
Measuring the Elastic Properties of Fine Wire

C.T. Fallen,1 J. Costello,1 G. Crawford,1 J.A. Schmidt2

1 Physics Department, Fort Lewis College, Durango Colorado 81301

2 Quetzal Biomedical, Inc., 3455 Main Avenue, Suite 4, Durango, Colorado 81301

Received 16 March 2001; revised 2 July 2001; accepted 5 July 2001

Abstract:  Theelastic moduli of finewiresmade from MP35N and 304SSused in implantable
biomedical devices are assumed to be the same as those published in the literature . However,
thecold workin g required to manufacture thewir esignificantly alters theelastic moduli of the
material. We describe three experiments performed on fine wir e made from MP35N and
304SS. The experimentally determined Young’s and shear modulus of both wir e types were
significantly less than the moduli reported in the literature . Young’s modulus differed by as
much as26%, and theshear modulusdiffered by asmuch as14% from reported values. © 2001
John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 694–700, 2001
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INTRODUCTION

The fine wires used in medical devices are made from a
variety of metals and alloys including, but not limited to,
MP35N, stainless steel, nitinol, titanium, and tantalum. The
authors’ laboratory utilizes MP35N (ASTM F562) (MP35N
is a trademark of SPS Technologies, Inc.) (a cobalt–nickel
alloy) for cardiovascular applications because it has high
strength and good corrosion resistance.1 304SS is used for
prototyping and initial setup and testing of new equipment.
Although the bulk properties of both alloys are well
known,2–4 thewire isput through awiredrawing process that
reduces the size from approximately 12.7-mm OD to
0.0254-mm OD.

In order to perform testing and validation on products
made from these thin metal wires, several basic materials
properties of the metals are required: Young’s modulus (E),
shear modulus (G), and Poisson’s ratio (n). (If any of the two
are known the third can be calculated.) Altman, Meagher,
Walsh, and Hoffman5 reported the results of fatigue testing
on MP35N wire and coils. However, their calculations were
based on E and G values (236 and 81 GPa, respectively),
which resulted in a calculated Poisson’s ratio of 0.46. Al-
though 0.46 is a correct calculation derived from an exact
relationship, the number is clearly wrong (as ageneral rule,
Poisson’s ratio is about 0.33 for metals6) and should have
served as a warning that E and/or G were incorrect for the
wire. (Soft metals, like lead, have a n of 0.45.) Our own
tensile testing of MP35N wire (0.127 mm) provided an E

value of 169 GPa (unpublished data), which is significantly
below the reported value of 235 GPa.2 It was concluded that
the difference could be due to either the extremely small size
of thewireand/or thewiredrawing process. Thisdiscrepancy
led to the question of what the correct values for E, G, and
n are in extremely fine, cold-drawn wires.

This article does not attempt to provide correct elastic
properties for all of the different types of metal wires used in
medical devices. Instead, this report discusses three different,
nonstandard tests that were developed to determine wire
diameter, Young’s modulus, and shear modulus of fine wire
made from virtually any material.

MATERIALS

Al l wire was purchased from Fort Wayne Metals (Fort
Wayne, IN) and used in the as-received condition. The fol-
lowing was tested: MP35N wire: 0.102-, 0.127-, 0.152-,
0.178-, 0.203-, and 0.229-mm outside diameter (0.004-,
0.005-, 0.006-, 0.007-, 0.008-, and 0.009-in. OD, respective-
ly), and 304SS wire: 0.0762-, 0.127-, 0.178-, 0.203-, and
0.229-mm outside diameter (0.003-, 0.005-, 0.007-, 0.008-,
and 0.009-in. OD, respectively).

METHODS

Wire Diameter

In order to determine E and G of a wire sample, the diameter
of thewiremust beknown precisely. Aswil l bedemonstrated
later, wire diameter raised to the fourth power is used to
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calculate the shear modulus. A small variation in wire diam-
eter results in a large variation inG. An optical technique,
which measured the positions of fringe minima of a diffrac-
tion pattern (generated by laser light obstructed by a wire
placed under tension,) was used to determine the diameter of
the wire.

If a source of planar light (i.e., a laser beam) passes
through an aperture of a width on the same order of magni-
tude as the wavelength of the light, a Fraunhofer diffraction
pattern will be produced.7 By Babinet’s theorem,7 the Fraun-
hofer diffraction pattern produced by a rectangular mask (in
this case the profile of the wire) will be identical to the
diffraction pattern produced by a rectangular aperture of the
same width (with the exception of some minor pattern dif-
ferences near the center of the diffraction pattern). As the
width of the mask decreases, the distance between the min-
ima and the center of the diffraction pattern increases. By
measuring the minima shift, and knowing the wavelength of
the laser, the width of the mask (the wire diameter) can be
calculated.

When the diffraction pattern is projected onto a screen, the
diameter of the wired is

d 5
ml

sin u
, (1)

whereu is the angle between the minima and the laser beam,
m is the minima number (counting out from the center), and
l is the wavelength of the laser.7 If s is the distance between
the wire and the screen, anda is the distance separating
opposite minima of the diffraction pattern,

a/Îs2 1 a2

can be substituted for sinu in Eq. (1), giving the following:

d 5
1

a
mlÎs2 1 a2. (2)

The wire sample was mounted horizontally on a work-
bench so that the wire was approximately 2.5 cm above the
surface of the bench. One end of the wire was mounted to a
movable stage, which allowed the tension in the wire to be
adjusted. A 10-mW 634-nm helium–neon laser was placed
approximately 1 m behind the wire. The emission aperture
was placed level with the wire and as far behind the wire as
possible, so that the width of the beam near the wire was large
enough to center the beam over the wire easily. This proce-
dure helped to eliminate the possibility of edge wave diffrac-
tion effects. To obtain wire diameter, the distancea separat-
ing opposite minima of the diffraction pattern was measured.
By measuring the distances between five pairs of minima (the
center of the minima were used), the diameter of the wire was
calculated from Eq. (2). To ensure that the diameter of the
wire was uniform, measurements of the wire diameter were
taken at two locations on each wire, with each location

separated by about a meter. Measuring any one pair of fringe
minima is sufficient to calculate wire diameter. However, five
separate pair of minima were measured at each of two sec-
tions of wire, giving a total of 10 measurements.

Young’s Modulus

The modulus of elasticity (Young’s modulus) of a bar (or
wire) in simple tension or compression is the constantE that
relates the axial stresss with the straine in the equation

s 5 Ee. (3)

The measurement of the Young’s modulus consisted of ap-
plying a known force to a section of wire and then measuring
the resulting longitudinal elongation of the wire.

One end of the wire was clamped to a workbench so that
the wire was mounted horizontally, approximately 2.5 cm
above the workbench. The clamp consisted of simple oppos-
able smooth-faced jaws, which, when closed, pinched the
wire between the faces. (This arrangement is identical to that
used on standard tensile testers.)

A digital force sensor was attached to the other end of the
wire. The force sensor was mounted to the workbench on a
movable micrometer stage, in order to measure the applied
axial force on the wire. The unstretched wire was marked
0.75 m from the clamp. By changing the position of the stage
(which changed the axial force applied to the wire), the
displacement of the leading edge of the mark was observed
with the use of a traveling microscope. (The same edge of the
mark was measured each time.) From these displacement
measurements, the axial strain on the wire was calculated.

The force sensor used in this experiment was equipped
with a computer interface so that each recorded force mea-
surement was actually the mean of 600 individual measure-
ments. With this instrument, the axial force was measured
with a standard deviation of less than 0.014 Newtons. The
longitudinal elongation of the wire was measured to a preci-
sion of 0.01 mm with the traveling microscope. The initial
length of the wire (the distance between the immobile clamp
and the ink-mark) was measured to 1.0 mm.

For each wire sample, force was applied in increments of
approximately 0.5 Newtons; force and displacement mea-
surements were recorded at each increment. The axial forces
were kept below 20 Newtons (the maximum limit of the force
sensor), and the axial strains were kept below 0.4% elonga-
tion [Plastic deformation is generally assumed to occur for
most metals at strains of around 0.2%.4 However, from the
published Young’s modulus and yield strength of MP35N
(2.38 3 1011 Pa and 1.53 109 Pa, respectively), plasticity
would not be expected to set in until strains of 0.63% were
reached.]. The Young’s modulus of each wire sample was
calculated with the use of a least-squares analysis on 15 sets
of data pairs. The experiment was repeated four times for
each type of wire, with a fresh piece of wire used in each
experiment.
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Shear Modulus

The shear modulus of elasticity of a materialG relates the
stresst with the strain tensor« in the equation

t 5 2G«. (4)

Here, the strain tensor is defined as

« ij 5
1
2 Sui

xj
1

uj

xi
D , (5)

whereui is the displacement in thei direction.8

The shear modulus of the MP35N and 304SS wires were
measured with a torsion pendulum. A torsion pendulum is the
angular version of a simple harmonic oscillator where a mass
(usually a flat disk) is suspended from a wire. When the mass
is rotated by a small amount, it will oscillate within the
horizontal plane. To measure the shear modulus of a wire, an
expression relating the shear modulus to the period of oscil-
lation of the pendulum is needed.

Consider a cylinder of lengthL and radiusr , in a rectan-
gular coordinate system. The base of the cylinder is fixed in
thexy plane, and the axis of the cylinder runs along thez axis.
A couple is applied to the other end of the cylinder (atz 5 L)
such that the moment is orthogonal to thexy plane. The
cylinder twists so that the planar cross sections of the cylinder
orthogonal to thez axis remain plane, orthogonal to thez
axis, and at the samez positions.

If a couple is applied to the end of the cylinder atz 5 L,
the planar section atz will rotate by the action of the couple
through an angleu, and the adjacent plane,z 1 dz, rotates
through an angleu 1du. If the material is homogeneous and
the deformations are kept below the elastic limit, then the
rotation per unit lengtha can be assumed constant, and that
du 5 a dz. A point at x, y, z 1 dz will be rotated by the
accumulated deformations of the planes betweenz 5 0 to
z , z 1 dz through an angleu, plus the rotational deforma-
tion of the plane itself,du. The components of the infinites-
imal displacement of the pointx, y, z 1 dz due to the
rotational deformationdu are

du 5 2y du (6)

dv 5 x du, (7)

dw 5 0, (8)

whereu, v, andw are the displacements in thex, y, andz
directions, respectively. Equations (6) and (7) can also be
written as

u

z
5 2ya (9)

v

z
5 xa, (10)

or

«xz 5 2
1
2

ya (11)

«yz 5 x 1
2

a, (12)

where«ij is the strain directed in thei direction with a normal
in the j direction. In this coordinate system,«xz and«yz are
pure shear strains with resulting stresses

tzx 5 2G«xz 5 2Gya (13)

tzy 5 2G«yz 5 Gxa. (14)

Note that this result assumes the material is both isotropic and
homogeneous.

The moment of the coupleMz lies along thez axis and
relates to the shear stresses by

Mz 5 E E ~xtzy 2 ytzx! dx dy (15)

5 Ga E E ~x2 1 y2! dx dy (16)

5
Gapr 4

2
(17)

5
Gupr 4

2L
. (18)

When a bar is suspended at the end of the wire and a
rotational force is applied to the wire, by Newton’s second
law, Eq. (18) becomes

S2u

t2D I total 5
Gupr4

2L
, (19)

whereI total is the sum of the moments of inertia of the wire
and the bar. The moment of inertia of the wire (with the axis
of rotation along thez axis) is

Iwire 5
1
2

rLpr4, (20)

wherer is the mass density of the wire. Integrating Eq. (19)
and solving for the periodT gives
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T 5 2pÎ I total

Gpr4/2L
. (21)

Note thatI total 5 Iwire 1 Ibar, so Eq. (21) can be solved for
the shear modulus,

G 5
4Lp~rLpr 4 1 2I bar!

T2r4 . (22)

The moment of inertia of the bar is relatively difficult to
measure accurately if the moment of inertia of the device
used to attach the bar to the wire is to be included. To
compensate for this, Eq. (22) can be modified so that only the
difference in the moment of inertia,Iadd, between two differ-
ent trials needs to be known in order to calculate the shear
modulus:

G 5
8Lp

r 4 S I add

T2
2 2 T1

2D. (23)

HereT1 andT2 are the periods of oscillation of the pendulum
before and after the moment of inertia has been increased. If
two weights are added near the ends of the bar, the moment
of inertia of each weight does not need to be known to great
precision [By the parallel-axis theorem, whenm is the mass
of each weight andl is the distance between the axis of
rotation and the center of mass of the weight,Iadd5 2(Iweight

1 ml2). The ml2 term can easily be made an order of
magnitude greater than the moment of inertia of each
weight.]. The effect of the expected diameter contraction of
the wire resulting from the addition of weights on the pen-
dulum is negligible.

The torsion pendulum consisted of an aluminum bar with
a mass of 21.6 g and a length of 15 cm, suspended from a
wire sample approximately 20 cm long. The length of wire
varied between tests but was measured to 0.5 mm. The
pendulum was rotated from its equilibrium position, and the
time required for the pendulum to complete five oscillations
was measured with a stopwatch. The moment of inertia of the

bar was increased by adding two small weights (with a mass
of 12.2 g each) to opposite ends of the bar so that the inner
edge of each weight was 7.0 cm from the center of mass of
the bar. The period of oscillation of the pendulum was re-
measured with the same stopwatch. By using the two mea-
sured periods and Eq. (23), the shear modulus of the wire was
calculated. The moment of inertia of each weight at a distance
of 7.9 cm from the axis of rotation was 7.853 1025 kg m2,
and the moment of inertia of each weight with the axis of
rotation through the center of mass of the weight was approx-
imately 1.753 1026 kg m2. Two wire samples from each
batch of wire were tested, with five separate measurements of
the shear modulus taken from each wire sample; a total of 10
measurements for each type of wire. Only five measurements
were taken on the 0.0762-mm 304SS wire.

RESULTS

Wire Diameter

Table I lists the measured wire diameters for both 304SS and
MP35N.

As a general rule the MP35N diameter was smaller and the
304SS was larger than the reported values, but the differences
were small. The largest difference (3.0%) was observed with
0.127-mm 304SS wire. The relatively large standard devia-
tion for the 0.229-mm diameter MP35N was caused by mea-
surement problems due to a nondistinct diffraction pattern.

Young’s Modulus

Table II, contains the measured Young’s modulus values for
both the MP35N and 304SS wires.E was calculated with the
use of both the experimentally determined wire diameter
(Column 4) and the diameter value provided by Fort Wayne
Metals (Column 3). Note that the difference is small.

E for MP35N ranged from 1.723 1011 Pa to 1.853 1011

Pa, with a mean value of 1.763 1011 Pa. The 0.229-mm

TABLE I. Wire Diameter

Wire Type
Reported Diameter

(mm)
Measured

Diameter (mm)

MP35N 0.102 0.10116 0.00120
MP35N 0.127 0.12406 0.00122
MP35N 0.152 0.15576 0.00120
MP35N 0.178 0.17556 0.00185
MP35N 0.203 0.20226 0.00189
MP35N 0.229 0.22666 0.00789
304SS 0.076 0.07856 0.00052
304SS 0.127 0.13086 0.00104
304SS 0.178 0.18036 0.00500
304SS 0.203 0.20476 0.00168
304SS 0.229 0.22736 0.00283

TABLE II. Young’s Modulus

Wire
Type

Diameter
(mm)

Young’s
Modulus

(Reported Wire
Diameter)

(3 1011 Pa)

Young’s
Modulus

(Measured Wire
Diameter)

(3 1011 Pa)

MP35N 0.102 1.70 1.726 0.0097
MP35N 0.127 1.69 1.786 0.0303
MP35N 0.152 1.81 1.746 0.0115
MP35N 0.178 1.73 1.776 0.0303
MP35N 0.203 1.70 1.726 0.0213
MP35N 0.229 1.82 1.856 0.0299
304SS 0.076 1.73 1.636 0.0158
304SS 0.127 1.73 1.626 0.0130
304SS 0.178 1.65 1.616 0.0212
304SS 0.203 1.61 1.586 0.0112
304SS 0.229 1.60 1.616 0.0083
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value had the highest measured value. All values are signif-
icantly less than the published value of 2.353 1011 Pa.2

For 304SS wire, the experimentally determined Young’s
modulus ranged from 1.583 1011 Pa to 1.633 1011 Pa with
a mean value of 1.613 1011 Pa.E found from these exper-
iments were all significantly less than the published Young’s
modulus of 304SS of 1.933 1011 Pa.3

Shear Modulus

The shear modulus was calculated with the use of both the
wire diameter values provided by the supplier and the exper-
imentally determined diameters Table III.

For MP35N wire, shear modulus ranged from 4.443 1010

Pa to 7.853 1010 Pa. The 0.229-mm wire had a significantly
lower value than all other wire because of measurement
errors. If this value is ignored, the mean value ofG for
MP35N was found to be 7.193 1010 Pa.

The shear modulus for 304SS wire ranged from 6.233
1010 Pa to 6.573 1010 Pa, with a mean value of 6.453 1010

Pa. These values are less than the published values of 7.53
1010 Pa to 8.03 1010 Pa.3,9

Poisson’s ratio of each wire and each material was calcu-
lated from the averageE andG data reported here.9 Poisson’s
ratio of MP35N ranged from 0.13 to 0.32. For 304SS wire the
value ranged from 0.23 to 0.39. If the average values ofE and
G are used to calculaten, the values for MP35N and 304SS
are 0.22 and 0.25, respectively.

DISCUSSION OF RESULTS

Initial attempts to measure wire diameter with a micrometer
proved futile because of the measuring accuracy—microme-
ters simply were not sensitive enough. The laser-diffraction
technique, proved to be very accurate and produced results
that showed the wire was very close to reported diameter. The
technique was reproducible and had a standard deviation of
approximately 1%. The basic premise of measuring wire

diameter with a laser is that the diameter of the wire is of the
same order of magnitude as the wavelength of the laser. If the
two are close, a very distinct diffraction pattern emerges. If
the two differ significantly, the diffraction pattern becomes
diffuse and it is difficult to measure to the center of the fringe
minima. The diameter of the 0.229-mm wire was sufficiently
large so that locating the center of the minima was difficult.
This was especially true for the MP35N wire and can be seen
in the values ofE andG found in Tables II and III.

Young’s modulus was measured in much the same way as
in a standard tensile test, except the equipment used here was
extremely accurate. The test techniques developed here ver-
ified the results from the original tensile testing performed on
the wire. The average value of 176 GPa correlated well with
E of 169 GPa measured on a standard tensile testing machine.
It also confirmed thatE was significantly less than the re-
ported value of 235 GPa.2 Based on the numbers generated
with this technique,E for MP35N and 304SS are 26.5% and
16.6% below values found in the literature. It is also signif-
icant to note thatE for both the MP35N and the 304SS did
not change significantly from one wire diameter to another.
The exception was the 0.229-mm diameter MP35N wire
(because of the inaccuracies in measuring wire diameter
reported above).

Testing to determine Young’s modulus is generally per-
formed on parts 7 mm in diameter or larger. That the largest
diameter wire showed the largestE value may be an indica-
tion that size of the test sample does play a role in the
determined value ofE. At what point sample size becomes a
factor is not known. However, it is unlikely that a distinct
break point in size exists, above which standardE values can
be used and below whichE must be determined indepen-
dently.

Shear modulus was measured with a very novel approach:
a torsion pendulum. By suspending the pendulum from the
wire under test and then rotating the pendulum, the shear
modulus was directly measured from the periodicity of the
pendulum. With the exception of the 0.229-mm MP35N wire,
G was consistent across wire diameters and within a given
material. The nondistinct diffraction pattern for the 0.229-mm
MP35N samples resulted in large errors in wire diameter and
thereforeG with a determined value of 44 GPa. The error
comes about becauseG is inversely related to the radius of
the wire raised to the fourth power, [Eq. (23)]. Shear modulus
values determined here differ from reported values2,3 by 11%
and 14%, respectively.

Poisson’s ratio is a measure of the transverse strain to axial
strain in a specimen under uniaxial tensile load, and the best
data usually come from tests performed on single crystals.
For MP35N and 304SS wire, calculation of Poisson’s ratio
should be considered an exercise in mathematics because the
calculation is based on the assumption that the wire under test
is homogeneous and isotropic. It is not. An analysis of the
metallurgy of MP35N provides a good example of why.2

In the annealed condition, MP35N has a face-centered-
cubic (FCC) structure. It is hardened by transforming the
FCC matrix to a hexagonal-close-packed (HCP) phase. The

TABLE III. Shear Modulus and Poisson’s Ratio

Wire
Type

Diameter
(mm)

Shear Modulus
(Reported Wire

Diameter)
(3 1010 Pa)

Shear Modulus
(Measured Wire

Diameter)
(3 1010 Pa)

Poisson’s
Ratio

MP35N 0.102 6.68 6.846 0.106 0.26
MP35N 0.127 7.01 7.716 0.073 0.15
MP35N 0.152 7.14 6.576 0.046 0.32
MP35N 0.178 7.45 7.856 0.061 0.13
MP35N 0.203 6.83 6.986 0.058 0.23
MP35N 0.229 4.28 4.446 0.071 NA
304SS 0.076 7.19 6.356 0.202 0.36
304SS 0.127 7.05 6.236 0.098 0.39
304SS 0.178 6.89 6.566 0.103 0.26
304SS 0.203 6.81 6.576 0.040 0.23
304SS 0.229 6.39 6.536 0.034 0.23
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only way to make this phase transformation is by mechanical
deformation (cold drawing, for example) of the metal. The
cold-drawing process causes very small, thin plates of HCP to
form inside the FCC matrix. The number of HCP plates that
form is directly related to the amount of cold working; greater
amounts of cold drawing result in more of these HCP plates.
The wire typically is ordered with a 40–80% cold-worked
surface so large numbers of platelets are present, which may
or may not be homogeneously distributed throughout the
wire. Because of the cold-drawing process, the wire will also
have a nonhomogeneous grain structure with a preferred
orientation. That is, the individual metal grains will become
elongated along the long axis of the wire. This results in the
wire having one set of mechanical properties in the longitu-
dinal direction and a second set of properties in the transverse
direction—anisotropy.

No metallography was performed on the wire, and no
attempts were made to identify the exact reason for the
differences inE and G reported here versus values in the
published literature. The differences are believed to be due to
anisotropy, and anisotropy makes determination ofE andG
suspect. But consider that all materials are anisotropic:6

Further, even a single-phase metal will usually exhibit
chemical segregation, and therefore the properties will not be
identical from point to point. Metals are made up of an
aggregate of crystal grains having different properties in
different crystallographic directions. The reason why the
equations of strength of materials describe the behavior of
real metals is that, in general, the crystal grains are so small
that, for a specimen of any macroscopic volume, the materials
are statistically homogeneous and isotropic.

The important point is that these wires do not have any
significant macroscopic volume. Because this wire is ex-
tremely fine, highly cold drawn, and in a geometrical config-
uration that does not resemble the dumbell-shaped samples
used to determine typical elastic properties, published values

of E and G simply do not apply to this wire. ButE and G
must be known in order to perform fatigue testing,5 finite
element analysis (FEA),10,11 and many other calculations.
Based on the information in this report, the data from those
calculations must be carefully scrutinized.

It is believed thatE, G, andn should be determined for the
particular wire being used in a given application. Although
this is an imperfect solution (because of anisotropy), it will
provide values that are more representative of the actual
physical properties of the wire.

The future of the cardiovascular device industry lies with
two new configurations of fine wire, DFT (drawn filled tube)
and DBS (drawn braised silver). Figure 1 shows a scanning
electron micrograph of DBS wire. There are individual pie-
shaped wedges made up of MP35N, a hexagonal-shaped
silver core, and thin coatings of silver between the wedges
and on the outside surface of the wire (light grey color). The
obvious question concerns which mechanical properties to
use for this configuration. The values reported here will not
be applicable to DBS wire.

CONCLUSION

Three unique mechanical tests were developed and used to
test very fine wire used in the implantable device industry.
The modulus of elasticity (Young’s modulus) and the shear
modulus of MP35N and 304SS wire were successfully mea-
sured and found to be significantly less than the published
values (Table IV). Likewise, the experimentally determined
shear moduli of both wire materials were less than published
value. The Poisson’s ratios calculated from these data, al-
though somewhat variable between different thicknesses of
wire, are reasonable for the MP35N and 304SS alloys.
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