

Filtered arc plasma assisted PVD coatings for SOFC metallic interconnects

Vladimir Gorokhovsky Arcomac Surface Engineering, LLC Bozeman, MT

This Program is Supported by DoE/SECA Contract No. DE-FC26-04NT42225

5/3/2007

Technical Issues

- Can coatings enable inexpensive metallic alloys as interconnects in intermediate temperature (~600-800°C) planar SOFCs?
- What coating compositions and architectures are preferred?
- Can Arcomac's advanced filtered arc plasma assisted hybrid PVD technologies be used to deposit coatings to meet SECA performance and cost goals?

Technical Accomplishments

- Developed and tested novel, filtered arc plasma assisted hybrid coating process combing EBPVD, thermal evaporation and filtered arc deposition (FAD) technologies to deposit dense and highly adherent (Mn,Co)₃O₄ coatings in economically-favorable process.
- Developed dense and highly adherent Cr-Al-Y-O diffusion barrier bond coating layer, stable at 800°C
- Significantly reduced oxidation rates vs. uncoated steels
- Significantly reduced Cr volatility
- Achieved low and stable ASR values

Technical Approach:

Hybrid PVD Coating Technology: Filtered Arc Plasma Source Ionized Deposition (FAPSID) Surface Engineering Process

Top view

Project Coating Matrix

		Upper Coating Layer - Deposited by FAD-Based PVD Techniques			
		None	FAD-EBPVD Mn1.5Co1.5O4	FAD CoMn +O2	FAD Co + TRE MnO2
Bond Coating Layer	None		x	TBP	ТВР
	Cr/AI + 02/N2	PR	PR	TBP	ТВР
	CrAIY/AI + 02/N2	X	x	TBP	ТВР
FAD-	CoCrAIY/AI + O2/N2	TBP	ТВР	ТВР	ТВР

FAD-EBPVD = Hybrid Filtered Arc-assisted Electron Beam Physical Vapor Deposition

FAD = Filtered Arc Deposition (All Bond Coatings)

TRE = Thermal Resistance Evaporation

TBP = To Be Prepared

PR = Previously Reported: ICMCTF 2004, 2005; SECA Core Technology Workshops Surface and Coatings Technology - (Volume 188-189) p55-61 2004

Filtered Arc-Assisted EBPVD:

Coatings Presented in this Work

		Upper Coating Layer		
_		None	1.0 um FAD-EBPVD Mn1.5Co1.5O4	
FAD Bond Coating Layer	None	X	X	
	0.3um Cr(5%)Al(25)Y(<0.5%)O	X	X	
	3.0um Cr(5%)Al(25)Y(<0.5%)O	X	X	

FAD-EBPVD = Filtered Arc-assisted Electron Beam Physical Vapor Deposition FAD = Filtered Arc Deposition (All Bond Coatings)

Evaluation Techniques

- Coating adhesion
 - Indentation methods
- Composition and Morphology
 - SEM/EDS and Ion Beam Analyses
- Electrical Conductivity
 - ASR Measurements in Air
- Oxidation Stability
 - Cross sectional Analyses
- Cr Volatility
 - Transpiration Studies (LBNL + MSU)

Results of Cr volatility testing on one segment Mn_{1.5}Co_{1.5}O₄ single sided coating deposited by hybrid FAD/EBPVD technique (Courtesy of S.Visco). The remaining leak of Cr is attributed to coating damage incurred during Ni electroplating the back (uncoated) side of sample coupon

10

No Substantial Change in Coating Morphology after 100 hrs@800C Crofer22APU

⁴³⁰SS

5/3/2007

Rockwell C 145 kg indentation test demonstrates improved adhesion of dual segment CrAIYO+MnCoO coating Single Segment CoMnO Dual Segment CrAIYO+MnCoO

5/3/2007

1 um MnCoO – only: shows Chromia scale growth under MnCoO coating

As-deposited

Post 100 hours at 800C in Air

5/3/2007

3.0um CrAIYO + 1 um MnCoO: no chromia TGO scale growth; no substantial change in coating structure after high temperature exposure

As-Deposited

Post 100 hours at 800C in Air

5/3/2007

0.3um CrAIYO + 1 um MnCoO: no chromia TGO scale growth; no substantial change in coating structure after high temperature exposure

As-Deposited

Post 100 hours at 800C in Air

Crofer 22APU - ASR

430 SS - ASR

Summary

- Dense, dual segment CrAIYO + MnCoO coatings with controlled thicknesses can be deposited on SOFC(IC) candidate steels by FAD plasma assisted PVD technology
- Single segment MnCoO coating lower and more stable ASR, mitigate Cr volatility, slow TGO scale growth; however, continued TGO scale growth beneath CoMnO
- Dual segment CrAIYO + CoMnO coatings demonstrate excellent adhesion both before and after high temperature exposure, further decrease (or mitigate) TGO formation beneath CoMnO top segment and exhibit stable ASR values
- Dual segment coating improved high temperature adhesion favorable to thermal cycling applications
- These coatings can be applied to SOFC Industrial Teams' interconnect plates for further prototypical evaluation

Future Considerations:

- Coating Matrix Evaluation/Optimization
 - Top segment Different FAD plasma assisted hybrid PVD processes and Co/Mn ratios
 - Bond segment Vary thickness and composition to maximize diffusion barrier and conductivity properties
- SOFC Prototypical Performance Characterization
 - Dual atmosphere exposure
 - Accelerated thermal cycling studies
 - Interconnect/cathode and interconnect/seals interfacial studies (with PNNL)
- Economic Feasibility Investigation
 - ROI for technology transfer scenarios

Acknowledgements

Travis Shultz, Lane Wilson, A. (Mani) Manivannan

O Pacific Northwest National Laboratory ...delivering breakthrough science and technology Z.Gary Yang, Gordon Xia, Jeffery Stevenson, Prabhakar Singh, Larry Pederson, Gary McVay

Steven Visco, Craig Jacobson, Hideto Kurokawa

Profs. Max Deibert, Dick Smith, and Stephen Sofie