
UTILIB User Manual Reference Manual
Version 3.0

William E. Hart

June 29, 2006

Abstract

This document describes the UTILIB software library. UTILIB includes a variety of generic components for
C++ software development including abstract data types, I/O management, sorting routines, and random number
generators. The UTILIB library is a core component of the Acro optimization framework, and it has been used
separately for other projects at Sandia, including DAKOTA and NETV.

Contents

1 Introduction 1

2 Abstract Data Types 3

3 Mathematical Routines 13

4 Random Numbers and Random Variables 14

5 Class Parameter Initialization 16

6 Parallel Computing Utilities 20

7 Miscellaneous Classes and Utilities 26

8 Managing Exceptions 28

9 Acknowledgements 30

1 Introduction

1.1 Overview

UTILIB is a general-purpose C++ library that includes a variety of algorithmic utilities for software development.
These utilities define useful datatypes and classes as well as generic routines. In particular, UTILIB provides a variety
of services that facilitate the portability of codes, and in particular porting to parallel computing platforms at Sandia.
This library has proven useful in the development of several codes at Sandia, including the Coliny optimization library,
the PICO parallel branch-and-bound library, and the DAKOTA optimization toolkit.

It is worth noting some points about the design philosophy for the classes in UTILIB:

• Encapsulation: One of the chief advantages for using UTILIB data types (e.g. arrays) is the encapsulation of
memory allocation that they provide. This feature has been heavily exploited in my subsequent code, and thus
memory allocation is generally quite robust. Further, some classes (e.g. LinkedList) include mechanisms
for efficiently ’reallocating’ memory.

• Robustness: A related aspect of UTILIB’s design is robustness. I have almost always favored design consid-
erations that ensure robustness. For example, the default behavior for BasicArray’s is to perform bounds
checking. In practice, the performance hit that this causes has been far outweighed by the hours saved tracking
down obscure errors.

• Portability: Portability across many different architectures is another very important aspect of UTILIB. For
example, the common definitions for sorting in sort.h have proven very effective for defining portable sorting
routines.

• Efficiency: There is generally no best way to implement many algorithms and datatypes, since there invariably
are performance/utility trade-offs that need to be made. In the design of UTILIB classes, I have generally looked
for solutions that admit a reasonably efficient capability while providing the most general possible design. For
example, ADT’s like splay trees are very general in their capabilities. Still, they include methods that allow the
user to track pointers to items in the tree, which can later be used to efficiently remove those items from the tree.

• Parallelization: Support for parallelization is an important function for UTILIB. In particular, UTILIB includes
mechanisms for managing parallel I/O through the CommonIO class, and the uMPI class provides wrappers for
parallel communication with MPI.

This user guide is focused on describing the capabilities and software components in the UTILIB library. The compo-
nents of the UTILIB library include

• Abstract Data Types: standard abstract data types like trees and arrays

• Input/Output Routines: facilities for encapsulating error routines as well as redirecting I/O through user-
defined streams

• Mathematical Routines: commonly used mathematical routines, especially array operations

• Random Number Generation: generators for commonly used probability distributions and a portable random
number generator

• System Support: miscellaneous routines, especially to support portability between different operating systems

These components of the libraries are described in greater detail in the following sections. For further de-
tails on UTILIB, including instructions for downloading and installing this software, see the Acro web pages:
http://software.sandia.gov/Acro .

1.2 Changes in UTILIB 3.0

Although an official 2.0 of UTILIB was not distributed, there have been significant changes since the 1.0 release several
years ago. In particular, there recently have been very significant changes to UTILIB, and from a user’s perspective
UTILIB looks very different from the way it did six months ago. The 3.0 release signifies these changes, which are
summarized as follows:

• A complete rework of the configuration management process to use autoconf tools.

• Integration of UTILIB with the Acro framework, which supports nightly testing on a wide range of computing
platforms (including native Windows builds with MINGW).

• Rework of many abstract data types to use iterator mechanisms.

• Elimination of the sorting codes, but explicitly leveraging of STL sorting to support a variety of sorting-related
activities.

• The extension of this document to include all aspects of UTILIB.

2 Abstract Data Types

UTILIB includes classes for a variety of standard abstract data types:

• Arrays and Matrices

• Hash Tables

• Heaps

• Linked Lists, Queues and Stacks

• Sets

• Splay Trees

A detailed description of these data types is beyond the scope of this user guide, but these data structures are widely
described by a variety of introductory algorithms texts [1, 3, 4, 7, 8].

2.1 Arrays and Matrices

UTILIB defines several types of array classes: simple arrays, dense matrices (two-dimensional arrays), sparse matrices,
three-dimensional arrays, enumeration arrays, and bit arrays.

2.1.1 Simple Arrays

The utilib::BasicArray class provides a nice level of encapsulation for array data types, and the utilib::NumArray class
extends this class to include numerical vector operations. The primary advantage of using these classes over similar
classes in STL is that UTILIB includes extra safety features such as runtime bounds checking and reference counting.

These array classes have a pointer to the data in the field Data. You can get this pointer using the data() function:

utilib::BasicArray<int> vec1(5);
vec1 << 0;
int *intarray = vec1.data();

This example uses a constructor that specifies a vector of length five. You can also specify the initial content of a
utilib::BasicArray explicitly:

int array_of_ints[20];
utilib::BasicArray<int> vec2(20, array_of_ints);

The first argument is the length of the array and the second is a pointer to an array of the appropriate type. The data
field in the utilib::BasicArray will point to this array. One can also construct a copy of an existing array:

utilib::BasicArray vec3(vec2);

This will allocate a new integer vector and initialize it with the contents of vec2. The Data field in vec3 points to
the new copy.

Frequently, one will need to use an empty constructor (i.e. start with a size-zero array) and then put in the true data.
More generally, you may want to grow and shrink the vector dynamically:

vec3.resize(100);

This will re-allocate a new array of 100 integers and copy the old data (if any) into the beginning of the array. In this
example, the first twenty elements are copied from the previously allocated memory for vec3. For a utilib::Basic-
Array object you cannot assume anything about the remaining values, but for NumArray objects these array elements
will be initialized to zero. If an array is resized to a smaller value, then the first part of the previous array is retained.

vec3.size()

returns the length of vec3.

The equals (=) operator allocates new space. Thus

utilib::BasicArray vec4;
vec4 = vec3;

creates a new integer array and copies the contents of vec3 into that array. The Data field of vec4 points to the new
space. If the vector already exists and you want to reuse the already-allocated space, use the « operator:

utilib::BasicArray vec5(100);
vec5 << vec4;

This copies the contents of the Data array from vec4 into the array for vec5. If the allocated array (vec5) is not the
same size, then it will be resized by this operator. To copy by reference, use the &= operator. Thus

utilib::BasicArray<int> vec6 &= vec5;

will have the data of vec6 point to the same array that the data of vec5 points to (reference counts are properly
updated).

The stream (<<) operator is overloaded to allow (re)initialization of a vector that has already been created.

vec5 << 15;

This sets every element of vec5 to 15.

Getting array elements works looks like normal array references:

int index, newvalue;
vec5[index] = newvalue;
newvalue = vec5[index];

Iterators are provided for utilib::BasicArray and utilib::NumArray, which have the same look-and-feel as those used
for the STL std::vector class. For example:

utilib::BasicArray<int>::iterator curr = vec5.begin();
utilib::BasicArray<int>::iterator end = vec5.end();
while (curr != end) {

cout << *curr << " ";
curr++;

}
cout << *curr << endl; /// ERROR HERE!

However, these iterators also detect whether the iterator has gone beyond the bounds of the array. In the previous
example, the iterator would throw an exception at the last step, when the value of curr is being referenced.

Notes:

• The utilib::pvector class extends the STL std::vector class to include some of the bounds checking that is
used by utilib::BasicArray.

• The utilib::IntVector class is an alias for utilib::NumArray<int>, and the utilib::DoubleVector class is an alias
for utilib::NumArray<double>

• The utilib::MixedIntVars class is a simple container for one-dimensional arrays of doubles, integers and binary
values.

• Error checks for bounds an iterators cannot be turned off right now.

2.1.2 Character String

The utilib::CharString class is a subclass of utilib::BasicArray that provides additional functionality for manipulating
character strings. This class has a similar look-and-feel to the STL std::string class, though utilib::CharString is
more heavily integrated into various UTILIB utilities.

A variety of comparison operations are supported for strings (using the same lexicographical ordering as strcmp()
). For example,

utilib::CharString str_a = "abc";
utilib::CharString str_b = "xyz";
cout << (str_a == str_b); /// False
cout << (str_a != str_b); /// True
cout << (str_a < str_b); /// True
cout << (str_a >= str_b); /// False

Similarly, this class include methods for easily setting strings:

utilib::CharString str;
str = "file_";
str += 0;
cout << (str == "file_0"); /// True;

Otherwise, this class looks much like a utilib::BasicArray. One additional difference is that the c_str() method can
be used to extract the underlying character string (as is done for std::string).

2.1.3 Matrices

Dense and sparse matrices are supported by UTILIB. The utilib::Basic2DArray and utilib::Num2DArray classes define
dense matrices as an array-of-arrays. Similarly, three-dimensional dense matrices are defined in utilib::Basic3DArray.
NOTE: These classes are not widely used, and thus they are not as mature as the one-dimensional array classes.

The utilib::SparseMatrix class is a base class for defining sparse matrices. utilib::CMSparseMatrix defines sparse
matrices with column-major ordering, and utilib::RMSparseMatrix defines sparse matrices with row-major ordering.
These classes are heavily used by the PICO MILP solver, so they are relatively stable. Sparse matrices can be setup by
adjoining column or rows, or by initializing the sparse data structures directly. To do the later, you need to initialize
the following data (using a column-major ordering for example):

• matval[i] - The array of values in the sparse matrix.

• matind[i] - The row-indeces of the corresponding array values.

• matbeg[i] - The index of matval that is the beginning of the i-th column.

• matcnt[i] - The length of the i-th column.

Notes:

• The utilib::IntMatrix class is an alias for utilib::Num2DArray<int>, and the utilib::DoubleMatrix class is an
alias for utilib::Num2DArray<double>.

2.1.4 Enumerated and BitArrays

The utilib::BitArray class employs a compressed data representation for boolean data. The main elements of this array
have the same look and feel as a utilib::BasicArray object. The elements of this array can be changed using the set()
and reset() methods, which alternatively turn the array values to true and false. For example:

utilib::BitArray array(5);
array.set(); /// Turn all values on
array.reset(3); /// Turn off the 4th value
array.set(3); /// Turn the 4th value back on
array.put(2,0); /// Turn off the 3rd value

The utilib::BitArray object can also use standard array notation:

utilib::BitArray array(5);
array[0] = false; /// Turn off the 1st value
array[1] = true; /// Turn on the 2nd value

The utilib::TwoBitArray class provides a similar compressed array representation for arrays with values 0, 1, 2 or 3.
More generally, the utilib::EnumBitArray can be used to represent arrays for enumeration types that can be coerced to
integer values.

2.2 Linked Lists, Queues and Stacks

The utilib::LinkedList class defines a doubly-linked list. The look-and-feel of utilib::LinkedList is quite similar to the
STL std::list class. Thus, general documentation of std::list is generally accurate for this class (e.g. see
http://www.sgi.com/tech/stl/List.html). Doubly linked lists support O(1) insertion and deletion, but
searching these data structures is O(n). For example, the following example illustrates the setup of a simple list:

utilib::LinkedList<int> mylist;
//
// Initializing a list with integers 0..9
//
for (int i=0; i<10; i++)

mylist.push_back(i);
//
// Printing the list
//
utilib::LinkedList<int>::iterator curr = mylist.begin();
utilib::LinkedList<int>::iterator end = mylist.end();
while (curr != end) {

cout << *curr << " ";
curr++;
}

The utilib::LinkedList object supports some additional features that differentiate it from the STL std::list class:

• The add() and remove() methods can be used to insert and delete elements from a list such that the list
acts like a queue (inserting and deleting from the front) or a stack (inserting and deleting from the end). This
behavior can be configure with the stack_mode() and queue_mode() methods. The utilib::QueueList
and utilib::StackList classes leverage these mechanisms explicitly.

• The utilib::LinkedList iterators validate that an iterator is valid before they are referenced to retrieve the value.
In the case of an error, an exception is thrown that can be used to trap the error.

• The utilib::LinkedList manages a list of utilib::ListItem objects that store the data in the list. The utilib::Cached-
Allocator class is used to cache these objects when they are deleted. This minimizes memory allocations when
lists are repeatedly filled and cleared.

The utilib::OrderedList class is a derived linked list object that orders items that are inserted into the list. This is an
O(n) operation, so this is generally not a useful class. However, this provides a simple ordered container for short
ordered lists.

2.3 Heaps

The class utilib::AbstractHeap defines an abstract class that provides the core operations of a heap. This is adapted
from code developed by Jonathan Eckstein (Rutgers). A heap is a partially sorted binary tree. The heap’s tree is not
completely in order, but it ensures that every node has a value less than either of its children. Additionally, a heap is a
"complete tree" – every level of the tree is filled in before adding a node to the next level, and one that has the nodes in
a given level filled in from left to right, with no breaks. Items can be inserted into and removed from heap with O(log
n) effort.

The utilib::SimpleHeap class is a simple heap object that maintains copies of the keys that are kept in the tree. The
utilib::GenericHeap class maintains references to the keys that are kept in the tree. The add() and remove()
methods are used to insert and delete items this tree. Iterators are not currently supported for heaps, but references to
elements of this tree are returned by the add() and remove() methods.

The following example illustrates the use of a heap:

utilib::SimpleHeap<int> tree;
//
// Initializing a heap with integers
//
for (int i=0; i<10; i++)

tree.add(200*i % 13);
//
// Printing and deleting the tree (in sorted order)
//
for (int i=0; i<10; i++) {

SimpleHeapItem<int>* item = tree.top();
cout << item->key() << " ";
bool status;
tree.remove(item, status);
}

2.4 Hash Tables

The class utilib::AbstractHashTable defines an abstract class that provides the core operations of a hash table with
chaining. Hash tables are data structures that are used when you are managing a large amount of data and need to be
able find an item quickly. A hash table uses a hash function that transforms the key to an integer that provides an index
into a table (or array). In general, it is impossible to prevent collisions, where two different keys are hashed to the
same index. To counteract this, this hash table dynamically resizes the array to ensure that hashed keys are sparsely
represented. Further, conflicts are resolved by chaining, which uses a linked list of elements at a given point in the
hash table.

The utilib::SimpleHashTable class is a simple hash table object that maintains copies of the keys that are kept in the
table. The utilib::GenericHashTable class maintains references to the keys that are kept in the table. The add() and
remove() methods are used to insert and delete items this tree. Iterators are supported for hash tables, though the
data is in an arbitrary order within the iterator.

The following example illustrates the use of a hash table:

utilib::SimpleHashTable<int,char> ht;
//
// Initializing a heap with integers
//
char foo;
for (int i=0; i<10; i++)

ht.add(200*i % 13, foo);
//
// Printing a hash table (in an arbitrary order)
//
utilib::SimpleHashTable::iterator curr = ht.begin();
utilib::SimpleHashTable::iterator end = ht.end();
while (curr != end) {

cout << *curr << " ";
curr++;
}

The hash functions used for these hash tables are defined in hash_fn.h. Many of these functions are based on the Bob
Jenkins hash function, which are discussed in detail at http://burtleburtle.net/bob/hash . In particular,
these hash functions do not require that the hash table have a prime length.

The utilib::LPHashTable class defines a limited precision hash table (for arrays of doubles). The utilib::LPHashTable
class is derived from utilib::AbstractHashTable, which defines the basic operations of the hash table. The keys are
assumed to be classes for which the following operations are defined:

• size_type hash(size_type tablesize, unsigned int precision)

• const int compare(KEY& key)

• const int write(ostream& os)

• const int read(istream& is)

2.5 A Hashed Set Class

A container class that stores a set of values such that each value is represented uniquely. For example, the following
example illustrates the setup of a simple list:

utilib::HashedSet<int> mylist;
//
// Initializing a list with integers 0..9
//
for (int i=0; i<10; i++)

mylist.insert(i);
//
// Printing the list
//
utilib::HashedSet<int>::iterator curr = mylist.begin();
utilib::HashedSet<int>::iterator end = mylist.end();
while (curr != end) {

cout << *curr << " ";
curr++;
}

This class is akin to the STL std::set class, though they have different APIs, and a hashtable is used to manage the
underlying data structure. Thus, the set is not stored in order, and insertions can be performed with O(1) effort.

2.6 Splay Trees

The class utilib::AbstractSplayTree defines an abstract class that provides the core operations of a top-down splay tree.
This is adapted from code developed by D. Sleator, which itself is adapted from simple top-down splay, at the bottom
of 669 of Sleator and Tarjan [6].

Splay trees are a simple and efficient data structure for storing an ordered set. The data structure consists of a binary
tree, with no additional fields. It allows searching, insertion, deletion, deletemin, deletemax, splitting, joining, and
many other operations, all with amortized logarithmic performance. Since the trees adapt to the sequence of requests,
their performance on real access patterns is typically even better.

The splay operation is applied to a binary search tree. It restructures the tree as it descends toward the desired key’s
place in the tree. During descent, long paths are shortened by rotation. Ultimately, when the desired key is found, the
binary search tree is reassembled to make the desired key’s node the new root.

The utilib::SimpleSplayTree class is a simple splay tree object that maintains copies of the keys that are kept in the
tree. The utilib::GenericSplayTree class maintains references to the keys that are kept in the tree. The add() and
remove() methods are used to insert and delete items this tree. Iterators are not currently supported for splay trees,
but references to elements of this tree are returned by these operators.

The following example illustrates the use of a splay tree:

utilib::SimpleSplayTree<int> tree;
//
// Initializing a tree with integers
//
for (int i=0; i<10; i++)

tree.add(200*i % 13);
//
// Printing the tree
//
for (int i=0; i<10; i++) {

SimpleSplayTreeItem<int>* item = tree.find_rank(i);
cout << item->key() << " ";
}

3 Mathematical Routines

The _math.h header includes several headers that define mathematical and array functions:

• math_basic.h - Defines basic mathematical routines and constants.

• math_array.h - Defines mathematical routines that are applied to arrays.

• math_matrix.h - Defines mathematical routines that are applied to matrices.

Note that the linpack.h header is not currently used in UTILIB.

3.1 Comparison Mechanisms

Many routines in UTILIB perform a comparison between two objects and return an integer flag. If we are evaluating
how A relates to B, then the standard comparison semantics for the return value x is that x is less than zero if A is
before B in the order, x is greater than zero if A is after B in the order, and x is zero if they are equal. In the context
of numerical values, A is before B if A is less than B. Finally, note that if the comparison function is a method of an
object, like

A.compare(B)

then the comparison is evaluating how A relates to B (and not how B relates to A).

The utilib::ComparisonBase class defines a generic mechanism for defining comparison class. Two subclasses of this
have been developed:

• utilib::SimpleCompare - A simple comparison class

• utilib::Reverse - A class for performing a reverse-ordered comparison

3.2 Sorting

The sort.h header contains definitions for a variety of comparison, sorting and ordering functions:

• sort - Sort an array object.

• stable_sort - Perform a stable sort on an array object.

• order - Fill an array ndx with the order of the elements. Thus, ndx[i] is the index of the i-th smallest value in
the array.

• rank - Fill an array ndx with the rank of the elements. Thus, ndx[i] is the rank of the i-th element of the array.

These functions employ the STL sorting routines, which are portable and robust. Further, there are various instances
of these functions that are applicable to utilib::BasicArray and std::vector objects.

4 Random Numbers and Random Variables

UTILIB supports a variety of classes for defining and using random generators as well as classes for generating
samples from different types of random variables.

4.1 Random Number Generators

The basic datatype for random number generators is utilib::RNG, and two classes are provided for encapsulating linear
congruential generators:

• utilib::LCG - encapsulates the unix random number generator, and

• utilib::PM_LCG - encapsulates a portable random number generator [5].

The default_rng.h header provides an API for initializing and using a global utilib::PM_LCG random number generator
(which is particularly convenient for C code).

The utilib::AnyRNG class is used to maintain a reference to some utilib::RNG object that has been created (or, in fact,
any object that uses the same API as utilib::RNG). This works like the utilib::AnyReference object, in that it can store
a reference to any such object. This utility was developed to enable codes to be developed with a generic container
class while allowing users to provide their favorite random number generator object. This object provides more error
checking than, say, a pointer to a utilib::RNG.

4.2 Random Variables

UTILIB includes a variety of classes for generating random variables using a random number generator. In all cases,
a random variable object rv acts like a functor when generating a random value:

• utilib::Binomial - rv(p,n) generates a value from the binomial distribution with probability p and number of
trials n.

• utilib::Cauchy - rv(alpha,beta) generates a value from the Cauchy distribution with parameters alpha
and beta.

• utilib::DUniform - rv(l,h) generates a uniformly random integer value from l to h.

• utilib::Exponential - rv(m) generates a value from the exponential distribution with mean m.

• utilib::Geometric - rv(p) generates a value from the geometric distribution with probability of success p.

• utilib::LogNormal - rv(scale,shape) generates a value from the log-normal distribution with parameters
scale and shape.

• utilib::Normal - rv(m,s) generates a value from the normal (or Gaussian) distribution with mean m and stan-
dard deviation s.

• utilib::Uniform - rv(l,h) generates a value from the uniform distribution between low l and high h.

• utilib::Triangular - rv(l,h) generates a value from the triangular distribution between low l and high h.

Additionally, the following

• utilib::MNormal - rv(vec) generates a vector of random numbers from a normal distribution, using a user-
specified covariance matrix.

• utilib::MUniform - rv(vec) generates a vector of random numbers from a uniform distribution, where the range
may vary for eaCh dimension.

These random variables distributions are described in detail in a variety of texts (e.g. Evans, Hastings and Peacock [2]).
Many of these classes are implemented using code from the RANLIB random number generator library (see the
Random.h header file).

The following base classes are used to define random variable objects:

• utilib::RandomVariableBase - Abstract class for random variables.

• utilib::SimpleRandomVariable - An abstract templated random variable class that generates values that are re-
turned by value.

• utilib::GeneralRandomVariable - An abstract templated random variable class that generates values that are
returned by reference.

• utilib::ExternalRandomVariable - A utilib::SimpleRandomVariable that generates points using an external func-
tion.

4.3 Sample Generators

The utilib::SampleGenerator class is an abstract base class for objects that generate a set of points sequentially. Al-
though the random variable classes can be used in this fashion, there are often contexts where the sample is a function
of all of the points that are sampled. Thus, a utilib::SampleGenerator subclass can contain context about the previously
generated points for use when generating new points.

The utilib::UniformSampleGenerator template class is a simple implementation where each sample is generated inde-
pendently. This class is specialized for generating utilib::BasicArray<double> and utilib::MixedIntVars samples.

5 Class Parameter Initialization

UTILIB contains definitions of several classes that can be used to control the initialization of name-value pairs that
can be used to initialize classes:

• utilib::Parameter

• utilib::ParameterSet

• utilib::ParameterList

The utilib::Parameter class provides a container object that can provide a reference to another data type. As such, a
utilib::Parameter instance provides mechanisms for initializing and retrieving the value of this data.

The utilib::ParameterSet class manages sets of utilib::Parameter objects, and as such this class will probably be
used more directly than the utilib::Parameter class. Since utilib::Parameter objects provide a reference to data,
utilib::ParameterSet objects can be used to initialize data in a class in a transparent manner. For example, consider a
class

class Example1
{

Example1()
{ a=1; }

void print()
{ cout << a << endl; }

int a;
};

We can extend this class to support parameter initialization by (1) making Example1 a subclass of utilib::ParameterSet
and (2) creating a parameter in the constructor.

class Example1 : public utilib::ParameterSet
{

Example1()
{
a=1;
create_parameter("a",a,"<int>","1","Class data for Example1");
}

void print()
{ cout << a << endl; }

int a;
};

The utilib::ParameterSet::create_parameter() method creates a utilib::Parameter object in the utilib::ParameterSet base
class of Example1. This parameter object can be used to initialize the data in an Example1 object as illustrated below:

Example1 obj; // Create an Example1 object
obj.print(); // Prints "1"
obj.set_parameter<int>("a",10); // Set the value of obj.a to 10
obj.print(); // Prints "10"

Note that this use of a parameter class is qualitatively different from a design that stores parameters by value (e.g.
as used by Sandia’s Trilinos package). If parameters are stored by value, then we cannot transparently initialize

classes as we have illustrated here. However, a database of parameter values can be managed independent of any class
instantiation. This can, for example, allow parameters to be passed around and referenced where needed in user code.

The following sections provide more detail for how UTILIB parameters can be used in practice.

5.0.1 Common ParameterSet Methods

The most basic operations for a utilib::ParameterSet object are the get/set methods, which are illustrated below:

Example1 obj;

obj.set_parameter("a",1); // Set a parameter with a value

obj.set_parameter_with_string("a","1"); // Set a parameter with a string
// which is interpreted as a
// value with the parameter’s type

int value;
obj.get_parameter("a",value); // Retrieve a parameter value using

// a given data element

value = obj.get_parameter<int>("a"); // Return a parameter value using
// a specified return type

For all of these utilib::ParameterSet methods, checks are made to ensure consistency of the underlying parameter type
with the types specified by the user. If these checks fail, an exception is generated that throws std::runtime_error.

In addition to these methods, parameters can be initialized in a utilib::ParameterSet object with command-line argu-
ments and file input. The utilib::ParameterSet::process_parameters method is used to with command-line arguments.
This method supports the use of the GNU style uses parameter keywords preceded by two hyphens rather than key-
word letters. This style is extensible to contexts in which there are too many parameters to use single-letter parameters.
This style is easier to read than the alphabet soup of older styles, and it can be combined with single-letter parameters
(for commonly used parameters). A parameter argument (if any) can be separated by either whitespace or a single =
(equal sign) character:

program --param1 paramval --param2=paramval

If a boolean parameter is specified without an argument, the argument is assumed to be true.

Note that the utilib::ParameterSet::process_parameters method requires three arguments. The first two are the standard
argc and argv values provided in main. The third parameter is the number of required arguments that follow the
optional parameters. Note that if this value is zero and optional arguments follow the command-line parameters, then
the utilib::ParameterSet will assume that arguments following the last parameter are the value of that last parameter.
For example

program --param1 <val>

in this case utilib::ParameterSet assumes that <val> is the value of parameter param1, even though parameter param1
might be a boolean and the user intended <val> to be a regular argument to the program.

Several parameters are specified by default in the utilib::ParameterSet class. One of these is the param-file parameter,
which can be used to specify a file that is read for parameter values. For example, the command

obj.set_parameter("param-file","foobar");

will trigger the utilib::ParameterSet class to open the file "foobar" and read it. The format of such an input file must
be of the form: <parameter> <value>. Note that all or part of a line may be commented out using the "#" character.
Additionally, if a parameter file contains a param-file parameter line, then that initiates the recursive opening of the
specified parameter file.

5.1 Using ParameterList Objects

The use of a utilib::ParameterList object is motivated by the common scenario in which you wish to use a single file
or set of command-line parameters to initialize the parameters in a set of classes. Rather than have each class process
these data sources independently, the utilib::ParameterList class can be used to process all parameters at once and then
set the values in each class. For example, if Class1, Class2 and Class3 are subclasses of utilib::ParameterSet, then we
can do the following:

ParameterList plist;
plist.process_parameters(argc,argv,1);

Class1 c1;
c1.set_parameters(plist);
Class2 c2;
c2.set_parameters(plist);
Class3 c3;
c3.set_parameters(plist);

Note that utilib::ParameterList supports command-line processing and file IO exactly like the utilib::ParameterSet
class. This example assumes that the parameters in each of these classes are independent, so when you set parameters
they are removed from the parameter list in plist. If classes share parameter names that are defined in a consistent
manner (e.g. a debug parameter), then you can keep parameters in the list by passing a flag "false" as the second
argument to utilib::ParameterSet::set_parameters.

The utilib::ParameterList class also supports mechanisms that can be used to validate parameters that will later be used
to initialize various class instances. This requires registering the parameters of all classes that will be used later:

ParameterList plist;
plist.register<Class1>();
plist.register<Class2>();
plist.register<Class3>();
plist.process_parameters(argc,argv,1);

Registering parameters before a utilib::ParameterList is initialized allows the utilib::ParameterList to verify that only
parameters registered for use were provided in the command-line or input file. Note that this registration involves the
construction of the specified object, so this can only be performed with classes that provide null-constructors.

The following example illustrates a typical setup to process command-line parameters after the start of main:

int main(int argc, char* argv[])
{
try {

int debug=0;
ParameterSet global_parameters;
global_parameters.create_parameter("debug",debug,"<int>","0",

"A global debugging parameter");

ParameterList plist;
plist.register(global_parameters); // Register an existing

// ParameterSet object
plist.register<Class1>(); // Register a class type that

// will be used later
plist.process_parameters(argc,argv,1); // Process the command-line
global_parameters.set_parameters(plist,false); // Set the values of the

// global params, keeping
// params in plist

// The "help" parameter
// has been set to "true"

if (global_parameters.get_parameter<bool>("help")) {
// Dump all of the registered
// parameters to "cout"

global_parameters.write_registered_parameters(cout);
return -1; // ... and exit.
}

// OTHER CODE HERE
}

catch (std::runtime_error& err) {
cerr << "We caught an exception: " << err.what() << endl;
}

return 0;
}

5.2 Parameter Validation

utilib::Parameter object includes data method utilib::Parameter::validator that can be used to validate that the value
provided when a parameter is set is an appropriate value for that parameter. For example, we might wish to ensure
that a string is not empty, or that a double is non-negative. When a parameter is created, an optional parameter can be
specified that is an instance of an STL unary function, std::unary_function<Type,bool>, where Type is the type of the
parameter data. A variety of such functions are provided for numerical parameters:

• utilib::ParameterLowerBound : enforces a lower bound on the parameter

• utilib::ParameterUpperBound : enforces an upper

• utilib::ParameterBounds : enforces upper and lower bounds on the parameter

• utilib::ParameterNonnegative : forces the parameter to be non-negative

• utilib::ParameterPositive : forces the parameter to be positive

For example, we can force a debugging parameter to be non-negative as follows

create_parameter("debug",debug,"<int>","0",
"A debugging parameter",
utilib::ParameterNonnegative<int>());

6 Parallel Computing Utilities

Developing parallel software is notoriously difficult, particularly because of inherent difficulties associated with the
debugging of parallel software. Parallel software coordinates threads of execution across multiple physical processors.
Thus parallel software often exhibits programming errors related to timing and synchronization that are not seen in
serial codes.

The remainder of this section describes UTILIB capabilities for developing and debugging parallel software.

6.1 MPI Utilities

MPI is a widely used standard for performing parallel communication on distributed-memory parallel computers. The
UTILIB mpi_utilib.h header provides dummy definitions for MPI_Request and MPI_Status, which can be used
to simplify builds when MPI is not available. Additionally, this header defines the mpi_datatype() functions,
which return the MPI data type value for a data.

The utilib::uMPI class provides an object-oriented encapsulation of the MPI functions. In particular, this class manages
global data for information like the number of processors, the rank of the current processor, etc. Further utilib::u-
MPI manages MPE log messages, and it automatically checks for error return codes for the MPI functions. Finally,
utilib::uMPI identifies whether any of the current processors can do I/O. The following utilib::uMPI data elements are
commonly used:

• comm - The MPI communicator.

• rank - The rank of the current process in this communicator.

• size - The size of the current communicator.

• ioProc - The rank of an I/O processor in this communicator.

• iDoIO - A true/false (1/0) value that indicates whether the current processor can perform I/O.

6.2 MPE Utilities

The utilib::logEvent class enables a code to generate parallel event log files that can be viewed with viewers like
upshot and jumpshot. These viewers in turn allow the time sequence of events, thread activations, and messages to
be visually inspected, an aid to debugging and development. Event logging uses the MPE extension library distributed
with MPICH, and MPE is supposed to work with other flavors of MPI.

Event logging is compiled if UTILIB is configured to use MPI, MPE and validation. Otherwise, the event logging
macros all compile into no-ops. Even if event logging is compiled, you must set the command line parameter "event-
Log" to a non-zero value to obtain a log. For example, the PICO MILP solver is setup to take values between 0 and 4,
where 0 means no log and 1 through 4 produce successively more detailed logs:

• Level 1: worker, incumbentCast, hub thread activations; problem bounding and new incumbent signaling states

• Level 2: level 1 + new incumbent messages, incumbent heuristic thread activations, pruning states

• Level 3: level 2 + status print events, and workerAux, spReceive, and spServe thread activations

• Level 4: level 3 + worker->hub messages

By default, a text file called "event.alog" is created, which can be viewed with the upshot viewer. If the environment
variable MPE_LOG_FORMAT is set to CLOG, then the output is a binary file called "event.clog" which can be viewed
with jumpshot. This mechanism is dictated by MPE, and our experience recommends the use of jumpshot.

The IF_LOGGING_COMPILED macro is used to add logging mechanism. For example, if

IF_LOGGING_COMPILED(int myLogState;)

is added into a class, then the variable myLogState is used to define a logging state. This value needs to be initialized
before being used. For example, the following could appear in a constructor:

#ifdef EVENT_LOGGING_PRESENT
myLogState = logEvent::defineState("name of state","corresponding X color");

#endif

Events are logged with the LOG_EVENT macro, which uses the syntax:

LOG_EVENT(level,what,myLogState)

Here, "level" is the minimum logging level to log the event. "what" is "start" to make the start of a state, "end" for the
end, and "point" for start and end in quick succession (for logging "point events").

6.3 Parallel Communication with Packed Buffers

MPI provides a generic utility for packing data types into a buffer that can be reliably communicated between machines
with different data representations. The utilib::PackBuffer and utilib::UnPackBuffer classes provide a convenient
mechanism for creating these packed buffers, and for unpacking data that has been received from another process. In
particular, these buffers leverage the C++ stream operators to allow for a simple syntax for packing and unpacking.

For example, here’s a simple example of how a utilib::PackBuffer can be created

int i = -1;
char j[5] = "abcde";
utilib::PackBuffer pbuff;
pbuff << i;
pbuff << j;

The buf() returns a pointer to a buffer that contains the packed data, which is size() bytes long. A utilib::Pack-
Buffer object can be reused by calling the reset() method.

The utilib::UnPackBuffer class has a similar usage. For example:

int i;
char j[5];
utilib::UnPackBuffer upbuff(buffer_data, buffer_len);
upbuff >> i;
upbuff >> j;

Note that the setup() method can also be used to initialize a utilib::UnPackBuffer object, so this class can be
initialized after it is constructed.

Many UTILIB classes are instrumented to enable packing and unpacking with the stream operator. Further, the
utilib::PackObject class can be used as a base class to define these stream operators. The derived class needs only
redefine the read() and write() methods to make these stream operators functional.

Note that enumerated types need to be explicitly coerced to and from integer types in order to be used with the Pack-
Buffer and UnPackBuffer classes. Consequently, it is convenient to define stream operators for enumeration types.
The ENUM_STREAMS macro provides a generic mechanism for setting up these streams for an enumeration type.

For example, the COLIN library uses this macro to define stream operators for an enumerated type that describes
bound constraints:

enum bound_type_enum {
no_bound=0,
hard_bound=1,
soft_bound=2,
periodic_bound=3
};

ENUM_STREAMS(bound_type_enum)

6.4 Managing Parallel Output with a Common I/O Trace

6.4.1 Overview

Using print statements to trace interesting events is perhaps the simplest strategy for debugging software. However,
there are several caveats for using them for parallel debugging. First, this technique can significantly impact the relative
computation rates of processes during a parallel computation. Printing and especially file I/O are often very slow when
compared to other computation tasks. Adding printing changes the behavior of asynchronous parallel programs so the
precise error condition that a developer is tracking can disappear.

A second caveat for print-based debugging is that the order in which information is presented to a screen may not
reflect the true sequence of events. For example, printing I/O for one process may be delayed while a buffer fills,
allowing other processes’ I/O to be displayed out of order. Explicitly flushing buffers (e.g. using flush(), can help,
but even then communication delays can affect output ordering.

Finally, it is difficult (and at best inconvenient) to simultaneously display I/O from multiple processes, especially for
an execution using hundreds to thousands of processors. Operating systems typically interleave the output of multiple
processes, which can quickly lead to unintelligible output. One solution to this problem is to stream each process’
I/O to a different file. In C, this can be done using fprintf() statements with a different file descriptor for each
process. More sophisticated solutions can be developed in C++ by exploiting the extensibility of stream operators.
The utilib::CommonIO class provides new streams ucout and ucerr, which replace cout and cerr to control I/O in
a flexible manner. The utilib::CommonIO class ensures that I/O streamed to ucout and ucerr is printed as a single
block, and thus it is unlikely to be fragmented on a screen. Additionally, each line of the output can be tagged with a
processor id and line number:

[2]-00002 Printing line 2 from process 2
[3]-00007 Printing line 7 from process 3
[3]-00008 Printing line 8 from process 3
[1]-00003 Printing line 3 from process 1
[1]-00004 Printing line 4 from process 1
[0]-00003 Printing line 3 from process 0

This facility makes it easy to extract and order output for each process.

6.4.2 Using The CommonIO Class

The CommonIO.h header file provides macro-based definitions for the symbols ucout, ucerr and ucin. By default,
these symbols are mapped to the standard C++ I/O streams. I/O can be directed to/from other streams using the
set_streams, set_cout, set_cerr and set_cin methods. utilib::CommonIO also allows users to mask
these streams, which adds information about the processor ID and/or line number of the I/O. To begin masking, the
user executes CommonIO::begin(), and similarly CommonIO::end() is called to end the masking of these
streams. For example:

CommonIO::begin()
ucout << "This text is rerouted through CommonIO’s streams" << endl;
CommonIO::end()

Note that calls to CommonIO::begin() and CommonIO::end() can be nested, enabling subroutines to use
utilib::CommonIO without worrying whether the IO has already been redirected. However, note that the formatting
options for utilib::CommonIO streams described below are NOT reset after a call to CommonIO::end(); the user
is responsible for resetting the state of the utilib::CommonIO streams after their use.

Because a begin-end block can be nested in this fashion, calling CommonIO::end() does not necessarily turn off
IO mapping; IO mapping could have been initialized from an enclosing begin-end block. The method Common-
IO::map_off() can be called to explicitly turn off IO mapping regardless whether mapping has been initiated

by a previous call to CommonIO::begin(). CommonIO::map_on() must be used to restart IO mapping; a
subsequent call to CommonIO::begin() will be masked by the CommonIO::off() method. Finally, note that
an error is detected if a matching CommonIO::end() is not called for every CommonIO::begin() when the last
utilib::CommonIO object is destroyed.

utilib::CommonIO provides routines that manage parallel debugging, prepending tagging information, and providing a
global debugging flag. Tagging information is prepended after begin_tagging() is called. An optional argument
specifies the value of the numDigits variable (by default numDigits=0). The format of the prepended IO is:

[r]-000ii

where ’r’ is the rank of the current process and ’ii’ is the index of the current IO; the index field has numDigits digits.
Tagging is stopped when end_tagging() is called.

To facilitate tagging, the ucout and ucerr macros map to strstream buffers. When the stream is flushed by calling
CommonIO::flush() or by using the IO manipulator Flush,

ucout << Flush

the IO is processed to insert the rank information after every end-of-line in the stream. Using this facility makes
it difficult to support the flush method for streams, since ’<stream>.flush()’ gets mapped to a flush operation
on a strstream object. This does NOT flush the <stream> object as with standard ucout and ucerr streams.
Consequently, the Flush IO manipulator has been created to provide a convenient means of flushing utilib::Common-
IO streams.

utilib::CommonIO can also be used to buffer IO generated by a process. If CommonIO::begin_buffered() is
called, then the IO is mapped via strstream objects, but the IO is not flushed until CommonIO::end() is called.
If a new utilib::CommonIO begin/end block is started within a buffered begin/end block, IO within this block will
continue to be buffered.

6.4.3 Managing Debugging IO

utilib::CommonIO also supports mechanisms for controlling I/O using a ’debugging level’. Consequently,
utilib::CommonIO is often used a base class for other UTILIB classes.

The utilib::CommonIO class data member debug defines the ’debugging level’ of the IO. This value is referenced by
the verbosity() method, which determines if the given verbosity level is ’high enough’ to be printed.

The debugging level is principally used by the DEBUGPR and OUTPUTPR macros, and related macros (see Common-
IO.h). These macros accept two arguments: a debugging level and an arbitrary set of commands. These commands
are executed if the specified debugging level is greater than or equal to the CommonIO debugging level.

The setIORank() method can be used to limit debugging IO to a limited number of processors. By de-
fault, the verbosity() check allows all processors to perform IO. By calling setIORank(x), future calls to
verbosity() will return false if x is not the rank of the current processor, thereby turning off debugging IO.

7 Miscellaneous Classes and Utilities

UTILIB provides a variety of general utility classes:

• utilib::AnyValue and utilib::AnyReference - Classes that store any object by value and reference respectively.
The utilib::AnyValue class was adapted from the boost::any class, in particular to include UTILIB exception
management and stream operators.

• utilib::CachedAllocator - A class that redefines the new and delete methods for a class to cache the allocation
and deallocation of objects.

• utilib::ClassRef - A data type that manages the reference counting for unspecified data elements. This is a rather
non-standard form of memory referencing, in which the reference object knows about all of the objects for
which it is sharing memory. This is not a scalable form of reference management. However, it facilitates the use
of reference sharing on an as-needed basis. Further, it facilitates the fast access of data in the main objects.

• utilib::Ereal - Defines an extension of ’real’ data types (e.g. double, float, long double) that can ’assume’ all
’real’ values, as well as negative infinity and positive infinity. This is not meant to replace the use of IEEE
arithmetic, but instead provide convenient container for managing data that may be infinite.

• utilib::GenericKey - A generic key object for use with UTILIB abstract data types (e.g. heaps, hash tables, etc).

• utilib::PersistentPointer - A class that looks like a pointer, but does not delete the underlying pointer’s memory
when this class is deleted!

• utilib::RefCount - An object used to maintain reference counts for shared data.

• utilib::SmartPtr - Class that manages pointer deletion and allows for sharing of pointers with reference counters

• Tuple# - The classes utilib::Tuple1 ... utilib::Tuple7 define n-tuples, which are fixed length lists.

• utilib::ValuedContainer - A container class that contains a value that can be extracted. For example, this is useful
to sort objects that have a value with auxiliary information.

Additionally, the following UTILIB headers define miscellaneous utilities and support functions, including functions
that are system-specific:

• _generic.h - Commonly used macros for ’standard’ values (e.g. TRUE/FALSE)

• comments.h - Includes stream operators for processing comment lines and

• memdebug.h - Some experimental macros that can be used to debug memory allocation issues.

• nicePrint.h - Utilities for formatting output.

• seconds.h - Various utilities to query timing routines in a portable manner, including both system and wall-clock
time.

• std_headers.h - Includes C and C++ headers to facilitate portability (especially for compilers that are not ANSI
C++ compliant). white space.

• stl_auxillary.h - Defines functions and operators that can be applied to the std::vector class. In particular, this
defines stream operators for this class.

• string_ops.h - Defines functions for manipulating utilib::CharString objects.

• traits.h - Defines a macro for setting global traits.

8 Managing Exceptions

A pervasive challenge for software development is the effective management of runtime error conditions (e.g. when
an attempt to open a file fails). One effective strategy for debugging unexpected failures is to generate an abort()
when an error is detected. This generates a core file with debugging information, including the call-stack at the point
of failure.

Runtime error conditions are naturally managed in C++ code with the C++ exception construct. Exceptions allow
for graceful, automatic management of erroneous states that require the code to step out of a given context back to a
previous context. However, this general mechanism makes it difficult to debug the cause of an exception. Different
compilers have different semantics for how exceptions are managed, and how to ’catch’ an exception when using an
interactive debugger. Hence, it is difficult to debug exception events in a generic manner.

The exception_mngr.h header defines macros that can be used to wrap exceptions in a generic fashion, trap exception
events, and to manage what happens during an exception event. The EXCEPTION_TEST and EXCEPTION_MNGR
macros can be used to encapsulate exception events for this utility. These macros should be called within source code
like a function, except that a semicolon should not be added after the macro. For example, suppose that the exception
std::out_of_range is thrown if n > 100 in the file my_source_file.cpp. To use the macro, the source
code would contain (at line 225 for instance):

EXCEPTION_TEST(n>100, std::out_of_range , "Error, n = " << n << is bad")

When the program runs and with n = 125 > 100 for instance, the std::out_of_range exception would be
thrown with the error message:

/home/bob/project/src/my_source_file.cpp:225: n > 100: Error, n = 125 is bad

Similarly, the EXCEPTION_MNGR macro can be used

if (n>100)
EXCEPTION_MNGR(std::out_of_range , "Error, n = " << n << is bad")

which achieves the same result with an explicit conditional.

These macros call the utilib::exception_mngr::handle_exception function, which manages I/O and does one of the
following:

• throws the exception (this is the default behavior)

• calls abort()

• calls MPI_Abort() when MPI is being used, and then calls exit()

The exception management can be configured to use these different options using the utilib::exception_-
mngr::set_mode() function. For example, the following configures this utility to call abort():

utilib::exception_mngr::set_mode(utilib::exception_mngr::Abort);

This generates a core file in the same manner as described above for non-exception code debugging.

Exceptions can also be debugged interactively by using and setting an ’exit function’ that is called before the excep-
tion is processed. The default exit function is exit_fn(), and an alternative exit function can be specified with

the utilib::exception_mngr::set_exit_function function. An interactive debugger can break on the
execution of exit_fn(), which leaves the user at a point where the code state that generated the exception event
can be analyzed.

Finally, note that the exception_mngr.h header also defines the STD_CATCH macro, which performs a catch for all
standard exception types. This provides a convenient mechanism for ensuring that all possible exceptions will be
caught in a C++ main() function.

9 Acknowledgements

The genesis of the UTILIB library is in the BBUMS library developed by Bill Hart and Brian Bartell while graduate
students at U.C. San Diego. Although Brian would probably not recognize any of the UTILIB software, the design
of some of the most widely used software, like array classes, is due to him. The BBUMS library was subsequently
reorganized and renamed the SGOPT library, which focuses on a methods for global optimization. UTILIB was the
stdlib subdirectory in SGOPT, which was extracted from SGOPT when it became clear that several groups at Sandia
would be interested in using the UTILIB components without the additional baggage of the optimizers in SGOPT.

I would like to thank Cindy Phillips, Jonathan Eckstein, Mario Alleva, and Mike Eldred for their input on this software.
Each of them has identified numerous bugs, and refinements in the configuration process are largely due to the demands
that their uses of UTILIB have made.

UTILIB integrates and extends several tools developed by other authors:

• Many of the C files in utilib/src/ranlib are taken from the RANLIB.C library of C routines for random num-
ber generation, which was developed by Barry W. Brown and James Lovato, Dept of Biomathematics at the
University of Texas, Houston. The C++ utilib::RNG class is adapted from the GNU class developed by Dirk
Grunwald.

• The utilib::AbstractSplay class was adapted from code developed by D. Sleator, which itself is adapted from
simple top-down splay, at the bottom of 669 of Sleator and Tarjan [6].

• The utilib::AnyValue class was adapted from the boost::any class developed by Kevlin Henney.

• Many of UTILIB’s hashing functions call the general-purpose hash function published by Bob Jenkins in DDJ.

• I thank Roscoe Bartlett for many helpful discussions and for sharing his EXCEPTION macro, which inspired
the exception management tools in exception_mngr.h.

This work was supported in part by the Mathematics, Information and Computational Science program, U.S. Depart-
ment of Energy, Office of Energy Research, as well as the Laboratory Directed Research Program at Sandia National
Laboratories. This work was performed at Sandia National Laboratories. Sandia is a multiprogram laboratory oper-
ated by Sandia corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract
DE-AC04-94AL85000.

This document was prepared using the Doxygen software documentation tool, developed by Dimitri van Heesch,
copyright 1997-2006. We are grateful to David Gay for editorial comments on a draft of this document.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, 1996.

[2] M. Evans, N. Hastings, and B. Peacock. Statistical Distributions, Second Ed. John Wiley and Sons, Inc., New
York, 1993.

[3] D. E. Knuth. The Art of Computer Programming. Volume 2, Seminumerical Algorithms. 2nd edition.

[4] Lewis and Denenberg. Data Structures and Their Algorithms. Harper Collins, 1991.

[5] S. K. Park and K. W. Miller. Random number generators: Good ones are hard to find. Communications of the
ACM, October 1988.

[6] Sleator and Tarjan. Self-adjusting binary search trees. JACM, 32(3):652–686, July 1985.

[7] M. Weiss and B. Cummins. Data Structure and Algorithm Analysis. 1992.

[8] D. Wood. Data Structures, Algorithms, and Performance. Addison-Wesley, 1993.

