 30° in the particle's orbit ${ }^{(2)}$ or to the first surface the particle intersects-whichever produces a shorter step. ${ }^{(3)}$ Proper timeГpath length Γ turning angle Γ and amount of material traversed (in radiation lengths) are accumulated after each step. All of the interesting work of the simulation is performed by callback routines Γ which may be invoked before the first step and after each subsequent step. An arbitrary number of callbacks can be defined for any of the following occurrences: a new particle is about to be traced; a particle has just stepped 30°; a particle has just intersected a surface; a particle has just taken any step; a particle's trajectory has terminated. Termination occurs either when there is no surface to intersect in the forward direction (i.e. the particle escapes) or when termination is requested by a callback routine (as when a photon converts to $e^{+} e^{-}$

[^44]

Figure B.1: CDF detector geometry in SSD simulation.
at a surfaceГan electron or photon reaches the calorimeterГor a particle has looped the maximum number of times).

While tracing a particle we represent its geometrical state of motion as a "trajectory" which we define to be the particle's position Γ direction of motion Гand curvature (defined as in the CDF helix parameterization): $x, y, z, \cos \varphi=\frac{p_{x}}{p_{T}}, \sin \varphi=$ $\frac{p_{y}}{p_{T}}, \lambda=\cot \theta=\frac{p_{z}}{p_{T}}$. We swim a trajectory a distance s as follows: ${ }^{(4)}$

$$
\begin{gathered}
\binom{x}{y} \leftarrow\binom{x}{y}+\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)\binom{\Delta x}{\frac{\sin (2 c s)}{1+\cos (2 c s)} \Delta x} \\
\binom{\cos \varphi}{\sin \varphi} \leftarrow\left(\begin{array}{cc}
\cos (2 c s) & -\sin (2 c s) \\
\sin (2 c s) & \cos (2 c s)
\end{array}\right)\binom{\cos \varphi}{\sin \varphi} \\
z \leftarrow z+\lambda s \\
\lambda \leftarrow \lambda \\
c \leftarrow c
\end{gathered}
$$

[^45]where
\[

\Delta x=\left\{$$
\begin{array}{cl}
s & \text { if } c=0 \\
\frac{\sin (2 c s)}{2 c} & \text { otherwise }
\end{array}
$$\right.
\]

By requiring the plane of curvature to be the $x-y$ plane Γ we implicitly require the magnetic field to be oriented along \hat{z}. The identity $1-\cos \epsilon=\frac{\sin ^{2} \epsilon}{1+\cos \epsilon}$ eliminates numerical problems for small turning angles Γ which are the usual case for all but the lowest- p_{T} tracks.

Finding the distance s at which a trajectory intersects a disk $D\left(Z, R_{1}, R_{2}\right)$ is straightforward: $s=(Z-z) / \lambda$. The trajectory never meets the disk if $s<0 \Gamma$ if $\lambda=0$ and $z \neq Z \Gamma$ or if $R_{1}<r<R_{2}$ is not satisfied after the particle swims a distance s. To find the distance s to a shell $S\left(R, Z_{1}, Z_{2}\right) \Gamma$ we rotate x and y to the coordinate system in which $\varphi=0$ and solve the equation $(x+\Delta x)^{2}+(y+\Delta y)^{2}=R^{2}$ for Δx using $\Delta y=\frac{2 c(\Delta x)^{2}}{1+\sqrt{1-(2 c \Delta x)^{2}}}$ Twhich assumes that the turning angle $2|c| s$ is less than 90°. The equation for Δx is

$$
A(\Delta x)^{2}+B \Delta x+C=0
$$

where

$$
\begin{aligned}
& A=1+4 c y+(2 c r)^{2} \\
& B=2 x\left(1+2 c y+2 c^{2}\left(r^{2}-R^{2}\right)\right) \\
& C=\left(r^{2}-R^{2}\right)\left(1+2 c y+c^{2}\left(r^{2}-R^{2}\right)\right)
\end{aligned}
$$

In solving the quadratic equation Γ we take the well known precaution against truncation error Γ using solutions $-\frac{2 C}{B+D}$ and $-\frac{B+D}{2 A}$ for $B>0$ and using solutions $\frac{-B+D}{2 A}$ and $\frac{2 C}{-B+D}$ for $B<0 \Gamma$ where $D=\sqrt{B^{2}-4 A C}$. We consider only solutions with turning angle $0 \leq 2|c| s \leq 45^{\circ}$. We also require $Z_{1}<z<Z_{2}$ after the particle swims a distance s. If two solutions remain Γ we choose the smaller s. In the most common case $\Gamma|c r|<|c R| \ll 1 \Gamma x>0 \Gamma c y>0 \Gamma$ so $A>0, B>0, C<0 \Gamma$ and the chosen solution is $\Delta x=-\frac{2 C}{B+\sqrt{B^{2}-4 A C}}$. In practice Γ the turning angle test does not check s explicitly but instead requires $\Delta x \geq 0 \Gamma|2 c \Delta x| \leq \frac{1}{\sqrt{2}}$ Гand $(x+\Delta x)^{2}+(y+\Delta y)^{2}=R^{2} \Gamma$ using the expression given above for $\Delta y .{ }^{(5)}$ For solutions satisfying these conditions Γ the arc length is $s=\frac{\operatorname{asin}(2 c \Delta x)}{2 c}$ for $c \neq 0$ or $s=\Delta x$ for $c=0$.

To simulate an event Γ all final-state particles in the HEPEVT data structure ${ }^{(6)}$ are loaded into SSD's list of particles to be simulated. CurrentlyГonly $e^{ \pm} \Gamma \nu \Gamma$ and γ are processed; since neutrinos escape undetected Γ the simulation handles them correctly by ignoring them. An event z-vertex is chosen from a Gaussian distribution Γ

[^46]and the generated particles are translated to the interaction point. ${ }^{(7)}$ All particles with $p_{T}>50 \mathrm{MeV}$ are traced through the detectorГstep by step.

In addition to the particle's present trajectory「information stored while a particle is traced includes its initial position and momentum Γ its particle type ($e \Gamma \gamma \Gamma$ etc.) Γ the magnitude of its present momentum Γ the present magnetic field magnitude Γ and various book-keeping informationГsuch as number of steps taken Γ path length traversedГand number of radiation lengths seen.

We take the magnetic field to be 14116 Gauss for $r<149 \mathrm{~cm} \Gamma|z|<254 \mathrm{~cm}$ and zero elsewhere. Through the callback procedures of two disks and a shell that bound the region enclosed by the solenoid Γ the magnetic field is turned off Γ and the curvature set to zero $\boldsymbol{\text { when }}$ a particle exits this region. Two disks and a shell bound the region $r<500 \mathrm{~cm} \Gamma|z|<1000 \mathrm{~cm}$; if a particle leaves this region Γ its path through the detector is terminated. A particle is also terminated if it turns so far in its orbit that its radius starts to decrease $\mathrm{I}^{(8)}$ if its transverse momentum drops below 50 MeV by interacting in the detector material or if it is an electron or photon that reaches the CEM (modeled as a shell at $r=184 \mathrm{~cm} \Gamma|z|<254 \mathrm{~cm}$). When a particle is terminated Γ its initial and final states are recorded in a data structure that can be written to disk with other program output.

The inner detector material is concentrated in a small number of shells: the beam pipe $\left(1.6 \% X_{0}\right) \Gamma$ four SVX layers $\left(0.73 \% X_{0}\right.$ each $) \Gamma$ the VTX inner radius (which is segmented in z to accomodate the SVX) $\left(0.5 \% X_{0}\right)$ Гand the VTX/CTC boundary $\left(2.3 \% X_{0}\right) .{ }^{(9)}$ We lump the CTC gas and wires into four surfaces Γ just inside of each stereo superlayer $\left(2.1 \% X_{0}\right.$ total). ${ }^{(10)}$ No material has been assigned to other surfaces.

When an electron or positron traverses a surface of finite material thickness Γ it may emit one or more bremsstrahlung photons. The mean number of bremsstrahlung photons emitted is $\frac{\# X_{0}}{\hat{p} \cdot \hat{n}} f\left(y_{\text {min }}, Z\right) \Gamma$ where $\# X_{0}$ is the surface thickness measured in radiation lengths $T^{(11)} \hat{p}$ is the electron direction of motion $\Gamma \hat{n}$ is a unit vector normal to the surface at the point of incidence $\Gamma y_{\text {min }}$ is the smallest fraction y of the electron's energy to be radiated to a single photon $\mathrm{I}^{(12)}$ and Z is the number of protons

[^47]per atom. We use $y_{\text {min }}=\frac{50 \mathrm{MeV}}{p_{T}^{e}}$. This mean can be calculated by a GEANT routine (GBRSGE) or a QFL routine (QBREMIГcoded by R.G. Wagner). The actual number of photons is then drawn from a Poisson distribution with this mean. Each photon energy is then thrown by either a GEANT routine (GBREME) or a QFL routine (QBREMM). The electron momentum is reduced by the sum of the photon momenta. The photons Γ with momenta parallel to the electron momentum Γ are added to the list of particles to simulate.

When a photon traverses a surface of finite material thickness Γ it may convert into an $e^{+} e^{-}$pair. We use a GEANT routine (GPRSGG) to compute the pairproduction cross-section $\sigma\left(Z,\left|\vec{p}_{\gamma}\right|\right) \Gamma$ and calculate the conversion probability to be $1-\exp \left(-\frac{\rho \sigma N_{A}}{A \hat{p} \cdot \hat{n}} \Delta x\right) \Gamma$ where N_{A} is Avagadro's number and other quantities are as above. ${ }^{(13)}$ If the photon converts Γ the energy sharing between e^{+}and e^{-}is thrown by QFL routine QASSYM (which was modified from GEANT routine GPAIRG). The photon is terminatedГand an electron and positron Γ with momenta parallel to the photon momentumГare added to the list of particles to be simulated.

When a charged particle traverses a surface of finite material thickness $\Gamma i t$ scatters elastically many times in the electric fields of nuclei and electrons. While the cumulative scattering angle after a very large number of scatters approaches a Gaussian distribution ${ }^{(14)}$ the angle after a moderate number of scatters is given by a Molière distribution Γ which has much longer tails. We throw a polar scattering angle θ from a Molière distribution using GEANT routine MLRГthrow an azimuthal scattering angle ϕ from a flat distribution Γ and rotate the particle trajectory an angle θ from its incident direction of motion. Because we have not yet had an opportunity to test the multiple scattering implementation carefullyГSSD simulation results presented in this dissertation are obtained with multiple scattering disabled.

Energy loss through ionization is not yet included. Also 5 several second-order effects within a single surface ought to be handled better: Multiple bremsstrahlung of an electron in one surface is allowed (since the number of photons is drawn from a Poisson distribution) 「but bremsstrahlung photons cannot convert in the surface in which they are created Γ and $e^{+} e^{-}$conversion pairs cannot radiate photons in the surface in which they are created. Since the thickest surface we implement is 2.3% $X_{0} \Gamma$ these effects are small Γ but we have a plan in mind for handling them properly if we reuse the SSD simulation in the future.

Instead of simulating the VTX directly ${ }^{(15)}$ we use a procedure from the QFL simulation to create a fake VTVZ data structure (which normally contains reconstructed z-vertex information) Гinto which we write the simulated event z-vertex.

[^48]We can simulate the CTC in two ways: at the hit level or at the track level. The hit-level simulation uses each CTC superlayer's callback procedure to determine each charged particle's position and direction of motion in each CTC superlayer. (Interactions in the detector material may occur between superlayers.) A CDF library procedure then simulates hits on drift chamber wires within that superlayer. After all particles have been tracedГthe usual CDF track reconstruction code finds and fits the particle trajectories.

For speed and simplicity「we normally use a track-level CTC simulation instead. The callback procedure for the innermost CTC superlayer converts each charged particle's trajectory into the five CDF helix parametersएusing a CDF library procedure. These parameters are then smeared by adding a vector of five random numbers Γ distributed multinormally according to a covariance matrix. The covariance matrix calculation uses superlayer-by-superlayer hit patterns sampled from Run Ib W electron tracks and wire hit resolutions measured from residuals in Run Ib W electron track fits. To reproduce the beam-constrained $\frac{1}{p_{T}}$ resolution observed in the data one must scale these hit resolutions by a factor 1.65 ; to reproduce the impact-parameter resolution Гone must use a factor 2.0; for the z_{0} resolution Γ the factor is $2.25 .{ }^{(16)}$ As an ad-hoc method to reproduce these three resolutions simultaneously Γ we scale the hit resolutions by factors ($2.25 \Gamma 1.875 \Gamma 1.50 \Gamma 1.50 \Gamma 1.50$) in superlayers $(0 \Gamma 2 \Gamma 4 \Gamma 6 \Gamma 8)$ Гand by a factor 2.25 in all stereo superlayers.

The callback routine for a shell at the CES radius ($r=184 \mathrm{~cm} \Gamma|z|<254 \mathrm{~cm})$ simulates electron and photon showers in the CEM by accumulating incident particle energies in a 20×24 array of CEM towers. Each incident electron or photon deposits its entire energy into the tower in which it lands at the CES radius. No particle-level shower simulation is performed Γ no leakage of any kind is simulated Γ and no response map is applied. ${ }^{(17)}$ After all particles have been traced each tower's energy E is smeared by $\frac{\sigma_{E}}{E}=\frac{13.5 \% \sqrt{\mathrm{GeV}}}{\sqrt{E \sin \theta}} \oplus 1.5 \% \mathrm{I}^{(18)}$ where θ is the polar angle measured from the detector origin to the center of the tower. The smeared energies are formatted into a TOWE data structure which is then processed by the standard CDF electron reconstruction software.

The CES itself is not simulated. When CES data are not available Γ the electron reconstruction works properly but fills CES-related variables (shower x and z positions and shower-shape χ^{2} values in the x and z views) with out-of-bounds values. We overwrite the CES x and z positions with the x and z positions of the track that the reconstruction code associates with the electron (creating a perfect

[^49]position match) and overwrite the χ^{2} values with zeros. We believe that a proper CES simulation can be implemented easily and profitably and may do this in the future.

A few other surfaces (for РЕМГ FЕМГ СНАГ and СМU) are included in the geometry for future expansion Γ but they currently have no effect except to slow down the simulation.

Appendix C

QCD Background Model

An important component of this analysis is an understanding of the sizes and spectral shapes of the background processes that can mimic the $W \rightarrow e \nu$ signature. Backgrounds are even more important for this analysis than for the W mass analysis because we are measuring the tail of the W signal region. Here Γ we discuss a method Γ based on a parameterization of photon conversion events that pass the inclusive electron trigger「for determining the spectral shapes of dijet backgrounds in the high- p_{T} electron sample. ${ }^{(1)}$

The signature for an electron in CDF is an EM shower matched to a stiff track. Several processes allow jets to match this signature. Neutral pions are produced copiously in jets and decay almost exclusively to two photons. Since there is about 7% of a radiation length of material between the beamline and the СТСГ each photon has a probability of about $\frac{7}{9} \cdot 7 \% \approx 5 \%$ to convert to an electron-positron pair; if one leg of the pair takes a large fraction of the photon energyएit leaves a track in the CTC that matches perfectly with an EM shower in the calorimeter. In addition Γ about 1% of $\pi^{0} \mathrm{~S}$ decay promptly to $\gamma e^{+} e^{-}$. A stiff π^{+}in a jet can interact (e.g. $\pi^{+} n \rightarrow \pi^{0} p$) in the solenoid or early in the EM calorimeter to produce an EM shower matched to a high- p_{T} track. Random overlaps of charged and neutral pions are also possible. Finally「heavy flavor ($b \bar{b}$ and $c \bar{c}$) production is a QCD process (so its rate is much higher than the rates of electroweak processes) that can produce real electrons Γ since $(b, c) \rightarrow e \nu(c, s)$ about 10% of the time. In Section 6.2 .2 we estimated the rate of these processes by exploiting the fact that these QCD processes are much more likely than electroweak processes to have a high track multiplicity near the electron candidate. In this appendix Γ we estimate the kinematic shapes of these processes by assuming that photon conversion events Γ which are readily identified Γ are representative of all QCD background events.

The study uses events selected from the inclusive electron dataset (Table 4.4). (Note that the inclusive electron trigger (ELEA_CEM_18) unfortunately imposes a

[^50]few electron identification cuts that we either do not apply or apply more loosely in the W electron dataset Γ e.g. $|\Delta x|<3 \mathrm{~cm} \Gamma \operatorname{Lshr} 3<0.2 \Gamma \chi_{s}^{2}<10 \Gamma$ so it is impossible for us to make a completely fair comparison with the W electron sample.)

We can then tag conversions by considering all tracks with $p_{T}>1 \mathrm{GeV}^{(2)}$ and charge opposite that of the electron as potential conversion partners. We consider a track a conversion partner if it satisfies $|\Delta \cot \theta|<0.06 \Gamma|S|<0.3 \mathrm{~cm} \Gamma|\Delta z|<5 \mathrm{~cm} \Gamma$ $|\Delta \phi|<\frac{\pi}{4} \Gamma-5 \mathrm{~cm}<R_{\text {conv }}<45 \mathrm{~cm} .{ }^{(3)}$ (Essentially we are requiring that there be a point at a physically reasonable radius at which the tracks meet and are parallel.)

Figure C. 1 compares the E_{T} spectra for inclusive electron events flagged and not flagged by the conversion finder. The W peak is evident in the unflagged sample. The agreement in shape at low $E_{T} \Gamma$ while not perfect Γ suggests that the conversions represent the background reasonably well.

Close inspection reveals a small W peak in the conversion sample. This peak is the result of "tridents"" electrons in which a bremsstrahlung photon from a W electron converts into an electron-positron pair. Since we do not want real W events to influence the background shape Γ we must subtract the tridents from the conversion sample. To perform the subtraction Γ we observe that a typical trident event has near the electron cluster one stiff track (the trigger electron) and two soft tracks from the converted photon. Frequently only one of the two soft tracks will be in the $p_{T}>1 \mathrm{GeV}$ sample. We assume that in such events there is no charge correlation between the trigger electron and the one reconstructed leg of the conversion-that the two legs are equally likely to be found. ${ }^{(4)}$ To eliminate the tridents Γ then Γ we look for both right-sign and wrong-sign conversion partners of the trigger electron; we assign a weight +1 if we find only a right-sign partnerГa weight -1 if we find only a wrong-sign partnerГand a weight 0 if we find both. Figure C. 2 shows ∇_{T} spectra for right-sign-only conversions Γ wrong-sign-only conversions Γ and weighted (right-sign minus wrong-sign) conversions. The subtraction seems to be effective at removing the W peak from the conversion sample.

Figure C. 3 provides evidence that it is legitimate to interpret the LS conversions as tridents. Figure C. 4 compares the $E_{T} \Gamma E_{T} \Gamma$ and M_{T} spectra of weighted conversions and non-conversions Γ as additional evidence that the weighted conversions describe the background shape well.

So far we have been working with an inclusive electron sample in which no \mathbb{E}_{T} or \vec{u} cuts have been applied. We would like to use the conversions to model the background that remains in the final W sample Γ which includes E_{T} and \vec{u} cuts.
${ }^{(2)}$ The p_{T} cut allows us to neglect tracking efficiency issues and to keep the micro-DST data files to a manageable size.
${ }^{(3)}$ These quantities are calculated by subroutine CNVCALC, written by W.J. Ashmanskas in early 1995, used extensively in Ref. [81], and likely to appear eventually in the CDF BOTTOM library.
${ }^{(4)}$ The CTC tracking efficiency does have a charge asymmetry, but since the trigger electron can have either charge, we expect this asymmetry to be washed out.

Figure C.1: (Top) E_{T} spectra for events in which an opposite-sign conversion partner for the trigger electron is found (solid) and is not found (dashed). The shapes are rather similar at low $E_{T} \Gamma$ giving us confidence that the conversion sample is representative of the multijet background. (Bottom) Same as above「on a semilogarithmic scale. Note the small W peak in the conversion sample.

Applying these cuts to the conversions Γ however Γ would leave very few events with which to model the background.

To increase the statistical power of the conversion sample Γ we assume that a multijet event fakes a W event through the random coincidence of two independent processes: number one Γ a jet produces a highly electromagnetic shower Γ satisfying the electron trigger; and number two t the hadronic energy in the event is mismeasured Γ causing large E_{T}. We assume that we can characterize the E_{T} spectrum of the conversion sample Γ then characterize the \vec{u} distribution as a function of $E_{T} \Gamma$ so

Figure C.2: (Top) E_{T} spectra for OS (solid) and LS (dashed) conversions. We assume that tridents populate the OS and LS samples equally. (Bottom) E_{T} spectrum for weighted conversion sample Γ in which OS pairs are given weight $+1 \Gamma L S$ pairs are given weight -1 Гand electrons for which both OS and LS partners are found are ignored. We expect this weighting to removeГstatistically Γ the trident contribution. As expected Γ the W peak has disappeared.
that it is possible to generate observables $E_{T} \Gamma u_{\|} \Gamma$ and u_{\perp} in a simulation of the QCD background.

First we fit the E_{T} spectrum to the form

$$
\begin{equation*}
\frac{d N}{d E_{T}}=\exp \left\{A_{1}+B_{1} \cdot E_{T}\right\}+\exp \left\{C_{1}+D_{1} \cdot E_{T}\right\} \tag{C.1}
\end{equation*}
$$

as shown in Figure C.5. Then we fit the mean and rms of $u_{\|}$to the form

$$
\begin{array}{r}
\mu_{\|}\left(E_{T}\right)=A_{2} \cdot E_{T}+B_{2} \cdot E_{T}^{2} \\
\sigma_{\|}\left(E_{T}\right)=C_{2}+D_{2} \cdot E_{T} \tag{C.3}
\end{array}
$$

We can then define $x_{\|} \equiv \frac{u_{\|}-\mu_{\|}}{\sigma_{\|}}$and fit the $x_{\|}$spectrum to the form

$$
\begin{align*}
\frac{d N}{d x_{\|}}= & A_{3} \cdot \exp \left\{-\frac{1}{2}\left(\frac{x_{\|}-B_{3}}{C_{3}}\right)^{2}\right\}+ \tag{C.4}\\
& D_{3} \cdot \exp \left\{-\frac{1}{2}\left(\frac{x_{\|}-E_{3}}{F_{3}}\right)^{2}\right\}+ \\
& G_{3} \cdot \exp \left\{-\frac{1}{2}\left(\frac{x_{\|}-H_{3}}{I_{3}}\right)^{2}\right\}
\end{align*}
$$

as shown in Figure C.6. We have assumed that the $x_{\|}$shape is independent of E_{T}. Figure C. 7 motivates this assumption by showing the data and fit results together in several E_{T} bins. Finally Γ we fit the u_{\perp} distribution (which seems not to have a strong dependence on E_{T}) to the form

$$
\begin{align*}
\frac{d N}{d u_{\perp}}= & A_{4} \cdot \exp \left\{-\frac{1}{2}\left(\frac{u_{\perp}-B_{4}}{C_{4}}\right)^{2}\right\}+ \tag{C.5}\\
& D_{4} \cdot \exp \left\{-\frac{1}{2}\left(\frac{u_{\perp}-E_{4}}{F_{4}}\right)^{2}\right\}
\end{align*}
$$

as shown in Figure C.8.
It is easy to turn this parameterization of the photon conversion data into a Monte Carlo program to generate "events" consisting of ordered triplets ($E_{T}, u_{\|}, u_{\perp}$). We can apply to these events the $E_{T} \Gamma E_{T} \Gamma$ and \vec{u} cuts used to select W events and examine the properties of the Monte Carlo events that survive.

Figures C.9-C. 11 show predictions of the Monte Carlo we have made from these fits to the conversion data and some comparisons with the input conversion data. In Figure 6.12 we compared the M_{T} shape predicted with this Monte Carlo to the M_{T} shape of events in the W sample having $N_{\text {cone }}>2$. We use the distributions shown in Figure C. 11 to compare simulated W-plus-backgrounds with the W datasetГas in Section 5.5.

Figure C.3: (Top) Reconstructed radius of conversion for like-sign (solid) and oppositesign (dashed) conversion partners of trigger electrons. Both spectra show peaks in the SVX region and the region between the VTX and CTC Findicating that both LS and OS pairs are the result of secondary interactions in the detector material. The $R_{\text {conv }}$ resolution can be improved substantially with a constrained fit to the conversion hypothesis Γ but we chose not to use such a fit for this illustration. (Bottom left) Fraction of expected hits found in a road search of the VTX along the path of the trigger electron track Γ for LS (solid) and OS (dashed) conversion partners in which $R_{\text {conv }}>20 \mathrm{~cm}$. (The outermost VTX sense wires are located at $r \approx 21 \mathrm{~cm}$.) (Bottom right) VTX hit fraction for events in which $E_{T}>25 \mathrm{GeV}$ which are dominated by real W electrons. The VTX confirms the expectation that in most OS conversions there is no electron charged track below $R_{\text {conv }} \Gamma$ whereas in most LS conversions there is an electron charged track originating at the beamline. Together these plots give credibility to the trident interpretation of the LS conversions.

Figure C.4: $E_{T} \Gamma E_{T} \Gamma$ and M_{T} spectra Γ on linear and semilogarithmic plots Γ for weighted conversion events (dashed) and events with $N_{\text {cone }}=0$ (solid). The $N_{\text {cone }}=0$ sample has a large W content Γ and we claim that the weighted conversions do a decent job representing the multijet background beneath the W s.

Figure C.5: We fit the E_{T} spectrum of the weighted photon conversion sample to the sum of two exponentials (see Eq. C.1). The result is shown on semilogarithmic and linear scales.

Figure C.6: We fit the spectrum of $x_{\|} \equiv \frac{u_{\|}-\mu_{\|}\left(E_{T}\right)}{\sigma_{\|}\left(E_{T}\right)}$ of the weighted photon conversion sample to the sum of three gaussian distributions (see Eq. C.4). The result is shown on semilogarithmic and linear scales.

Figure C.7: We have assumed that the $x_{\|}$shape of the weighted photon conversion sample is independent of E_{T}. Here we show the $x_{\|}$distribution and the fit (see Eq. C.4) for $25 \mathrm{GeV} \leq E_{T}<30 \mathrm{GeV}$ (top left) $\Gamma 30 \mathrm{GeV} \leq E_{T}<40 \mathrm{GeV}$ (top right) $40 \mathrm{GeV} \leq$ $E_{T}<60 \mathrm{GeV}$ (bottom left) Γ and $60 \mathrm{GeV} \leq E_{T}<100 \mathrm{GeV}$ (bottom right). By eyeГthe fit describes the data well in all four E_{T} bins.

Figure C.8: We fit the u_{\perp} spectrum of the weighted photon conversion sample to the sum of two gaussian distributions (see Eq. C.5). The result is shown on semilogarithmic and linear scales.

Figure C.9: Distributions of various kinematic variables coming out of the conversion-fit Monte Carlo (histogram) compared with weighted conversion data (points with errors). No E_{T} or \vec{u} cuts have been applied. These plots demonstrate that the fits (Eq. C.1-C.5) have been correctly turned into a Monte Carlo program.

Figure C.10: Distributions of $E_{T} \Gamma M_{T} \Gamma$ and $|\vec{u}|$ for Monte Carlo (histogram) and weighted conversion data (points with errors) Γ after $E_{T}>25 \mathrm{GeV}$ cut has been applied.

Figure C.11: (Left) Distributions of $E_{T} \Gamma E_{T} \Gamma$ and M_{T} for Monte Carlo (histogram) and weighted conversion data (points with errors) Γ after $E_{T}>25 \mathrm{GeV}$ and $|\vec{u}|<20 \mathrm{GeV}$ cuts have been applied. Agreement is good but very few conversion events pass these E_{T} and $|\vec{u}|$ cuts. The fact that these cuts leave so few events with which to characterize the background is the reason that we have factored the data into E_{T} and $\vec{u}\left(E_{T}\right)$ fits. (Right) Predictions of the Monte Carlo for $u_{\|} \Gamma \Delta \phi\left(\vec{E}_{T}, \vec{u}\right) \Gamma$ and $\left\langle u_{\|}\right\rangle$vs. $|\vec{u}|$ for dijet background events passing $E_{T}>25 \mathrm{GeV}$ and $|\vec{u}|<20 \mathrm{GeV}$ cuts. These distributions are normalized to the expected background rate and added (along with distributions for other expected backgrounds) to W Monte Carlo distributions when comparing W data with expectations.

Appendix D

CTC Alignment

This appendix is a copy of a CDF internal note that Aseet Mukherjee and I have written. The note may be updated in the future. The latest version will always be available as CDF note 4456 Гarchived electronically at http://www-cdf.fnal.gov

CTC Alignment for Run Ib

Bill Ashmanskas LBNL
Aseet Mukherjee Γ FNAL

Abstract

We have derived new CTC WPO database constants using Run Ib $W \rightarrow e \nu$ data. In this note Γ we describe the alignment procedure and illustrate the results using $W \rightarrow e \nu$ and $J / \psi \rightarrow \mu \mu$ tracks.

D. 1 Introduction

In the approximation that CTC drift trajectories are azimuthalГthe CTC measures $\varphi_{i}=\phi\left(r_{i}\right)+\frac{s_{i}}{r_{i}} z\left(r_{i}\right)$ for each track at 84 radii $r_{i} \Gamma$ where s_{i} is zero for axial layers and approximately $\pm \tan \left(2.5^{\circ}\right)$ for stereo layers.

After naming the helix parameters $c, \phi_{0}, \delta, \lambda, z_{0}$ and defining $a=\frac{c}{1+2 c \delta} \Gamma b=$ $\frac{\delta(1+c \delta)}{1+2 c \delta} \Gamma L=\sqrt{\frac{r^{2}-\delta^{2}}{1+2 c \delta}} \Gamma$ we can write $\phi(r)=\phi_{0}+\operatorname{asin}(a r+b / r)$ and $z(r)=z_{0}+$ $\frac{\lambda}{c} \operatorname{asin}(c L)$. For the special case $\delta=0 \Gamma$ the equations are somewhat simpler: $\phi(r)=$ $\phi_{0}+\operatorname{asin}(c r)$ and $z(r)=z_{0}+\frac{\lambda}{c} \operatorname{asin}(c r)$.

A systematic error in φ_{i} can clearly bias the fitted helix parameters. For instance Γ an error of the form $\varphi_{i} \rightarrow \varphi_{i}+k r_{i}$ generates a "false curvature" $c \rightarrow c+k \Gamma$ while an error of the form $\varphi_{i} \rightarrow \varphi_{i}+\epsilon s_{i} z\left(r_{i}\right)$ generates a " $\cot \theta$ scale" $\lambda \rightarrow \lambda(1+2 \epsilon\langle r\rangle)$ without scaling z_{0}. An error of the form $\varphi_{i} \rightarrow \varphi_{i}+\frac{d}{r_{i}}$ generates a "false impact parameter" $\delta \rightarrow \delta+d$.

The CTC internal alignment Γ introduced in Ref. [1] Γ is intended to remove systematic errors of the form $\varphi_{i} \rightarrow \varphi_{i}+A_{i}+B_{i} z\left(r_{i}\right)$. The physical model for these misalignments is a coherent (i.e. ϕ-independent) twist of each endplate as a function of radius; an exaggerated example of such a twist is shown in Figure D.1. To allow different deformations in the east and west endplates Γ the φ offsets are given a linear slope in z.

The Run Ia alignment offsets $\left(A_{i} \pm 150 \mathrm{~cm} \cdot B_{i}\right)$ are shown in Figure D.2. (These are the same constants graphed in Figure 3 of Ref. [2].) Notice that the inner and

Figure D.1: A deformation of the CTC endplates of the form $\varphi \rightarrow \varphi+k r$ would transform the straight lines in the left figure into the curved lines in the right figure.

Figure D.2: Run Ia φ offset (radians) vs. CTC layer number. The upper figure shows the west endplate; the lower figure shows the east endplate. The $d \varphi$ values are calculated from the WPO constants for run 44600.
outer layers of some superlayers and the outer few layers of SL2 have displacements that vary too quickly to be physical features of the endplates. We believe that these features are caused by the small correlation between "alignment" and "calibration" in the CTC. Systematic effects in φ that are symmetric in drift sign (symmetric in $\varphi_{\text {track }}-\varphi_{\text {wire }}$) are typically labeled "alignmentए" while effects antisymmetric in drift sign are typically labeled "calibration." Because the CTC cells are not perfectly symmetric in drift signTsome drift model effects can be absorbed by the alignment constants. This crosstalk is most apparent for the inner and outer layers of a superlayer because the cells' asymmetry is largest at the radial boundaries and because these layers do not contribute to the drift model calibration.

A false curvature is evident in the east endplate's alignment in Figure D. 2 (a difference of about 0.3 mrad from inside to outside); a much smaller effect (about 0.1 mrad) can be seen in the west endplate. Note that 0.2 mrad corresponds to a false curvature of $2 \times 10^{-6} \mathrm{~cm}^{-1}$ Гor a shift in $\frac{1}{q p_{T}}$ of about $1 \mathrm{TeV}^{-1}$.

False curvatures can be measured in the data by comparing $\frac{E_{\text {CEM }}}{p_{\text {CTC }}}$ distributions for positrons and electrons. After the Run Ia WPO alignmentГthere was no overall false curvature Γ but ϕ_{0}-dependent and z-dependent false curvatures were observed and removed with ad hoc corrections [2]. Both of these effects are surprising: The ϕ_{0}-dependent part should have been found in the BPO beam position calibration Γ and the z-dependent part should have been taken out in the WPO alignment.

Another strange result found in the Run Ia W mass analysis was that λ was apparently being measured 0.1% high [2]. If we take the nominal CTC stereo angles to be correctГthen the alignment constants provide a straightforward explanation of this effect. Figure D. 3 shows $r_{i} \frac{d \varphi_{i}}{d z} \Gamma$ the effect of which is to scale the nominal stereo angle by $(-0.15 \%,+0.07 \%,-0.09 \%,-0.11 \%)$ in superlayers $(1,3,5,7)$. Using these values and assuming equal hit usage on every stereo superlayer $\Gamma \lambda$ would increase 0.10% if the CTC also fit z_{0} and would increase 0.07% if z_{0} were constrained from VTVZ data. We made a more careful check of the effect of the WPO constants on λ by refitting Run Ib electrons with a zeroed WPO file (as a baseline) Гand comparing the results to tracks refit using the Run Ia WPO; we found that the Run Ia WPO increased λ by 0.12% with no vertex constraint or 0.08% with a vertex constraint. We also tried a WPO file that was zeroed except to scale all stereo angles down by 0.1%; we found Γ as expected Γ that λ increased by 0.1% with or without a vertex constraint.

The nominal stereo angles (computed in CTCINI from constants in CTCGEO) do not reflect our best estimate of the chamber geometryГhoweverГbecause they do not account for the endplate deflection reported in Ref. [3]. The nominal stereo angle $\left(r_{i} \frac{d \varphi_{i}}{d z}\right)$ for stereo layer i is $\pm \frac{2 \pi r_{i}}{Z_{\max } N_{i}}$ Twhere the number of cells N_{i} is $(42,60,84,108)$ for SL $(1,3,5,7)$ and $2 Z_{\max }=321.40 \mathrm{~cm}$ is [3] "the free $=$ unsupported length of the wires Γ without correcting for the deflection of the endplates." An FEA calculation ${ }^{(1)}$ predicts that each endplate deflects inward by $0.112 \mathrm{~cm} \cdot\left(\frac{r-82.85 \mathrm{~cm}}{55.15 \mathrm{~cm}}\right)^{2}$. Also . the

[^51]

Figure D.3: From the Run Ia WPO alignment Γ we show $r_{i} \frac{d \varphi_{i}}{d z}\left(=r_{i} B_{i}\right)$ for each layer i. For stereo layers Γ these alignment offsets scale the effective stereo angle by a factor $\frac{r_{i}}{s_{i}} \frac{d \varphi_{i}}{d z}$. The shift of 0.5×10^{-4} in SL7 decreases SL7's effective stereo angle from its nominal value by 0.1% which increases the effective length scale by 0.1%.
compressions of the inner and outer cylinders were reported to be 0.10 cm and 0.0075 cm respectively. ${ }^{(2)}$ Using the values in Ref. [3] directly [we calculate $Z_{\max }(r)$ is

$$
160.561 \mathrm{~cm}+0.023 \mathrm{~cm} \cdot\left(\frac{r-82.85 \mathrm{~cm}}{55.15 \mathrm{~cm}}\right)+0.112 \mathrm{~cm} \cdot\left(\frac{r-82.85 \mathrm{~cm}}{55.15 \mathrm{~cm}}\right)^{2}
$$

to be compared with the nominal value 160.70 cm . At radii $(46.4,69.9,93.2,116.5)$ $\mathrm{cm} \Gamma$ we calculate $Z_{\max }$ to be $(160.59,160.56,160.57,160.62) \mathrm{cm} \Gamma$ which means that we should increase the stereo angles by ($0.07 \%, 0.09 \%, 0.08 \%, 0.05 \%$) from their nominal values. We find that refitting the Run Ib W electrons with a WPO file that is zeroed except to increase the stereo angles to the calculated values reduces VTVZ-constrained (unconstrained) λ by 0.06% (0.06%) with respect to a completely empty WPO file or by $0.14 \% ~(0.18 \%)$ with respect to the Run Ia WPO file. As it turns out $\Gamma \mathrm{a}-0.14 \% \lambda$ scale factor is just the correction required by the Run Ib W mass analysis (see below).

The Run Ib W mass analysis has found an overall false curvature $Г$ a ϕ_{0}-dependent false curvature Γ a z-dependent false curvature Γ and a λ scale factor [4Г 5]. The corrections used by the W mass group are the following:

$$
\begin{aligned}
\frac{1 \mathrm{GeV}}{q p_{T}} \rightarrow \frac{1 \mathrm{GeV}}{q p_{T}}-0.000056- & 0.00040 \sin \left(\phi_{0}-3.0\right)-0.00028\left(\lambda+\frac{z_{0}}{81 \mathrm{~cm}}\right) \\
\lambda & \rightarrow 0.9986 \lambda
\end{aligned}
$$

It should be possible to remove all of these except the ϕ-dependent term with the WPO corrections. It should also be possible to understand the ϕ-dependent term by looking for other symptoms of a beam position problem. The goal of the alignment procedure is to eliminate the need for ad hoc track corrections Γ by including alignment corrections self-consistently into the track fits.

D. 2 Alignment procedure

The CTC measures five helix parameters $\Gamma c, \phi_{0}, \delta, \lambda, z_{0}$. Since azimuthal wire misalignments can bias the helix parameters from their true values Γ the residuals of a helix fit with its parameters constrained to their true values can be used to extract azimuthal wire misalignments. The ideal values of the track parameters are of course not availableГbut we can constrain several of the parameters using information from external devices whose systematic errors are expected to be complementary to those of the CTC. For instanceГa CEM scale error and a CTC false curvature are distinguishable for an equal number of e^{+}and e^{-}. (This point is elaborated in Ref. [1].)

[^52]| Cut | \# pass | \% fail |
| :---: | :---: | :---: |
| Initial $W \rightarrow e \nu$ selection | 48772 | - |
| CTC hit data available on disk | 48044 | 1.5 |
| Passes VTX road search | 46236 | 3.8 |
| TRKSVC succeeds for refit track | 45846 | 0.8 |
| $0.8<\frac{E}{p}<1.2$ | 40000 | 12.8 |
| c constraint $\chi^{2}<100$ | 39780 | 0.6 |

Table D.1: Events passing successive selection cuts.

For any primary track Γ we can constrain z_{0} to a VTVZ vertex (measured by the VTX) and δ to the beamline (measured by the CTC or the SVX). The $\frac{E}{p}$ distribution for electrons is sharply peaked and should be independent of charge. Thus Γ for particles known to be electrons Γ we can constrain $\frac{\sqrt{1+\lambda^{2}}}{|c|}$ to be proportional to E measured by the CEM. Imposing these constraints leaves only ϕ_{0} and λ to be fit by the CTC.

In principle Γ we could also constrain ϕ_{0} using SVX hits Γ leaving the CTC to fit only λ. In practice Γ this would significantly reduce our acceptance Γ would make the CTC alignment dependent upon the SVX wedge-to-wedge alignment Γ and would only provide additional information if the alignment were fitting ϕ-dependent φ offsets「as in a cell-by-cell alignment of the CTC. Not using the SVX has the further advantage that the alignment averages over the same acceptance as the W mass measurement.

We use the W electrons as a large Γ clean sample of primary electrons. We begin with the 48772 events passing all cuts in Table 1 of Ref. [6]. Of these eventsए48044 are available in the W mass MPAD sample on disk in Berkeley. We then perform a VTX road search Γ to reduce (non-primary) conversion backgrounds Γ so that the beam constraint makes sense; search the CTCE bank for hits lying in a road around the QTRK track trajectory; refit these hits to extract new track parameters and a new covariance matrix; impose the z_{0} and δ constraints with TRKSVC; make an $\frac{E}{p}$ cut Γ so that the curvature constraint makes sense; and constrain c using the CEM energy. The cuts are summarized in Table D.1. 39780 electrons are used in the alignment.

We accumulate the residuals $\Gamma \Delta_{i} \Gamma$ for each refit $\Gamma c, \delta, z_{0}$-constrained track Γ as a function of $z \Gamma$ separately for e^{+}and $e^{-} .{ }^{(3)}$ For each layer $i \Gamma$ we produce five sums over all positrons- $\sum 1 \Gamma \sum \Delta \Gamma \sum z \Gamma \sum z \Delta \Gamma \sum z^{2}$-and five corresponding sums over all electrons. For each track Γ only layers used in the fit and having residuals less than 0.1 cm contribute to the sums. From these sums Γ we make 168 linear fits:

[^53]$\Delta_{i}^{+} / r_{i}=a_{i}^{+}+b_{i}^{+} z ; \Delta_{i}^{-} / r_{i}=a_{i}^{-}+b_{i}^{-} z{ }^{(4)}$ We then average the + and - with equal weight: $a_{i}=\frac{1}{2}\left(a_{i}^{+}+a_{i}^{-}\right) ; b_{i}=\frac{1}{2}\left(b_{i}^{+}+b_{i}^{-}\right)$. Equal weighting of + and - reduces the correlation between an energy scale bias and CTC misalignments [1].

We can then add the a_{i} and b_{i} values to the WPO constants A_{i} and B_{i} to produce improved constants. Before doing so h however Γ we need to remove unwanted degrees of freedom from a_{i} and b_{i}. For instance $\Gamma A_{i} \rightarrow A_{i}+\alpha$ would add a meaningless offset α to ϕ_{0} of all CTC tracks. (The offset is meaningless because in practice the CTC defines $\phi=0$ for CDF.) In the pastГthis degree of freedom was removed by freezing SL4 (the average of east and west) in the alignment. For Run $\mathrm{Ib} \Gamma$ we decided instead to freeze SL8. ${ }^{(5)}$ To minimize changes to the CDF coordinate system Γ we forced $\sum_{\mathrm{SL} 8} r_{i} A_{i}$ to agree with the Run Ia alignment instead of constraining it to zero.

A relative rotation of the two endplates $\Gamma B_{i} \rightarrow B_{i}+\beta \Gamma$ is meaningful Γ and should appear as a λ-dependent false curvature. While this degree of freedom has not been constrained in the past and arguably does not need to be constrained Γ we decided in the Run Ib alignment to force $\sum_{\mathrm{SL} 8} r_{i} B_{i}$ to zero. The justification for this choice is that a relative rotation of the two endplates is ruled out most reliably (from a survey during chamber construction) at the outer radius of the chamber [7].

We noted earlier that in a stereo layer $i \Gamma B_{i}$ changes the effective stereo angle s_{i} by a factor $1+\frac{r_{i}}{s_{i}} B_{i}$. In the past Γ the only constraint on the stereo angles in the alignment was that z_{0} was fixed from VTVZ. This choice has two consequences worth noting. FirstГthe CTC z scale is inherited from the VTX z scale. SecondГchanges in B_{i} that scale λ but leave the z axis unchanged (after averaging over λ) Γ such as $B_{i}=\gamma s_{i} r_{i}$ Гare unconstrained. Another unwanted degree of freedom is $A_{i}=\kappa s_{i} r_{i} \Gamma$ which adds a constant offset to λ but not to z_{0}.

In the Run Ib alignment Γ we have forced $\sum_{\mathrm{SL} 7} r_{i} B_{i}$ and $\sum_{\mathrm{SL} 1} r_{i} B_{i}$ to agree with the calculated endplate deflection Γ and have allowed superlayers 3 and 5 to float. Fixing SL7 alone would be sufficient to eliminate degree of freedom γ from the previous paragraph; fixing SL1 as well eliminates dependence on the VTX length scale. We will see below that using the calculated endplate deflection eliminates the need for a λ scale factor in the $J / \psi \rightarrow \mu \mu$ data. To remove degree of freedom κ noted in the previous paragraph Γ we freeze $\sum_{\mathrm{SL} 7} r_{i} A_{i}$ to its Run Ia value.

Since the VTX length scale canГdepending on one's choice of constraints Γ contribute to the CTC stereo alignmentГit is important to know that the VTX itself is properly aligned. In particularГthe east and west halves of the VTX are installed separately so the $z \approx 0$ boundary is the most likely point at which a discrepancy may arise between clean-room survey data and beam data. The upper plot in Figure D. 4 shows $\left\langle z_{\mathrm{CTC}}-z_{\mathrm{VTVZ}}\right\rangle$ as a function of z_{VTVZ} for W electrons Γ using the
${ }^{(4)}$ The fits are actually done to Δ, not to Δ / r. We put in the factor $1 / r$ because it is convenient to describe misalignments in terms of φ offsets.
${ }^{(5)}$ The choice is somewhat arbitrary. Compelling arguments can be made for freezing SL8, SL4, or SL0. We chose SL8.

Run Ia CTC alignment. There is clear evidence of a misalignment at $z \approx 0$. While the correct way to fix this problem (which we will do if time allows) is to update the VTX WPO database and rerun V2VERT Γ in the interest of expediency Γ we have made the following ad hoc correction in TRKSVC:

```
vrtxyz(3) = vrtxyz(3)+0.0370
vrtxyz(3) = vrtxyz(3)+sign(0.0840,vrtxyz(3))
```

The middle plot in Figure D. 4 shows that $\left\langle z_{\mathrm{CTC}}-z_{\mathrm{VTVZ}}\right\rangle$ vs. z looks more continuous across $z=0$ after this kludge has been appliedГthough perhaps the constants could be fine-tuned a bit more. The lower plot makes the same comparison using the new CTC alignment. It is interesting to note that the VTX z_{0} scale seems to be $0.18 \pm 0.02 \%$ longer than the CTC z_{0} scale that emerges from the alignment. At the moment Γ we have no explanation for this effect.

In our first pass through the alignment Γ we began with a zeroed WPO file. We iterated the alignment procedure Γ using the residuals to update the WPO constants each time Γ until the constants converged to stable values. Figure D. 5 shows that the constants settle down to stable values after several iterations.

D. 3 Results

Figure D. 6 (top) shows residuals Δ_{i} for each layer i for the muon tracks in $J / \psi \rightarrow \mu \mu$ events Γ using the new Run Ib alignment derived from $W \rightarrow e \nu$ events. The mean residual is within a few microns of zero in most layers Γ and within ten microns of zero in all layers. The lower figure shows these residuals signed by drift direction Γ $\operatorname{sign}\left(\phi_{\text {hit }}-\phi_{\text {wire }}\right)$; residuals signed in this manner are sensitive to the drift velocity calibration. The inner layers show symptoms of a calibration problem.

While we were working on this alignment Γ Alan Sill derived an improved set of CTC calibration constants (PRO and TMS databases) for Run Ib data [8]. Once the new calibration constants were available Γ we repeated the alignment procedure. Figure D. 7 shows the same residuals as Figure D. 6Γ using the new calibration. Alan's new constants clearly improve the drift-sign-weighted residuals in the inner superlayers.

An unphysical feature of the initial alignment results Γ illustrated in Figure D. 8 (top) Γ was that the alignment in SL0 had changed considerably between Run Ia and Run Ib. ApparentlyГsome of the calibration problems were being absorbed by the alignment constants. As Figure D. 8 (bottom) shows t this feature is no longer present in the alignment once the new calibration constants are used. This is an example of the small cross-talk between alignment and calibration in the CTC that we mentioned in Section D.1.

Figure D.4: (Top) $\left\langle z_{\mathrm{CTC}}-z_{\mathrm{VTVZ}}\right\rangle$ vs. z_{VTVZ} Гusing Run Ia CTC wPO. (Center) After tweaking VTVZ to remove discontinuity. (Bottom) Using new CTC WPO constants. Only tracks with $\left|z_{\mathrm{CTC}}-z_{\mathrm{VTVZ}}\right|<5 \mathrm{~cm}$ are included in the average.

Figure D.5: (Upper left) One iteration's differential change $r_{i} \Delta \varphi_{i}$ in alignment for west endplate Γ in cmГby layer $i \Gamma$ after $1 \Gamma 2 \Gamma 4 \Gamma$ Гand 16 iterations. (Upper right) Same for east endplate. (Lower left) Net alignment of west endplate $\Gamma r_{i}\left(A_{i}-150 \mathrm{~cm} \cdot B_{i}\right) \Gamma$ in cmГafter one iteration and after 20 iterations. (Lower right) East endplate $\Gamma r_{i}\left(A_{i}+150 \mathrm{~cm} \cdot B_{i}\right)$.

Figure D.6: (Top) Mean residual $\Delta_{i}(\mu \mathrm{~m})$ by layer $i \Gamma$ in $\psi \rightarrow \mu \mu$ sample Γ using new alignment (WPO) but original drift-velocity (PRO and TMS) calibration. (Bottom) $\psi \rightarrow \mu \mu$ residuals weighted by drift sign. The alignment looks fine Гbut there is clearly a calibration problem in the inner superlayers and perhaps in the outer stereo superlayers.

Figure D.7: (Top) Mean residual $\Delta_{i}(\mu \mathrm{~m})$ by layer $i \Gamma \mathrm{in} \psi \rightarrow \mu \mu$ sampleГusing Alan's new PRO and TMS calibrations and the corresponding new WPO. (Bottom) $\psi \rightarrow \mu \mu$ residuals weighted by drift sign. The calibration problem in the inner superlayers is substantially better than in Figure D.6.

Figure D.8: (Top) $\Delta \varphi$ (averaging east and west) for Run Ia alignment (open circles) and Run Ib alignment (solid points) Гusing original Run Ib CTC calibration. (Bottom) Run Ia alignment (open circles) compared with a Run Ib alignment that uses Alan Sill's new Run Ib CTC calibration (solid points). When the new calibration is usedГthe alignment constants for SL0 move back toward their Run Ia values.

Figure D.9: For Ib alignment (solid points) and Ia alignment (open circles) Γ we show $r_{i} \frac{d \varphi_{i}}{d z}\left(=r_{i} B_{i}\right)$ for each layer i. The horizontal line segments show the values implied by the calculated endplate deflection in the stereo layers. The Ib alignment constrained SL1 and SL7 to agree with the calculation Гand constrained SL8 to zero.

Figure D. 9 shows $r_{i} \frac{d \varphi_{i}}{d z}$ for each layer i for the Run Ia and Run Ib alignment constants. The results are rather different Γ largely because in Run Ib we have forced the stereo angles in SL1 and SL7 to agree with the calculated endplate deflection.

Using $W \rightarrow e \nu$ events Γ Figure D. 10 shows the residuals Δ_{i} by layer i using the Run Ia alignment and the old calibration; using no alignment and the old calibration; and using the new alignment and new calibration. After the alignment Γ the mean residual is consistent with zero in each layer.

The goal of this alignment was to eliminate ad hoc corrections to CTC track parameters. Table D. 2 shows false curvatures in the data using the old and the new alignments. We expected to be able to remove all but the ϕ_{0}-dependent one Γ and we did so. This is an improvement over Run Ia Γ in which the z-dependent false curvature remained. We do not yet understand why this effect was removed in Run Ib and not in Run Ia.

Another improvement made by the Run Ib alignment is that we have eliminated the need for a λ scale factor Γ by incorporating the calculated endplate deflection in the stereo alignment. Figure D. 11 shows ψ mass vs. $\Delta \lambda \Gamma$ for Run Ia and Run Ib alignment constants. In the W mass analysis Γ a scale factor on λ is varied until this profile agrees with a Monte Carlo prediction Γ which is approximately flat. Using the old alignment Γ a λ scale factor of 0.9986 is needed; using the new alignment Γ

Figure D.10: (Top) Mean residual $\Delta_{i}(\mathrm{~cm})$ by layer $i \Gamma \mathrm{in} W \rightarrow e \nu$ sample Cusing Run Ia WPO and original PRO and TMS calibrations. (Center) Using zeroed WPO and original calibrations. (Bottom) Using new WPO and Alan's new calibrations.

False $\frac{1}{q p_{T}}$	LJN	us, old WPO	us, new WPO
overall	$.000056 \pm .000008$	$.000044 \pm .000009$	$.000002 \pm .000006$
λ	$.00028 \pm .00002$	$.00024 \pm .00001$	$-.00001 \pm .00001$
$z_{0} / 187 / .00028$	2.3 ± 0.3	2.6 ± 0.2	0.2 ± 0.2
$\sin \left(\phi_{0}-3.0\right)$	$.00040 \pm .00002$	$.00033 \pm .00001$	$.00032 \pm .00001$

Table D.2: False curvatures (LJN $\mathrm{cm}=\mathrm{GeV}=1$ unit convention) in $\mathrm{Ib} W$ electrons Γ using Ia WPO and using Ib WPO. We also list the values extracted by LJN to show that there is a strong correlation between what we're measuring and what he's measuring.

Figure D.11: ψ mass vs. $\Delta \lambda \Gamma$ using Ia alignment (black) and using Ib alignment in which both SL1 and SL7 stereo angles are constrained to calculated endplate deflection (red). This re-alignment also used Alan Sill's new CTC calibration constants. The latter is nearly flat Γ indicating that the required λ scale factor appears to be very close to unity after including the calculated endplate deflection in the alignment.
the required scale factor is consistent with unity.
Figure D. 12 illustrates one improvement made by the alignment and another improvement made by the calibration. Before aligningएthere is not only a bias in the CTC curvature measurement but also in the impact parameter measurement. A false impact parameter causes primary tracks to appear to converge to a circle in the $x-y$ plane instead of a point. The alignment removes this bias. The figure also

Figure D.12: CTC impact parameter with respect to SVX beamline. (Top) Before aligning or re-calibrating. There is a false impact parameter of about $100 \mu \mathrm{~m}$ (i.e. tracks converge to a circle instead of to a point) Γ and the resolution is about $680 \mu \mathrm{~m}$. (Bottom) After aligning and re-calibrating. The false impact parameter is reduced to $\sim 2 \mu \mathrm{~m}$ (consistent with zero) by the alignment Γ and the resolution is improved to $380 \mu \mathrm{~m}$ (a 45% improvement) by the calibration.
shows that the CTC impact parameter resolution is improved by nearly a factor of two by Alan's recalibration.

D. 4 SVX/CTC global alignment

A problem that remains (indeed that the present WPO alignment is not intended to address) is the apparent false curvature that is proportional to $\sin \left(\phi_{0}-3.0\right)$. This false curvature corresponds Γ approximately D to taking a track originating at (x, y) and constraining it to come from the point $(x+63 \mu \mathrm{~m}, y-9 \mu \mathrm{~m})$. Such a problem could occur if the SVX beamline were offset $(+63 \mu \mathrm{~m},-9 \mu \mathrm{~m})$ in (x, y) with respect to the CTC origin. The putative beam-position offset is large enough that one should be able to find other evidence for it; so far we have found very little.

Figure D. 13 shows the false curvature Γ inferred by comparing p_{T} and E_{T} measurements Γ as a function of $\phi \Gamma$ before and after beam-constraining the electron track. The false curvature appears only to be present after the beam constraint Γ as one would expect if the problem were the result of a beam-position problem. Figure D. 14 compares the beam position used in the CTC beam constraint with the beam position obtained by explicitly loading the SVX BPO database; there is some scatterГbut the bias is only $1-2 \mu \mathrm{~m}$. Figure D. 15 looks at CTC and SVX impact parameters Γ for J / ψ muons Γ with respect to the SVX beamline; there is not much evidence for a sinusoidal offset.

Figure D. 16 compares the CTC-derived entry in the CTC BPO database with the SVX-derived entryГrun by run. There is a $+21 \mu \mathrm{~m}$ offset in $x \Gamma \mathrm{a}-24 \mu \mathrm{~m}$ offset in y Гand a lot of scatter ($\approx 40 \mu \mathrm{~m} \mathrm{rms}$) in both directions. This is a fairly large offset Γ but it differs by a factor of two in magnitude and 40° in direction from the effect we're looking for.

Figure D.13: $\left\langle q\left(\frac{1}{p_{T}}-\frac{1}{E_{T}}\right)\right\rangle$ vs. ϕ. Upper plot is after beam constraint; lower plot is before beam constraint. The curve is $A \sin \left(\phi_{0}-3.0\right) \Gamma$ with A determined by linear regression.

ctcbpy-svxbpy

Figure D.14: Difference between output of SVGEBP and contents of XBEAM, YBEAM in CTCALB common block. This shows that the beam position used by TRKSVC is on average within $2 \mu \mathrm{~m}$ of the SVX beam position. (A separate question is whether the beam positions fitted by CTC and SVX agree.)

Figure D.15: (Top) Mean CTC impact parameter (cm) with respect to SVX beamline vs. $\phi \Gamma$ from J / ψ data. (Center) Mean SVX impact parameter with respect to SVX beamline vs. ϕ. (Bottom) Difference between CTC and SVX impact parameters vs. ϕ. There is no obvious global SVX/CTC misalignment (which would appear as a sinusoidal offset of magnitude $\approx 60 \mu \mathrm{~m}$) Гbut CTC SL0 cell scatter makes it hard to say for sure.

Figure D.16: Difference between beam position fitted by SVX and beam position fitted by CTCГ in x and y projections. There is one entry per Run Ib run. An offset of $(+21 \mu \mathrm{~m},-24 \mu \mathrm{~m})$ would produce a false $\frac{1}{q p_{T}}$ of $+0.00017 \sin \left(\phi_{0}-2.3\right) \Gamma$ while the effect we're trying to explain is $+0.00033 \sin \left(\phi_{0}-3.0\right)$ (or an offset of $(+63 \mu \mathrm{~m},-9 \mu \mathrm{~m})$).

D. 5 Bibliography

[1] A. MukherjeeГ "CTC Calibration and Alignmentए" CDF Note 1002 (August Γ 1989).
[2] F. Abe et alए "Measurement of the W Boson Mass" Phys. Rev. D52 4784 (1995).
[3] F. Bedeschi et al Γ "Design and Construction of the CDF Central Tracking Chamber" NIM A268 50 (1988).
[4] L. NodulmanГ"On False Curvatures in 1b" CDF Note 4056 (FebruaryГ1997).
[5] Y.K. Kim Γ "A Determination of the Momentum Scale for the Run Ib W Mass Measurement" CDF Note 3972 (FebruaryГ1997).
[6] W. Ashmanskas Γ "Direct Measurement of Γ_{W} with Run Ib Electronsए" CDF Note 4137 (AugustГ1997).
[7] R.W. KadelГprivate communication.
[8] A. SillГCDF note in preparation.

[^0]: 1 Argonne National Laboratory, Argonne, Illinois 60439
 2 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
 3 Brandeis University, Waltham, Massachusetts 02264
 4 University of California at Los Angeles, Los Angeles, California 90024
 5 University of Chicago, Chicago, Illinois 60638
 6 Duke University, Durham, North Carolina 28708
 7 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
 8 University of Florida, Gainesville, FL 33611
 9 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
 10 University of Geneva, CH-1211 Geneva 4, Switzerland
 11 Harvard University, Cambridge, Massachusetts 02138
 12 Hiroshima University, Higashi-Hiroshima 724, Japan
 13 University of Illinois, Urbana, Illinois 61801
 14
 Institute of Particle Physics, McGill University, Montreal H3A 2T8, and University of Toronto, Toronto M5S 1A7, Canada
 15 The Johns Hopkins University, Baltimore, Maryland 21218
 16 Institut für Experimetelle Kernphysik, Universitä̈t Karlsruhe, 76128 Karlsruhe, Germany 17 National Laboratory for High Energy Physics (KEK), Tsukuba, Ibaraki 315, Japan
 18 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720
 19 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
 20 University of Michigan, Ann Arbor, Michigan 48109
 21 Michigan State University, East Lansing, Michigan 48824
 22 University of New Mexico, Albuquerque, New Mexico 87132
 23 The Ohio State University, Columbus, OH 43320
 24 Osaka City University, Osaka 588, Japan
 25
 Universita di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-36132 Padova, Italy 26 University of Pennsylvania, Philadelphia, Pennsylvania 19104
 Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy
 28 University of Pittsburgh, Pittsburgh, Pennsylvania 15270
 29 Purdue University, West Lafayette, Indiana 47907
 30 University of Rochester, Rochester, New York 14628
 31 Rockefeller University, New York, New York 10021
 32 Rutgers University, Piscataway, New Jersey 08854
 33 Academia Sinica, Taipei, Taiwan 11530, Republic of China
 34 Texas AछM University, College Station, Texas 77843
 35 Texas Tech University, Lubbock, Texas 79409
 36 University of Tsukuba, Tsukuba, Ibaraki 315, Japan
 37 Tufts University, Medford, Massachusetts 02155
 38
 University of Wisconsin, Madison, Wisconsin 53806
 39 Yale University, New Haven, Connecticut 06511

[^1]: ${ }^{(1)}$ Gravitational effects are expected to be important in particle physics in the $10^{19} \mathrm{GeV}$ energy region，while today＇s particle accelerators explore the $10^{2} \mathrm{GeV}$ energy region．
 ${ }^{(2)}$ In recent years，experiments have produced small numbers of antihydrogen atoms from an－ tiprotons and positrons［7］．
 ${ }^{(3)}$ Particle physicists measure energy，momentum，and mass in the same units－electron volts． In these units，the proton mass is $0.938 \times 10^{9} \mathrm{eV}$ ，or 0.938 GeV ．
 ${ }^{(4)}$ These have nothing to do with visible light．They could just as well have been called chocolate， vanilla，and strawberry．

[^2]: ${ }^{(5)}$ Since the universe appears to be dominated by matter, rather than antimatter, and thus has a very large total baryon number, it is speculated that some yet undiscovered B-violating process was at work in the early universe.
 ${ }^{(6)}$ For massless particles, handedness refers to the relative alignment of a particle's spin and its momentum. For massive particles, the definition is more subtle, but becomes equivalent as the particle's velocity approaches the speed of light.

[^3]: ${ }^{(7)}$ For instance, quarks appear to be point-like, down at least to the level of $\sim 10^{-17} \mathrm{~cm}$.

[^4]: ${ }^{(8)}$ We have found the historical review by Cahn and Goldhaber［10］very useful．
 ${ }^{(9)}$ Up to a few－percent correction due to the Cabbibo angle，introduced much later．
 ${ }^{(10)}$ They were the same particle，now called K^{+}．
 ${ }^{(11)}$ The Cabibbo mixing angle is the two－generation analog of the CKM matrix．
 ${ }^{(12)}$ In quantum electrodynamics，whose gauge group is $U(1)$ ，this＂minimal coupling＂prescription

[^5]: ${ }^{(15)}$ Fundamental particles of spin 0 create theoretical problems. Solutions to these problems, such as supersymmetry and technicolor, predict large spectra of new particles.
 ${ }^{(16)}$ See Appendix H in Perkins's textbook [19] for an explicit calculation.

[^6]: ${ }^{(20)}$ We are not aware of any models that predict such enhancements at a rate to which we would be sensitive, but in a future collider run the precision of this measurement may approach the level of the Standard Model radiative corrections discussed in Ref. [20].
 ${ }^{(21)}$ Of course this particular phenomenon is already ruled out in the region $110 \leq M_{T}<200 \mathrm{GeV}$ in which this measurement is performed, but this is one example of an effect that would alter the measured lineshape.

[^7]: ${ }^{(1)}$ Some fraction of the time, $\bar{q}(q)$ will come from the (anti)proton, reversing the sign of the charge asymmetry. Thus, Tevatron measurements of the W charge asymmetry are used as constraints on the sea-quark distributions, as well as the relative momentum fractions carried by u and d quarks, in PDFs.

[^8]: ${ }^{(2)} \mathrm{MB}$ stands for "minimum bias," because these are the events recorded when the trigger is set to accept any ineleastic collision-without the usual bias for events containing leptons, photons, missing energy, energetic jets, etc. Lowercase mb stands for millibarns. $1 \mathrm{~b}=(10 \mathrm{fm})^{2}=$ $10^{-24} \mathrm{~cm}^{2}$.

[^9]: ${ }^{(3)}$ The transverse dimension of an electromagnetic shower is characterized by the Molière radius, whose value in lead (a typical absorber in EM calorimeters) is 1.2 cm .
 ${ }^{(4)}$ The longitudinal development of an EM shower is characterized by the radiation length, whose value in lead is 0.56 cm .
 ${ }^{(5)}$ A hadronic interaction length in lead is about 30 times larger than a radiation length.
 ${ }^{(6)}$ CDF's calorimetry only extends down to 2° from the beamline. Even if all remnants of the $p \bar{p}$ collision could be observed, a longitudinal imbalance would be difficult to distinguish from a fluctuation, since sampling calorimeters have resolutions of the form $\sigma_{E} \sim \sqrt{E}$.

[^10]: ${ }^{(7)}$ Experimentally, the measured values of \vec{p}_{T}^{e} and \vec{p}_{T}^{ν} are usually called "transverse energy" \vec{E}_{T} and "missing transverse energy" \vec{E}_{T}, because of the manner in which they are measured.

[^11]: ${ }^{(1)}$ Many of the Tevatron operational parameters listed here were found in Ref. [47]. The beam profile information was found in Refs. [48, 49].

[^12]: ${ }^{(2)}$ An alternate derivation, $y=\frac{1}{2} \log \left(\frac{E+p_{z}}{E-p_{z}}\right) \rightarrow \frac{1}{2} \log \left(\frac{1+\cos \theta}{1-\cos \theta}\right), \tanh y=\frac{e^{2 y}-1}{e^{2 y}+1}=\cos \theta$, yields the equivalent definition $\eta=\tanh ^{-1}(\cos \theta)$.

[^13]: ${ }^{(3)}$ These resolutions use an improved set of calibration constants; the original calibration gives $0.10 \% \mathrm{GeV}^{-1}, 0.07 \mathrm{~cm}$, and 1.0 cm , respectively.

[^14]: ${ }^{(4)}$ While addition in quadrature has more physical motivation, CDF has historically added the detector and multiple-scattering terms linearly to describe the SVX impact-parameter resolution.

[^15]: ${ }^{(6)}$ Many of the numbers quoted in this section come from Ref. [57] and from the LUMMON output for run 65816.

[^16]: ${ }^{(7)}$ In the L1 and L2 triggers, adjacent towers in η are paired to reduce the number of signals. Since the scintillation light from each CEM tower is collected by two separate phototubes, each CEM trigger tower signal, covering $\Delta \eta \times \Delta \phi=0.2 \times 15^{\circ}$, is the sum of four phototube signals.
 ${ }^{(8)}$ In the L1 and L2 triggers, $\sin \theta$ for $E_{T}=E \sin \theta$ is the nominal value, computed using $z_{0}=0$.
 ${ }^{(9)}$ Of the 49843 events passing the $W \rightarrow e \nu$ selection in Chapter 4, in which no explicit Level 1 or Level 2 trigger requirements are imposed, only 10 fail the Level 1 calorimeter trigger (OR'ed, as is required, with the $4 \mathrm{GeV} \times 40$ prescaled trigger).

[^17]: ${ }^{(10)}$ Incidentally, none of the 112 events failing both of these triggers has $M_{T}>100 \mathrm{GeV}$.
 ${ }^{(11)}$ The additional requirements are $\chi_{s}^{2}<20$ (described below), Lshr $3<0.2$ (a check that energy shared with neighboring towers in η is consistent with an electron), and $E_{\text {border }}<2.5 \mathrm{GeV}$ (a calorimeter isolation requirement).
 ${ }^{(12)} \operatorname{Lshr} 3<0.2, \chi_{s}^{2}<10,\left|\Delta x_{\text {track, CES }}\right|<3 \mathrm{~cm}$, and $\left|\Delta z_{\text {track,CES }}\right|<5 \mathrm{~cm}$.
 ${ }^{(13)}$ Of the 49843 events passing the $W \rightarrow e \nu$ selection in Chapter 4, which requires either the W trigger or the "no track" trigger at Level $3,90 \%$ pass the "no track" trigger, but it is rarely needed: Only 297 events (0.6%) fail the W trigger.

[^18]: ${ }^{(16)}$ If the seed tower is the inner $(|\eta| \approx 0.06)$ or outer $(|\eta| \approx 1.0)$ tower of a wedge, then only one shoulder tower is included.
 ${ }^{(17)}$ Actually only tracks for which the CTC finds and uses both axial and stereo hit data, so that all five helix parameters are determined.

[^19]: ${ }^{(18)}$ The sum does not extend to $|\eta|<4.2$ because the azimuthal symmetry of the last six η annuli of the FEM is broken by the presence of accelerator quadrupole magnets.
 ${ }^{(19)}$ If there are several electrons, we use the central electron with the largest transverse energy.
 ${ }^{(20)}$ in CES local coordinates, in which x is an azimuthal coordinate centered within a tower
 ${ }^{(21)}$ for EM and hadron summed, not individually
 ${ }^{(22)}$ if the track is constrained to originate at the beamline

[^20]: ${ }^{(23)}$ We thank David Saltzberg for suggesting the $N_{\text {cone }}$ variable.
 ${ }^{(24)} \Delta R$ is $\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}$.

[^21]: ${ }^{(25)}$ Momentum scale errors are a separate issue, investigated with a large $J / \psi \rightarrow \mu \mu$ sample.

[^22]: ${ }^{(26)}$ The rms tower-to-tower correction is about 2.5%.

[^23]: ${ }^{(1)} \mathrm{A} Z \rightarrow e e$ event has two chances to pass the inclusive trigger's electron-identification requirements, while a $W \rightarrow e \nu$ event has only one.

[^24]: ${ }^{(2)}$ About 2.5% of events in the final sample have $0<\left|\Delta z_{\text {vertex }}\right|<5 \mathrm{~cm}$. They are strongly peaked near M_{Z}, hence not background. This sample of events has a significantly high average luminosity and a significantly low average number of stereo hits per track. Since there is no corresponding cut to make in the W sample, we choose not to require $\Delta z_{\text {vertex }}=0$.
 ${ }^{(3)}$ The recoil energy \vec{u} in a low- $p_{T} Z$ or W event resembles a minimum-bias event, whereas collimated jets recoil against high- $p_{T} Z$ and W bosons. This measurement's resolution model (described in Section 5.5) exploits the similarity with minimum-bias events. (In W events, we require $u<20 \mathrm{GeV}$.)

[^25]: ${ }^{(4)}$ Implicit in the reconstruction software's definition of electron candidate, and applied in the Level-2 trigger hardware.

[^26]: ${ }^{(5)}$ For a detailed comparison of CEM fiducial cut failures in data and in QFL, see Table A. 1 in Appendix A.

[^27]: ${ }^{(1)}$ David Saltzberg informs us that the real names behind this distribution are Matthews and Salam．
 ${ }^{(2)}$ Most significantly，QFL uses a more sophisticated model of calorimeter response．

[^28]: ${ }^{(5)}$ Recall that the definition of $N_{\text {cone }}$ is the number of tracks of $p_{T}>1 \mathrm{GeV}$ in a cone of $\Delta R=0.25$ around the electron, with z_{0} within 5 cm of the electron vertex.

[^29]: ${ }^{(6)}$ Note the good agreement between the $N_{\text {cone }}$ distribution predicted in Table 5.1 and the W signal rate predicted for each $N_{\text {cone }}$ bin at the end of Section 6.2.2.

[^30]: ${ }^{(7)}$ Since the fitted energy scale and constant term are completely uncorrelated (see figures in Ref. [71]), we do not need to do a two-parameter simultaneous fit to both.

[^31]: ${ }^{(8)}$ We thank Hans Jensen for the suggestion to fit the $\Delta \phi$ distribution.

[^32]: ${ }^{(9)}$ The model described in this section closely follows earlier work by Andrew Gordon [69], but uses a completely different unsmearing method, and differs in many details of the fitting procedure and parameterization.

[^33]: ${ }^{(10)}$ We note here two minor technical points: First, in fitting the MC output, we allow parameter A to float only in the first iteration; thereafter, we constrain $A^{\text {sim }}$ to equal $A^{\text {data }}$ to speed up the convergence of the fit. Second, we do not correct μ_{1} in the region $\left|A+B p_{T}+C p_{T}^{2}\right|<0.1 \mathrm{GeV}$ in which the correction factor is poorly defined.

[^34]: ${ }^{(11)}$ We're tempted to call this procedure "unsmearing by perturbation." Its biggest virtue is that

[^35]: ${ }^{(12)}$ To calibrate QFL, we generate electrons (or photons) using a Gaussian distribution in z_{0}, a uniform distribution in ϕ, and an η distribution uniform in $[-1,1]$. We then apply CEM fiducial requirements and response-map corrections and average E in the interval $35-45 \mathrm{GeV}$. Material effects are never disabled when simulating $Z \rightarrow e e$ events-only in the single-particle events used for checking QFL's internal energy scale.

[^36]: ${ }^{(13)}$ Allowing bremsstrahlung and pair production in the calibration samples of 40 GeV electrons and photons would change the electron result to $+0.204 \pm 0.029 \%$ and the photon result to $-0.237 \pm$ 0.024%.

[^37]: ${ }^{(1)}$ Recall (Section 3.4.3) that one electron is excluded from the \vec{u} calculation when selecting W events and that two electrons are excluded when selecting Z events.

[^38]: ${ }^{(2)}$ We do this to reduce background from multijet events, which arises because the Z removal is applied before the electron ID cuts (see Table 4.5).

[^39]: ${ }^{(4)}$ Using the W list estimate that 25 of these 347 events are from W decay would change the answer by only 7%, which is small compared with the 30% systematic uncertainty in determining the $N_{\text {cone }}$ shape of the background.

[^40]: ${ }^{(5)}$ Consider a sample of cosmic rays having "infinite" momentum and a flat distribution of impact parameter. Since the beam constraint changes $\frac{1}{p_{T}}$ by roughly $0.05 \cdot d_{\text {beam }}$, a cosmic ray with $\left|d_{\text {beam }}\right|>1.3 \mathrm{~cm}$ will fail the p_{T}^{BC} cut.

[^41]: ${ }^{(6)}$ For a finite range of incident angles, we might expect something more like $P\left(\left|d_{\text {beam }}\right|\right) \propto\left|d_{\text {beam }}\right|$.
 ${ }^{(7)}$ This is not as crazy as it may seem. A track with $p_{T} \approx \infty, d=15 \mathrm{~cm}$ has an aspect angle (angle with respect to the radial direction) at $\mathrm{SL} 4(R \approx 82 \mathrm{~cm})$ of about 10°-close to that of a 2 GeV track with $d=0$. Also note the amusing fact that the absolute value of the former track's aspect angle decreases from the inner to the outer superlayers. (The search for tracks begins in the outer superlayers, and track segments with small aspect angles are more likely to be found.)

[^42]: ${ }^{(1)}$ The LY fitted value is $g_{3}=-1.5 \pm 0.1 \mathrm{GeV}^{-1}$. We vary g_{3} by twice the LY quoted error. We have learned very recently [79] that a new, preliminary analysis by Ladinsky and Yuan prefers $g_{3}=-0.88 \mathrm{GeV}^{-1}$, which would change, w by $(<10,10,30) \mathrm{MeV}$. Since the change is negligible in comparision to other sources of error, we neglect it here.
 ${ }^{(2)}$ The uncertainty on this comparison due to Monte Carlo statistics is about 5 MeV , which is smaller than one might estimate by scaling the statistical error on the data, because of the manner in which weighted Monte Carlo events are generated.

[^43]: ${ }^{(1)}$ The only source of error in this measurement not expected to scale statistically with the size of the CDF data set is from parton distribution functions.

[^44]: ${ }^{(1)}$ Describing the muon system—which is beyond the scope of this document—would require two additional types: flat planes for the CMP and conic shells for the CMX.
 ${ }^{(2)}$ The 30° limit simplifies many calculations, e.g. by eliminating ambiguities about branches of transcendental functions and eliminating the need to check many expressions for singularities.
 ${ }^{(3)}$ If we implement particle decay in the future, then we will also consider the path length before decay as a possible step size.

[^45]: ${ }^{(4)}$ We define s to be arc length in the $x-y$ plane, signed so that posigrade motion has $s>0$.

[^46]: ${ }^{(5)}$ The last test eliminates solutions with turning angles between 135° and 180°, for which Δx is in range but for which the correct expression for Δy would be $\frac{1+\sqrt{1-(2 c \Delta x)^{2}}}{2 c}$.
 ${ }^{(6)}$ HEPEVT is a standardized interface through which HEP event generators communicate their output.

[^47]: ${ }^{(7)}$ The beam position in the $x-y$ plane is straightforward to implement, but for now we use $(0,0)$.
 ${ }^{(8)}$ We do this to save computing time. The simulation is in fact able to trace "loopers" through the detector.
 ${ }^{(9)}$ The X_{0} values were estimated from values used in the QFL geometry.
 ${ }^{(10)}$ We think this value should be 1.8% (0.6% for the gas and 1.2% for the wires), but we use 2.1\% for compatibility with Andrew Gordon's simulation.
 ${ }^{(11)}$ A radiation length is the distance over which a high-energy electron will radiate all but $1 / e$ of its energy. The thickness of an elemental surface in radiation lengths is well approximated [21] by $Z(Z+1) \rho \Delta x \log (287 / \sqrt{Z}) / 716.4 A$, where ρ is the density in $\mathrm{g} / \mathrm{cm}^{3}, \Delta x$ is the thickness in cm, Z is the number of protons per atom, and A is the atomic mass ($\mathrm{g} / \mathrm{mole}$).
 ${ }^{(12)}$ A cutoff is necessary because the number of radiated photons, $\int d y \frac{d N}{d y}$, diverges as $y \rightarrow 0$; the total energy fraction radiated, $\int d y y \frac{d N}{d y}$, converges without a cutoff, however. Up to percent-level

[^48]: Z-dependent corrections, $\frac{d N}{d y}=\frac{1}{y}\left(\frac{4}{3}(1-y)+y^{2}\right)$ [80].
 ${ }^{(13)}$ At high energies (tens of GeV), the conversion probability is $1-\exp \left(-\frac{7}{9} \frac{\# X_{0}}{\hat{p} \cdot \hat{n}}\right)$.
 ${ }^{(14)} \mathrm{A}$ popular rough approximation for the rms scattering angle is $\frac{15 \mathrm{MeV}}{p \beta} \sqrt{\# X_{0}}$.
 ${ }^{(15)}$ The ingredients already exist for a hit-level VTX simulation, but the questions such a simulation would address are not not pertinent to this dissertation.

[^49]: ${ }^{(16)}$ The CDF reconstruction software multiplies CTC track parameter errors by a factor 2.0 before merging CTC tracks with SVX hit information.
 ${ }^{(17)}$ Consequently, we do not use the response map when analyzing SSD output. To be correct, we should apply the inverse response map in the simulation and then use the respose map when analyzing the output, but we expect this only to make a difference when an electron and a bremsstrahlung photon land far apart in the same tower.
 ${ }^{(18)}$ Tower energies smeared to negative values are truncated to zero.

[^50]: ${ }^{(1)}$ This model was inspired by discussions with Andrew Gordon and Barry Wicklund.

[^51]: ${ }^{(1)}$ This calculation is suspected to be low by a factor of 1.7 , however. See COT meeting minutes.

[^52]: ${ }^{(2)}$ We believe that Ref. [3] took the inner cylinder compression from a measurement and the outer can compression from a calculation.

[^53]: ${ }^{(3)}$ Schematically, the residual Δ_{i} is $r_{i}\left(\varphi^{\text {track }}\left(r_{i}\right)-\varphi_{i}^{\text {hit }}\right)$; in practice, the residual is calculated along a straight drift trajectory.

