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Abstract

A Micro Electro Mechanical System (MEMS) typically consists of micron-scale parts that move
through a gas at atmospheric or reduced pressure. In this situation, the gas-molecule mean free
path is comparable to the geometric features of the microsystem, so the gas flow is noncontinuum.
When mean-free-path effects cannot be neglected, the Boltzmann equation must be used to
describe the gas flow. Solution of the Boltzmann equation is difficult even for the simplest case
because of its sevenfold dimensionality (one temporal dimension, three spatial dimensions, and
three velocity dimensions) and because of the integral nature of the collision term. The Direct
Simulation Monte Carlo (DSMC) method is the method of choice to simulate high-speed
noncontinuum flows. However, since DSMC uses computational molecules to represent the gas,
the inherent statistical noise must be minimized by sampling large numbers of molecules. Since
typical microsystem velocities are low (< 1 m/s) compared to molecular velocities (~400 m/s), the
number of molecular samples required to achieve 1% precision can exceed 1010 per cell. The
Discrete Velocity Gas (DVG) method, an approach motivated by radiation transport, provides
another way to simulate noncontinuum gas flows. Unlike DSMC, the DVG method restricts
molecular velocities to have only certain discrete values. The transport of the number density of a
velocity state is governed by a discrete Boltzmann equation that has one temporal dimension and
three spatial dimensions and a polynomial collision term. Specification and implementation of
DVG models are discussed, and DVG models are applied to Couette flow and to Fourier flow.
While the DVG results for these benchmark problems are qualitatively correct, the errors in the
shear stress and the heat flux can be order-unity even for DVG models with 88 velocity states. It is
concluded that the DVG method, as described herein, is not sufficiently accurate to simulate the
low-speed gas flows that occur in microsystems.
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heat flux vector [W/m2]
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magnitude of velocity state,  [integer]
temperature [K]
temperature of wall at  [K]
temperature of wall at  [K]
time [s]
time step [s]
ODE time step,  [s]
velocity of gas, solid, or molecule [m/s]
velocity component in -direction [m/s]
velocity component in -direction [m/s]
velocity component in -direction of wall at  [m/s]
velocity component in -direction of wall at  [m/s]
velocity of gas, solid, or molecule [m/s]
velocity component in -direction [m/s]
velocity component in -direction [m/s]
mesh cell width,  [m]
Cartesian coordinate across domain [m]
Cartesian coordinate in flow direction [m]
Cartesian coordinate perpendicular to  and  [m]

Greek Variables

VSS angular scattering parameter [1]
fraction of reflections that are antisymmetric (bounce-back) for wall at  [1]
fraction of reflections that are antisymmetric (bounce-back) for wall at  [1]
Dirac delta function [inverse of units of its argument]
specific-heat ratio, , 5/3 for monatomic gas, 7/5 for diatomic gas [1]
fraction of reflections that are symmetric (specular) for wall at  [1]
fraction of reflections that are symmetric (specular) for wall at  [1]
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slip length,  [m]
mean free path,  [m]
absolute viscosity [Pa⋅s]
exponent of intermolecular separation in IPL force law [1]
mass density [kg/m3]
accommodation coefficient [1]
cross section per unit solid angle [m2]
shear stress [Pa]
solid angle [steradian]
VSS viscosity temperature exponent [1]
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Superscripts

bounce-back (antisymmetric) reflection
equilibrium at  and
initial value
diffuse-isothermal reflection at  and
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Subscripts
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incoming quantity at a boundary
minimum
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outgoing quantity at a boundary
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quantity at a solid wall boundary
boundary or wall at , or state index
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Annotations
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angle brackets denote an average or expectation
square brackets denote arguments to a function
ratio of Chapman-Enskog infinite-approximation to first-approximation values
postcollision state pair conserving precollision mass, momentum, and energy

Acronyms
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DSMC Direct Simulation Monte Carlo
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1. Introduction

1.1. Overview

The phenomena that are particularly important for modeling microscale gas flows are described.
Microscale gas flows are noncontinuum: the mean free path of gas molecules is comparable to
geometric length scales. Microscale gas flows are subsonic: the gas velocity is small compared to
the molecule speed. Microscale gas flows are creeping: inertial effects are small compared to
viscous effects. Microscale gas flows have varying density: significant pressure variations caused
by flow through long, thin gaps and/or significant temperature variations induced by adjacent
solid boundaries produce significant density variations. Microscale gas flows encounter time-
varying geometries: the motion can be in-plane (sliding) or out-of-plane (opening and closing)
and steady or transient (e.g., periodic).

1.2. Microscale Noncontinuum Flows

A Micro Electro Mechanical System (MEMS) has micron-scale geometric features. Figure 1
shows a typical example: cantilevered microbeams fabricated by Sandia’s SUMMiT VTM process
(Sniegowski and de Boer, 2000). These microbeams have a thickness of 2 µm, a width of 20 µm,
a length of 100 µm, and a gap height with respect to the substrate of 2 µm. Dimensions like these
are typical of microstructures, which commonly have a vertical extent of 1-10 µm and a
horizontal extent of 10-1000 µm (Sniegowski and de Boer, 2000).

Although vacuum-packaging is an option, microsystems are usually operated in a gas at ambient
or reduced pressure. The mean free path for common gases (air, nitrogen, oxygen, and argon) is
around 0.06 µm at atmospheric pressure and room temperature (Karniadakis and Beskok, 2002).
Since the mean free path is not negligibly small compared to the geometric length scales, the gas
flow exhibits noncontinuum features. Since the mean free path is inversely proportional to the gas
density, microsystems operated at reduced pressures experience larger noncontinuum gas effects.
If helium is chosen instead of air or nitrogen as the packaging gas, noncontinuum effects are
enhanced because the mean free path of helium is approximately triple that of air at the same
pressure and temperature (Karniadakis and Beskok, 2002).

Because of the small geometric length scales, the velocities of moving microstructures and of the
corresponding gas flows are usually subsonic. As an example, consider one of the cantilevered
microbeams in Figure 1. The maximum amplitude for out-of-plane motion of the microbeam is
2 µm, the gap height between the microbeam and the substrate. Typical oscillation frequencies are
generally less than 100 kHz (Torczynski et al., 2002; Gallis and Torczynski, 2003). Under these
conditions, the maximum velocity at the tip of the microbeam is around 1 m/s, whereas the speed
of sound in common gases at ambient conditions is 300-400 m/s and for helium is around
1000 m/s (Thompson, 1972). The velocity of the gas entering or exiting the gap along the edge of
the microbeam can be an order of magnitude larger than the microbeam velocity because of the
aspect ratio of the geometry (a gap height of 2 µm versus a gap width of 20 µm). Even allowing
for this factor, the gas velocity is still subsonic.
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Again, because of the small geometric length scales, microscale gas flows are typically creeping:
inertial effects are much smaller than viscous effects. The cantilevered microbeam is a good
example of this (Torczynski et al., 2002; Gallis and Torczynski, 2003). The Reynolds number is
the ratio of inertial to viscous effects and is given by the product of the gas mass density, the gas
velocity, and the length scale divided by the absolute viscosity (Karniadakis and Beskok, 2002).
For common gases at ambient conditions, the mass density is around 1 kg/m3 or less, and the
absolute viscosity is around (Thompson, 1972). For the cantilevered microbeam,
the gas velocity is typically below 10 m/s, and the gap height of 2 µm is the length scale over
which viscosity operates. Under these conditions, the Reynolds number is at most order-unity and
is often one or more orders of magnitude smaller than unity, indicating that inertial effects are
small compared with viscous effects and that microscale gas flows are typically creeping flows.

Although microscale gas flows are too subsonic to have large velocity-induced density variations,
frictional and thermal effects can produce significant density variations. As indicated above,
microscale surface topography is typically 1-10 µm high but 10-1000 µm across. Gas flowing
through a microchannel with a comparable diameter-to-length aspect ratio can be essentially
isothermal but can have a substantial pressure variation, and therefore a substantial density
variation, along the length of the microchannel because of wall friction (Karniadakis and Beskok,
2002). A large temperature difference between adjacent microstructures, such as produced by
Joule heating in one of the microstructures, can produce a large temperature variation and a
correspondingly large density variation in the gas around these microstructures (Torczynski and
Gallis, 2003).

Microscale gas flows often encounter a moving geometry. The motion of the geometry can be out-
of-plane or in-plane and can be transient or steady. In the case of the cantilevered microbeams
shown in Figure 1, the microbeam oscillates periodically, producing transient, out-of-plane
motion. In the more common case of rotating gears, the motion is in-plane and steady (or periodic
in the vicinity of gear teeth, holes, dimples, or other nonaxisymmetric structures). In fact, the gas
flows of interest are usually produced by and affect the motion of the microsystem.

Methods for simulating microscale gas flows should be applicable to the following conditions.
First, noncontinuum effects should be incorporated. Second, only subsonic, creeping gas flow
with frictionally-induced or thermally-induced density variations needs to be treated: inertial and
transonic effects can typically be neglected. Third, the method should admit the possibility of
extension to moving geometries, with in-plane or out-of-plane and steady or transient motion.
Herein, only the special case of in-plane motion that does not alter the geometry is considered.

2 5–×10 Pa s⋅
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Figure 1. Cantilevered microbeams fabricated at Sandia using the SUMMiT VTM process.
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2. Modeling Approaches

2.1. Overview

Three methods of modeling microscale gas flows that meet the requirements delineated above are
described. The Navier-Stokes slip/jump method (NSSJ) uses the conventional Navier-Stokes
equations and incorporates noncontinuum effects through modified boundary conditions that
allow velocity slips and temperature jumps at solid surfaces. The Direct Simulation Monte Carlo
(DSMC) method uses molecular gas dynamics with computational molecules that move, collide,
and interact with solid surfaces to solve the Boltzmann equation. The Discrete Velocity Method
(DVG) restricts molecular velocities to a finite set of discrete values and solves discrete-
Boltzmann transport equations for the number densities of these velocity states.

2.2. Navier-Stokes Slip/Jump (NSSJ) Method

The Navier-Stokes slip/jump (NSSJ) method is one approach for modeling microscale gas flows
(Karniadakis and Beskok, 2002). The behavior of the gas away from solid surfaces is described by
the Navier-Stokes (NS) equations, the ideal gas equation of state, and the Newtonian and Fourier
constitutive relations for the shear stress and heat flux (Karniadakis and Beskok, 2002):

, (1)

, (2)

, (3)

, (4)

, (5)

. (6)

Here, is the Boltzmann constant, is the mass density, is the
velocity vector, is the pressure, is the volumetric-force vector, is the shear-stress tensor,
is the thermal energy per unit mass, is the heat-flux vector, is the specific-heat ratio, is the
temperature, is the molecular mass, is the absolute viscosity, is the bulk viscosity, and
is the thermal conductivity, where , , and  are assumed to depend on  and  alone.

∂ρ
∂t
------ ∇ ρu( )⋅+ 0=

ρ ∂u
∂t
------ u ∇u⋅+⎝ ⎠

⎛ ⎞ ∇p– f ∇ τ⋅+ +=

ρ ∂e
∂t
----- u ∇e⋅+⎝ ⎠

⎛ ⎞ p∇ u⋅– ∇ q⋅– τ ∇u⋅+=

e p
ρ γ 1–( )
--------------------

kBT

m γ 1–( )
---------------------= =

τ µ ∇u( ) ∇u( )T
+{ } ζ ∇ u⋅( )I+=

q K∇T–=

kB 1.380658 23–×10 J/K= ρ u
p f τ e

q γ T
m µ ζ K

µ ζ K p T



15

Boundary conditions are required to complete the specification of a problem. While important in
their own right, inflow and outflow boundary conditions are not discussed here because they relate
to computational convenience rather than to physical realism: in principle, the computational
domain can always be made large enough to remove accuracy issues associated with the
proximity of inflow and outflow boundaries. Although the subject of boundary conditions at solid
surfaces remains a research topic, the slip/jump (SJ) formulation has proved popular (Karniadakis
and Beskok, 2002). In this formulation, differences between gas and wall quantities at a solid
surface are proportional to normal gradients of these quantities.

In the absence of temperature gradients, the SJ velocity boundary condition takes the following
form (Karniadakis and Beskok, 2002):

, (7)

. (8)

Similarly, in the absence of velocity gradients, the SJ temperature boundary condition takes the
following form (Kennard, 1938):

. (9)

Here, is the unit normal vector pointing out of the solid and into the gas, variables with and
without the subscript “wall” refer to values associated with the solid surface and with the gas
adjacent to the solid surface, respectively, and  is the slip length (Kennard, 1938):

, (10)

, (11)

, (12)

. (13)

Here, is an accommodation coefficient of the surface that satisfies , is the mean
free path (this definition is one of many in the literature and is used exclusively herein because it
is consistent with the above SJ boundary conditions), is the mean speed of molecules in an
equilibrium gas, and is the Prandtl number, exhibited here with the approximation of Eucken
(Thompson, 1972). When both velocity and temperature effects exist simultaneously, more

n̂ u uwall–( )⋅ 0=

n̂ u uwall–( ) Λ n̂ ∇⋅( ) u uwall–( )–{ }× 0=

T T wall–( ) 1
Pr
------⎝ ⎠

⎛ ⎞ 2γ
γ 1+
------------⎝ ⎠

⎛ ⎞ Λ n̂ ∇⋅( ) T T wall–( )– 0=

n̂

Λ

Λ 2 σ–
σ

------------⎝ ⎠
⎛ ⎞ λ=

λ 2µ
ρc
------=

c
8kBT

πm
-------------=

Pr
µcp

K
---------

µγ kB

K γ 1–( )m
-------------------------- 4γ

9γ 5–
---------------≈= =

σ 0 σ 1≤ ≤ λ

c
Pr
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complicated SJ boundary conditions are needed to describe phenomena such as “thermal creep”
(Karniadakis and Beskok, 2002). Moreover, different accommodation coefficients may be needed
to describe the different processes associated with the accommodation of normal momentum,
tangential momentum, translational energy, and internal energy.

To reiterate, the NSSJ approach to simulating microscale gas flows treats the entire gas flow as
continuum flow: noncontinuum effects are introduced only through boundary conditions. This is
tantamount to assuming that noncontinuum effects are confined to thin regions at the boundaries
(i.e., Knudsen layers) and that these Knudsen layers are much thinner than geometric length
scales. Nevertheless, as discussed in later sections, the NSSJ approach does yield correct results
for certain classes of flows in the free-molecular limit.

2.3. Direct Simulation Monte Carlo (DSMC) Method

The Direct Simulation Monte Carlo (DSMC) method is another approach to simulating
noncontinuum gas flows. Developed by Bird and discussed extensively in monographs and review
articles (Bird, 1970, 1976, 1978, 1998; Cercignani, 2000), DSMC provides approximate solutions
to the Boltzmann equation.

The Boltzmann equation describes the behavior of a noncontinuum gas under the following
conditions (Gombosi, 1994).

1. The gas is dilute. Only binary molecular collisions are considered.

2. “Molecular chaos” applies. The states of any two colliding molecules (their velocities and
internal energies) are uncorrelated, and the position and velocity (and angular position and
angular velocity) of any particular molecule are also uncorrelated.

3. The molecules possess spherically symmetric potentials through which they interact. Although
obviously untrue for diatomic molecules, etc., through application of the previous assumption,
a nonspherical potential can be replaced with an effective spherical potential because all
possible angular orientations of molecules during collisions are equally likely.

4. Classical mechanics applies. Velocities are nonrelativistic, and quantum effects enter only in
determining the collision cross section, which is subsequently treated as a material parameter.

5. The extent of the intermolecular potential is small compared to other length scales, such as
intermolecular separation, mean free path, and gradients of statistical quantities.

6. External forces, such as gravity, do not affect collision dynamics.

7. Statistical quantities can be treated as unchanging over the duration of and in the vicinity of a
collision.
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The Boltzmann equation for a single-species monatomic gas is given below (Vincenti and Kruger,
1965; Bird, 1976, 1998; Cercignani, 1988, 2000; Gombosi, 1994; Garzo and Santos, 2003):

, (14)

, . (15)

Here, is the number of molecules at time with positions within around and
velocities within around , and is the corresponding probability density in velocity space.
The quantity on the left side of the equation is the body force per unit mass (i.e., acceleration),
here taken to be independent of the molecular velocity (e.g., gravity). The term on the right side
of the equation is the collision integral, where the unprimed and primed quantities refer to the
precollision and postcollision velocities, respectively. The quantity is the differential cross
section for collisions, where, for elastic hard-sphere (HS) molecules of diameter , the quantity

has a value of (Bird, 1976), and, for Maxwell (MX) molecules, the quantity is
independent of the relative speed (Bird, 1976). Generalization to gases with multiple
monatomic species is straightforward (Vincenti and Kruger, 1965; Bird, 1998); however,
generalization to molecules with internal energy is more difficult (Hirschfelder et al., 1964).

Macroscopic quantities are determined from the Boltzmann equation by computing the
corresponding moments of the molecular velocity distribution. For example, the average number
density and velocity are given by the following moments.

, (16)

. (17)

Closed-form analytical solutions of the Boltzmann equation are known for only a few situations.
Free-molecular solutions (i.e., when the collision integral is set equal to zero) are known in certain
simple geometries, such as one-dimensional momentum transfer (Couette flow) or heat transfer
(Fourier flow) between infinite parallel walls (Bird, 1976; Gombosi, 1994; Bird, 1998). Solutions
in the continuum nonequilibrium regime are provided by Chapman-Enskog theory (Chapman and
Cowling, 1970). This approach involves a Taylor-series expansion that relies on the smallness of
the mean free path compared to length scales associated with gradients of macroscopic quantities
like temperature. The principal successes of Chapman-Enskog theory are the derivation of the
Newtonian and Fourier constitutive relations for shear stress and heat flux, the determination of
the values of the associated transport coefficients, and the prediction of noncontinuum gas effects
like thermal diffusion in gas mixtures (Chapman and Cowling, 1970). Thus, in the continuum
nonequilibrium limit, the Boltzmann equation reduces to the NS equations.
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The DSMC method uses computational molecules to provide an approximate solution to the
Boltzmann equation (Bird, 1998). Each computational molecule typically represents a large
number of real molecules and undergoes the same types of processes during a time step that real
molecules experience: movement from one location to another, interaction with boundaries, and
collision with other molecules. Computational molecules move in a ballistic fashion, traveling at
constant velocity along straight-line trajectories during a time step. Following movement,
boundary conditions are applied. In the case of an inlet or outlet, computational molecules leaving
the domain by crossing the boundary may be reflected or deleted, and new computational
molecules may be created and allowed to enter the domain, with the relative importance of each
process determined by the boundary condition. In the case of a solid surface, a computational
molecule crossing this boundary is reflected back into the domain by finding the crossing point,
assigning a new velocity to the computational molecule, and allowing it to move from this point at
the new velocity for the remainder of the time step. The reflected velocity assigned to the
computational molecule is selected stochastically from a prescribed distribution, such as a linear
combination of specular reflection, diffuse-isothermal reflection, and diffuse-adiabatic reflection
(Gallis et al., 2001). Following movement and reflection from boundaries, computational
molecules are allowed to collide in a binary fashion. Pairs of molecules are selected randomly at
the appropriate rate and are allowed to collide, by which it is meant that they are assigned
postcollision velocities and internal energies (but not new positions). These postcollision values
conserve mass, momentum, and energy and are selected stochastically so as to maintain the
prescribed collision statistics, which determine important macroscopic properties like the
temperature dependence of the transport coefficients.

The Variable Soft Sphere (VSS) model is typically used to specify postcollision velocities (Bird,
1998). The VSS model requires four parameters per collision: the reference temperature , the
reference diameter , the viscosity temperature exponent , and the angular scattering
parameter . The viscosity temperature exponent usually lies in the range and
produces a temperature dependence for the viscosity, thermal conductivity, and self-diffusion
coefficient of . The values and correspond to hard-sphere
molecules, and the values and correspond to Maxwell molecules. For
general inverse-power-law (IPL) molecules in which the intermolecular force varies inversely
with the intermolecular separation to the power , the VSS parameters satisfy the following
relations (Torczynski et al., 2003; Gallis et al., 2004):

, (18)

, (19)

, . (20)
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Here, the subscript “ref” denotes a quantity at the reference temperature, denotes
the ratio of the infinite-approximation and first-approximation values from Chapman-Enskog
(CE) theory (see Table 1), and and are tabulated functions of (Chapman and Cowling,
1970; Torczynski et al., 2003; Gallis et al., 2004).

The computational mesh in a DSMC simulation performs two functions. First, computational
molecules must be in the same mesh cell in order to collide with each other. Second, the
computational mesh is used to accumulate moments of the molecular velocity distribution, such
as the number density and the velocity. These molecular properties are sampled before and after
the collisions are performed. Although conserved moments such as momentum are unchanged by
collisions, higher-order moments such as shear stress and heat flux can be significantly affected.
The above double-sample strategy significantly improves the accuracy of these quantities (Gallis
et al., 2004). The uncertainties in the moments that result from molecular fluctuations can be
reduced by sampling many computational molecules. For a stationary (statistically steady) flow,
the ergodic hypothesis is employed: large numbers of molecules are sampled by averaging over
large numbers of time steps. For an unsteady flow, either large numbers of molecules per cell must
be used, or an ensemble of many simulations must be sampled, where each simulation takes a
different path through phase space (usually by starting with a different random seed).

The accuracy of a DSMC simulation is governed by the choice of the mesh cell size, the time step,
and the average number of molecules per cell. Reasonable accuracy is obtained when the cell size
is one third or less of a mean free path, the time step is one third or less of the time required by
molecules to cross a cell, and the number of computational molecules per cell exceeds about 30
(Bird, 1998). Some results are available that quantify the effect of the numerical parameters on the
absolute viscosity and the thermal conductivity (Alexander et al., 1998; Alexander et al., 2000;
Hadjiconstantinou, 2000; Garcia and Wagner, 2000). Theoretical investigations have led to a
formal proof that, as the numerical parameters approach their limits, DSMC converges to a
solution of the Boltzmann equation (Bird, 1970; Nanbu, 1986; Wagner, 1992; Cercignani, 2000).

Table 1: VSS, IPL, and CE parameters for DSMC.

Comment

0.5 1.000000 1.016034 1.025218 1.018954 Hard-sphere

21 0.6 1.209042 1.010193 1.016019 1.011708

11 0.7 1.422476 1.005702 1.008959 1.006411

23/3 0.8 1.645558 1.002524 1.003965 1.002792

6 0.9 1.883125 1.000629 1.000988 1.000687

5 1.0 2.139862 1.000000 1.000000 1.000000 Maxwell

…( )∞ …( )1⁄

A1 A2 ν
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2.4. Discrete Velocity Gas (DVG) Method

The Discrete Velocity Gas (DVG) method is an approach based on radiation-transport ideas for
simulating noncontinuum gas flow. Like the DSMC method and in contradistinction to the NSSJ
method, the DVG method treats the gas flow as noncontinuum throughout the computational
domain, rather than incorporating noncontinuum effects only via boundary conditions. However,
unlike DSMC but like discrete-ordinate radiation-transport methods (Siegel and Howell, 1992),
molecules in the DVG method are constrained to have only certain discrete velocity values. In
discrete-ordinate radiation-transport methods, the direction and the frequency of the radiation are
discretized, but the speed is not since the speed of light is essentially constant in a gas
(implementation in a transparent liquid or solid does not allow this simplification). In the DVG
method, typically each component of the velocity vector is discretized.

Although the idea behind the DVG method may be traced back to the origins of kinetic theory, the
first applications of the DVG method are the studies of Broadwell (1964a, 1964b). In the former
study, Couette flow is investigated, whereas the structure of a shock wave is examined in the latter
study. In both cases, qualitatively correct behavior is observed. Further studies of these steady
flows (Hamel and Wachman, 1965; Gatignol, 1975; Cabannes, 1976; Gatignol, 1977) and of
transient Rayleigh flow (Longo and Monaco, 1985) confirm the observation that the DVG method
qualitatively reproduces known features of noncontinuum gas flow.

Systematic developments and investigations of the DVG method are presented by several
researchers (Inamuro and Sturtevant, 1990; Goldstein, 1990; Goldstein, 1991; Monaco and
Preziosi, 1991; Nadiga, 1992). The presentation below draws extensively from the development
of Inamuro and Sturtevant (1990).

In the DVG method, molecules are constrained to be in discrete velocity “states” , where
denotes the velocity , is a constant speed scale governed by

constraints discussed below, and the are integers (see Figure 2). A particular set and a
particular value specify a particular DVG model. The number density corresponding to a
velocity state is denoted by . Heuristically, a DVG model can be thought of as a
particular choice for the distribution  in the Boltzmann equation:

. (21)

Here, is the three-dimensional Dirac delta function. Each number density is governed by a
discrete Boltzmann equation of the form given below (the body acceleration term is not included):

, (22)

. (23)
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The above form is appropriate for monatomic hard-sphere molecules with diameter . The
transition coefficient represents the loss from state when states and collide to
produce states and and the gain to state when states and collide in the inverse
collision to produce states and . The quantity represents a pair of postcollision states
that conserves precollision values of mass, momentum, and energy. Here, and

. For hard-sphere molecules, the transition coefficients are independent of
the quantity , so each transmission coefficient is just the inverse of the total number of
postcollision pairs corresponding to the prescribed precollision states  and .

A few observations can be made about the DVG equations.

1. The seven-dimensional Boltzmann equation is replaced by a set of four-dimensional equations
(one temporal dimension and three spatial dimensions). The infinite-extent velocity dimensions
are removed.

2. The number of equations in this set depends on the number of velocity states in the particular
DVG model.

3. The left sides of these equations are strictly linear in the number densities. The differential
operator represents linear advection at constant velocity. This is molecular movement.

4. The right sides of these equations are quadratic polynomials in the number densities. The
coefficients in these polynomials are constants. This is molecular collision.

Boundary conditions for the DVG method are exactly analogous to the DSMC method but have
some special issues. Since the molecular velocities have discrete directions, it is straightforward
to specify boundary conditions when the boundaries “conform” to these preferred directions. A
specular reflection from a solid plane perpendicular to the direction just converts state
into state . Similarly, a “bounce-back” reflection from this boundary converts state

into state . Diffuse adiabatic reflection converts state into a linear
combination of states including states , , , and .
Diffuse isothermal reflection converts outgoing state into a linear combination of all
incoming states so as to produce their equilibrium distribution. For such processes to be allowed,
all of the desired reflected states must be included in the set of states. Boundaries that do not
conform to the preferred directions are more complicated and are not considered herein.

In the DVG method, macroscopic quantities are determined as in the DSMC method, by taking
moments of the distribution. As examples, the number density and velocity are given below:

, (24)

. (25)
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There are three reasons that the DVG method has not been more widely used in the past. First,
most past efforts to simulate noncontinuum gas flows have focused on hypersonic applications.
The large velocities and the large thermodynamic variations that occur in hypersonic flows
produce a large range of molecular velocities, which necessitates the use of a correspondingly
large number of discrete velocities. For example, Inamuro and Sturtevant (1990) used on the order
of 103 velocity states. Second, numerically solving DVG models with large numbers of velocity
states is computationally intense. The advent of massively parallel (MP) computers in the last
decade has eased this difficulty somewhat. Third, deriving the collision terms for DVG models
with more than a few velocity states is analytically intense. As the number of velocity states
increases, the probability of error-free hand derivation and implementation decreases rapidly.
Fortunately, the availability of symbol-manipulation computer software such as Mathematica

(Wolfram, 1996) enables much of the derivation and implementation processes to be automated.

The unique properties of microscale gas flows make it reasonable to reconsider DVG methods.
The low-speed nature of microscale gas flows makes them computationally intense for DSMC.
Very large numbers of samples of computational molecules per cell are required to achieve
acceptable precision, which results in very long simulation times even for simple geometries.
However, the low velocities and small thermodynamic variations typical of microscale gas flows
is hypothesized to work to the advantage of the DVG method. Throughout the domain, the
molecular velocity distribution function is close to a Maxwellian distribution with zero velocity
and at some representative temperature, so the range of molecular velocities is known and is the
same at all locations in the flow. This feature of microscale gas flow, together with advances in
MP computers and symbol-manipulation software, make it reasonable to investigate the
possibility of using the DVG method to simulate microscale gas flows. The outstanding issue is
the degree to which DVG models can accurately represent relevant gas flows and how the
accuracy varies with the parameters used to specify the model.
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Figure 2. Schematic diagram of an 8-state Discrete Velocity Gas (DVG) model.
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3. Implementation of DVG Method

3.1. Overview

The Discrete Velocity Gas (DVG) method is an approximate method for solving the Boltzmann
equation. Molecules are restricted to have velocities lying within a set of discrete velocity states.
Discrete-Boltzmann transport equations govern the evolution of the number densities of these
discrete velocity states. The collision term for each equation is a quadratic polynomial in the
number densities of the velocity states, rather than a quadratic integral operator on the distribution
function. Even for relatively few velocity states, the algebra associated with determining the
collision terms is significant, so symbol-manipulation software is employed to perform this
algebra. Macroscopic quantities are determined by taking moments, sums where the quantity of
interest is weighted by the number densities of the velocity states. A numerical implementation
for a one-dimensional geometry is discussed. The discrete Boltzmann equations are solved using
a time-accurate finite-difference method with upwinding. Allowed boundary conditions include
various combinations of specular, bounce-back, and diffuse-isothermal processes.

3.2. Selection of Velocity States

The first step in prescribing a DVG model is the specification of the velocity states. Herein, DVG
models akin to the “even” models of Inamuro and Sturtevant (1990) are used. In these models, the
integers are restricted to odd values. The apparent contradiction between the name “even”
and the use of odd integers is resolved by the fact that a cubical region of velocity space centered
on the origin always has an even number of odd velocity states contained within it (Inamuro and
Sturtevant, 1990). This observation holds for any “symmetric” region of velocity space (i.e., one
that is invariant under any combination of the transformations , , and ). In
the “odd” models of Inamuro and Sturtevant (1990), the integers have both odd and even
values. Since the state is contained in any symmetric region, odd models on symmetric
regions always have odd numbers of velocity states. Odd models are not considered herein
because of their inability to simulate free-molecular flow: the state does not interact with
boundaries or, for free-molecular flow, with other velocity states, so its number density remains
unchanged from its initial specification.

Some even DVG models are indicated in Table 2. The models implemented herein range from the
simplest model (the 8-state model shown in Figure 2) up to the 88-state model. These models are
specified by starting from the 8-state unispeed model (all 8 velocities have the same speed) and
progressively adding all states corresponding to the next “generator” state. These states are
constructed from all permutations of the generator index values and , as discussed below.
The bounds on the speed scale are also included, as discussed below. Here, is the most
probable molecular speed for a Maxwellian distribution:

. (26)
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The speed-scale bounds are determined in the following manner. The gas is taken to have a
representative temperature of and a representative velocity of zero (compared to molecular
speeds) throughout the domain. For a monatomic gas, the energy per unit mass associated with
these conditions is . In a DVG model, the energy per unit mass has
minimum and maximum values, denoted by and , where and
are the minimum and maximum state magnitudes, as in Table 2. Recognizing that the actual
energy per unit mass must lie between these limiting values, the following constraint is found,
where all DVG models shown in Table 2 have the value :

. (27)

Several observations can be made about the DVG models shown in Table 2. First, the upper bound
for the speed scale is always . This corresponds to the discretization of velocity space.
Second, as more and more velocity states are included in the DVG model, the lower bound of the
speed scale tends to zero (albeit rather slowly). Third, prescribing a speed-scale value close to the
lower bound produces a “population inversion”: higher-energy velocity states have larger number
densities than lower-energy velocity states. This type of distribution does not closely resemble a
Maxwellian distribution. Fourth, prescribing a speed-scale value close to the upper bound
effectively reduces the DVG model to the 8-state model because the number densities of states
with larger velocities become very small. Fifth, the 8-state model is inherently incapable of
simulating nonisothermal flows because it is a unispeed model. Thus, from the energy point of
view, it is desirable to select a speed-scale value well away from the bounding values;
nevertheless, the speed scale is a free parameter of the model, at least within the above bounds.

Table 2: DVG models: generator states and speed scales.

Model Generator States State Magnitudes Speed-Scale Bounds

8-state , see Figure 2 , see Figure 2

32-state  and all above  and all above

56-state  and all above  and all above

64-state  and all above  and all above

88-state  and all above  and all above

136-state  and all above  and all above

1 1 1, ,( ) 3 1 2⁄( ) c0 cm⁄( )2 1 2⁄( )≤ ≤
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3.3. Determination of Collision Terms

Once a DVG model has been specified by selecting the velocity states and the speed scale, the
collision terms that appear on the right sides of the discrete Boltzmann equations must be
determined. The form of the collision terms has already been prescribed, where the only unknown
quantities are the transition coefficients that correspond to precollision states and
and allowed pairs of postcollision states . Allowed pairs of postcollision states conserve
the precollision values for mass, momentum, and energy. For a single-species monatomic gas, as
considered herein, the following constraints ensure conservation of these quantities:

, (28)

. (29)

As indicated earlier, for hard-sphere molecules of diameter , all allowed collisions are equally
probable. This includes the trivial collision, in which the precollision and postcollision states are
identical. Since the transition coefficients are equal and sum to unity over the allowed
postcollision states, the determination of the collision terms reduces to the task of determining all
of the allowed postcollision states for each combination of precollision states. When the number
of velocity states becomes large, this is not a trivial task, and neither is encoding these collision
terms after they have been determined.

The symbol-manipulation program Mathematica (Wolfram, 1996) is applied to determine the
collision terms and encode them in FORTRAN 77. Several previously-developed Mathematica

functions facilitate these operations (Torczynski, 1993). These functions are documented below.

stategen[state_]: This function operates on the generator state state to generate all other
“similar” states by permuting the order of the triple and/or changing signs. The output is a
sorted list of all states equivalent to the generator state, including the generator state itself.

stategen[state_]:=Union[
Permutations[state*{1,1,1}],
Permutations[state*{1,1,-1}],
Permutations[state*{1,-1,1}],
Permutations[state*{-1,1,1}],
Permutations[state*{1,-1,-1}],
Permutations[state*{-1,1,-1}],
Permutations[state*{-1,-1,1}],
Permutations[state*{-1,-1,-1}]]

statesgen[stateg_]: This function operates on a list of generator states stateg by using the
function stategen to generate all of the states corresponding to each generator in the list. The
output is a sorted list of all states in the model.

statesgen[stateg_]:=
Union[Flatten[Table[stategen[stateg[[s]]],{s,1,Length[stateg]}],1]]
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coll[state0_,states_]: This function calculates the collision term for the state state0

colliding with the states in the list states. It loops through all possible momentum-conserving
collisions and adds the collision to the collision term if energy conservation is also satisfied. The
list states is usually generated by the function statesgen, and the state state0 is usually one
entry from this list. The output is the discrete Boltzmann equation for state state0 with only the
temporal derivative on the left side and with the collision term on the right side lacking the scale
factor .

coll[state0_,states_]:=
Block[{state1,state2,state3,plus03,smag03,sterm,scoll,s3},
For[s3=1;scoll=0,s3<=Length[states],s3=s3+1,
state3=Part[states,s3];
plus03=state0+state3;
smag03=Apply[Plus,(state0-state3)^2];
sterm={0,0};
Do[
state1=Part[states,s1];
state2=plus03-state1;
If[And[smag03==Apply[Plus,(state1-state2)^2],
Length[Intersection[states,{state2}]]>0],
sterm=sterm+{n[state1][t]*n[state2][t],1}],
{s1,1,Length[states]}
];
scoll=scoll+Sqrt[smag03]*
(Part[sterm,1]/Part[sterm,2]-n[state0][t]*n[state3][t])
];
Expand[scoll]
]

feqngen[states_]: This function applies the function coll successively to each state in the state
list states to determine all the discrete Boltzmann equations for these states. The output is a list
of discrete Boltzmann equations in the same format as output from coll. This system of
equations can be solved by Mathematica using its built-in function NDSolve.

feqngen[states_]:=
Table[n[states[[s]]]’[t]==coll[states[[s]],states],
{s,1,Length[states]}]

numeqn[eqn_]: This function converts symbolic numerical constants to decimal numerical
constants in the equation eqn, usually one of the entries in the equation list output by feqngen.
This is necessary prior to inputting the equation list output by feqngen to the function fortsub to
output FORTRAN 77 source code.

numeqn[eqn_]:=Block[{a,b,c,d,i,j,k,eq},
eq=N[eqn,16] /. {i_,j_,k_}->Round[{i,j,k}];
eq=eq //. {1.*a_->1*a, -1.*b_->-1*b, 0.*c_->0*c, 0.+d_->0+d};
eq]

πd
2
c0
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fortsub[subname_String,eqn_List]: This function takes the list of equations eqn_List

output by feqngen, processes them using numeqn, and outputs a FORTRAN 77 subroutine named
subname_String.for that encodes these equations, where subname_String is a string.

fortsub[subname_String,eqn_List]:=
Block[{ls,fr,fs,ss,teststr,indstr,writestr,icount,vec,state,neqn,c1,c2},
ls=Length[eqn];
sls=ToString[ls];
fr={};
Do[
state=eqn[[ss,1,0,1,1]];
AppendTo[fr,n[state][t]->
ToExpression["s["<>ToString[ss]<>"]"]];
AppendTo[fr,(n[state])’[t]->
ToExpression["c["<>ToString[ss]<>"]"]],
{ss,1,ls}
];
fs=OpenAppend[subname<>".for"];
WriteString[fs,"      ","subroutine ",subname,"(s,c)","\n"];
WriteString[fs,"c","\n"];
WriteString[fs,"      ","dimension s(",sls,"), c(",sls,")","\n"];
For[c1=0;ss=1,ss<=ls,ss=ss+1,
state=eqn[[ss,1,0,1,1]];
vec=StringJoin["(",ToString[state[[1]]],",",
ToString[state[[2]]],",",ToString[state[[3]]],")"];
WriteString[fs,"c","\n"];
WriteString[fs,"c state ",ToString[ss],
", state vector ",vec,"\n"];
neqn=numeqn[eqn[[ss]]] /. fr;
teststr=StringReplace[ToString[InputForm[neqn]],
{" "->"","["->"(","]"->")","=="->"="}]<>"$";
icount=0;
c2=0;
While[StringLength[teststr]>1,
c2=c2+1;
indstr=Last[Union[Flatten[StringPosition[StringTake[
teststr,Min[StringLength[teststr],65]],{"+","*","-","$"}]]]];
writestr=StringReplace[StringTake[teststr,indstr],"$"->""];
If[icount==0,WriteString[fs,"      ",writestr,"\n"]];
If[icount==1,WriteString[fs,"     $ ",writestr,"\n"]];
icount=1;
teststr=StringDrop[teststr,indstr]
];
c1=Max[c1,c2]
];
WriteString[fs,"c","\n"];
WriteString[fs,"c continuation lines ",ToString[c1],"\n"];
WriteString[fs,"c","\n"];
WriteString[fs,"      ","return","\n"];
WriteString[fs,"      ","end","\n"];
Close[fs]
]
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These Mathematica functions are used in the following manner, presented below in the context of
the 8-state DVG model (see Table 2 and Figures 2-3).

stateg008={{1,1,1}}
states008=statesgen[stateg008]
eqn008=feqngen[states008]
fortsub["pcl008",eqn008]

stateg008: List containing the generator states (only 1) for the 8-state model.

states008: List containing all the states (exactly 8) for the 8-state model.

eqn008: List containing all the discrete Boltzmann equations for the 8-state model.

pcl008.for: File containing a FORTRAN 77 subroutine encoding the collision terms (exactly 8)
for the 8-state model. This file is displayed in Figure 3, where implicit double precision

(a-h,o-z), parameter, dimension, and comment statements have been added or modified.

The above Mathematica functions can be applied to any of the DVG models described in Table 2.
A FORTRAN 77 subroutine produced in this manner returns the collision terms for the velocity
states delineated in the comments. The array argument s(ns) contains the number densities of the
states, and the array argument c(ns) contains the corresponding collision terms. These collision
terms must be multiplied in the calling program by the factor . As discussed below, a
subroutine produced in this manner can be linked with the FORTRAN 77 code dvg1d to simulate
flow in the geometry shown in Figure 4.

πd
2
c0
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Figure 3. Example of FORTRAN 77 subroutine encoding DVG collision terms.

c
c23456789012345678901234567890123456789012345678901234567890123456789012
c
      subroutine pcl008(s,c)
c
      implicit double precision (a-h,o-z)
c
c *** Collision term, dimensionless, for 8-state model.
c
      parameter (ns=8)
c
      dimension s(ns)
      dimension c(ns)
c
c state 1, state vector (-1,-1,-1)
      c(1)=1.4142135623730951*s(2)*s(3)-1.4142135623730951*s(1)*s(4)+
     $ 1.4142135623730951*s(2)*s(5)+1.4142135623730951*s(3)*s(5)+
     $ 0.8660254037844386*s(4)*s(5)-1.4142135623730951*s(1)*s(6)+
     $ 0.8660254037844386*s(3)*s(6)-1.4142135623730951*s(1)*s(7)+
     $ 0.8660254037844386*s(2)*s(7)-2.598076211353316*s(1)*s(8)
c
c state 2, state vector (-1,-1,1)
      c(2)=-1.4142135623730951*s(2)*s(3)+1.4142135623730951*s(1)*s(4)-
     $ 1.4142135623730951*s(2)*s(5)+0.8660254037844386*s(4)*s(5)+
     $ 1.4142135623730951*s(1)*s(6)+0.8660254037844386*s(3)*s(6)+
     $ 1.4142135623730951*s(4)*s(6)-2.598076211353316*s(2)*s(7)+
     $ 0.8660254037844386*s(1)*s(8)-1.4142135623730951*s(2)*s(8)
c
c state 3, state vector (-1,1,-1)
      c(3)=-1.4142135623730951*s(2)*s(3)+1.4142135623730951*s(1)*s(4)-
     $ 1.4142135623730951*s(3)*s(5)+0.8660254037844386*s(4)*s(5)-
     $ 2.598076211353316*s(3)*s(6)+1.4142135623730951*s(1)*s(7)+
     $ 0.8660254037844386*s(2)*s(7)+1.4142135623730951*s(4)*s(7)+
     $ 0.8660254037844386*s(1)*s(8)-1.4142135623730951*s(3)*s(8)
c
c state 4, state vector (-1,1,1)
      c(4)=1.4142135623730951*s(2)*s(3)-1.4142135623730951*s(1)*s(4)-
     $ 2.598076211353316*s(4)*s(5)+0.8660254037844386*s(3)*s(6)-
     $ 1.4142135623730951*s(4)*s(6)+0.8660254037844386*s(2)*s(7)-
     $ 1.4142135623730951*s(4)*s(7)+0.8660254037844386*s(1)*s(8)+
     $ 1.4142135623730951*s(2)*s(8)+1.4142135623730951*s(3)*s(8)
c
c state 5, state vector (1,-1,-1)
      c(5)=-1.4142135623730951*s(2)*s(5)-1.4142135623730951*s(3)*s(5)-
     $ 2.598076211353316*s(4)*s(5)+1.4142135623730951*s(1)*s(6)+
     $ 0.8660254037844386*s(3)*s(6)+1.4142135623730951*s(1)*s(7)+
     $ 0.8660254037844386*s(2)*s(7)+1.4142135623730951*s(6)*s(7)+
     $ 0.8660254037844386*s(1)*s(8)-1.4142135623730951*s(5)*s(8)
c
c state 6, state vector (1,-1,1)
      c(6)=1.4142135623730951*s(2)*s(5)+0.8660254037844386*s(4)*s(5)-
     $ 1.4142135623730951*s(1)*s(6)-2.598076211353316*s(3)*s(6)-
     $ 1.4142135623730951*s(4)*s(6)+0.8660254037844386*s(2)*s(7)-
     $ 1.4142135623730951*s(6)*s(7)+0.8660254037844386*s(1)*s(8)+
     $ 1.4142135623730951*s(2)*s(8)+1.4142135623730951*s(5)*s(8)
c
c state 7, state vector (1,1,-1)
      c(7)=1.4142135623730951*s(3)*s(5)+0.8660254037844386*s(4)*s(5)+
     $ 0.8660254037844386*s(3)*s(6)-1.4142135623730951*s(1)*s(7)-
     $ 2.598076211353316*s(2)*s(7)-1.4142135623730951*s(4)*s(7)-
     $ 1.4142135623730951*s(6)*s(7)+0.8660254037844386*s(1)*s(8)+
     $ 1.4142135623730951*s(3)*s(8)+1.4142135623730951*s(5)*s(8)
c
c state 8, state vector (1,1,1)
      c(8)=0.8660254037844386*s(4)*s(5)+0.8660254037844386*s(3)*s(6)+
     $ 1.4142135623730951*s(4)*s(6)+0.8660254037844386*s(2)*s(7)+
     $ 1.4142135623730951*s(4)*s(7)+1.4142135623730951*s(6)*s(7)-
     $ 2.598076211353316*s(1)*s(8)-1.4142135623730951*s(2)*s(8)-
     $ 1.4142135623730951*s(3)*s(8)-1.4142135623730951*s(5)*s(8)
c
c continuation lines 5
c
      return
      end
c
c23456789012345678901234567890123456789012345678901234567890123456789012
c
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Figure 4. Geometry for DVG numerical implementation.
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3.4. Numerical Approach

The DVG models discussed previously are implemented in the one-dimensional geometry shown
in Figure 4. The domain is bounded by two impermeable walls, where walls 1 and 2 are located at

and , have temperatures and , have tangential velocities and , have
specular-reflection fractions and between 0 and 1, have bounce-back-reflection fractions

and between 0 and 1, and have diffuse-isothermal-reflection fractions of and
 between 0 and 1, respectively. No variations are permitted in the  and  directions.

In this domain, the discrete Boltzmann equations for a DVG model with states and speed
scale are discretized using a one-dimensional, time-accurate, finite-difference approach with
operator splitting and upwinding. This method is used only because of its simple implementation.
The one-dimensional domain is divided into uniform cells of width . Initially,
the number densities are assigned in all cells to the equilibrium values corresponding
to a single-species monatomic gas of molecular mass with pressure , temperature , and
tangential velocity . The method of determining these equilibrium values is discussed below.
A constant time step is used, and a simulation is run for time steps, where this
parameter is usually chosen large enough to achieve steady behavior.

Heuristically, the operator splitting is performed in the following manner:

 (movement), (30)

 (collision). (31)

The above movement and collision operators are applied sequentially throughout the simulation.
The movement equations do not couple to each other except through the boundary conditions.
Although the collision equations are fully coupled, their finite-difference discretization
decouples the quantities in each cell from quantities in neighboring cells.

The movement operator is implemented in the following manner. The cell-centered number
densities and their updates are denoted by and , respectively, where the cell index is

. For each time step, the number-density updates are given by

, (32)

where the rightward flux at the right boundary of cell is . At interior right cell boundaries,
for which , upwinding is used to prescribe the fluxes:

. (33)
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The above expression is also used for outgoing fluxes at the two boundaries. Outgoing fluxes at
the left boundary have and , and outgoing fluxes at the right boundary have

 and , so the above expression is well defined.

Boundary conditions are required for incoming fluxes at the boundaries. The flux for an
incoming state at a boundary is formed from a linear combination of the fluxes corresponding to
three reflection processes (others like diffuse-adiabatic reflection could be included if desired):
bounce-back reflection, specular reflection, and diffuse-isothermal reflection, denoted by ,

, and , respectively:

. (34)

The fluxes for bounce-back and specular reflections are easily specified. Let state
denote an incoming state. Then the corresponding bounce-back and specular states that reflect
into are outgoing and are given by and , respectively.
Conservation of mass is used to prescribe the corresponding fluxes at the boundaries:

, (35)

. (36)

In other words, a bounce-back reflection converts the number density from state into state ,
and a specular reflection converts the number density from state into state . The fluxes on the
right sides of the above two equations are well defined by upwinding since they are outgoing.

The fluxes for diffuse-isothermal reflections are specified in terms of the equilibrium distribution
at the wall conditions. Let and be the total rightward incoming and outgoing fluxes at a
boundary, respectively:

, (37)

. (38)

Then, by conservation of mass at an impermeable wall, these two quantities must sum to zero:

. (39)

Let  be the fraction of the total incoming flux that is transported by an incoming state :

. (40)
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Clearly the  all satisfy  and all sum to unity:

. (41)

For diffuse-isothermal reflection from a wall, is related to the equilibrium distribution at the
wall conditions, where the proportionality coefficient is independent of :

. (42)

When combined, these two equations determine the quantity :

. (43)

The absolute values are removed because all incoming states have the same sign for . Thus,
the diffuse-isothermal-reflection flux  for an incoming state  is determined:

, (44)

where the equilibrium number densities  are evaluated at the wall conditions.

Thus, Equations (34), (35), (36), and (44) prescribe the flux of an incoming state at a boundary,
where an incoming state has velocity pointing into the gas region and out of the solid region.
These equations, along with Equations (32) and (33), completely specify the movement operator.
Determination of the equilibrium number densities is discussed below.

The collision operator is implemented in the following manner. Since the cell-centered finite-
difference discretization discussed above decouples the collision operators of adjacent cells (i.e.,
the quantities in Equation (31) are replaced by their cell-centered quantities), the resulting
ordinary differential equations (ODEs) are integrated forward in time on a cell-by-cell basis. For
simplicity, a purely explicit integration scheme that enforces conservation is implemented. The
time step is subdivided into smaller time steps of . The explicit
update is given below, where the integer index represents a time ,

 represents the precollision states, and  represents the postcollision states:

. (45)
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The equilibrium number densities , needed to specify the initial conditions and the diffuse-
isothermal-reflection boundary condition, are determined simply by integrating the collision
operator forward in time until equilibrium is obtained (i.e., the number densities stop changing).
However, initial conditions are required that satisfy the prescribed macroscopic quantities: a
number density of , a temperature of , a velocity -component of 0, a velocity -component
of , and a velocity -component of 0. These constraints are expressed by the equations below:

, (46)

, (47)

. (48)

With some algebra, these expressions can be manipulated into more convenient forms:

, (49)

. (50)

Here, , , and .
Thus, the fraction of the total number density in each state depends only on the states themselves
and the two dimensionless parameters and . These equations clearly do not have
a unique solution when there are more than four states. One generic solution for symmetric sets of
states that is close to the equilibrium solution is presented below:

, (51)

, (52)

. (53)
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ns
init

n
----------

⎝ ⎠
⎜ ⎟
⎛ ⎞

s
∑ s

2 3
2
---

cm

c0
------⎝ ⎠

⎛ ⎞ 2 V
c0
-----⎝ ⎠

⎛ ⎞ 2
+=
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When , , and are given, it is necessary to solve the above equation numerically for .
This polynomial equation has exactly one finite positive solution when the following constraint is
satisfied:

. (54)

When the gas is motionless (i.e., ), this is identical to the constraint in Table 2. A standard
Newton-Raphson technique is used to solve the polynomial equation for . Alternatively, if is
viewed as unknown and is viewed as known, the polynomial equation for is easily solved in
closed form for .

The above approach for determining the equilibrium distribution is applicable only to multispeed
models. For a unispeed model, such as the 8-state model in Table 2, the speed scale is
determined directly through the equation

. (55)

This limits the applicability of the 8-state model to isothermal, extremely subsonic flows.

3.5. Computational Implementation

The above numerical approach is implemented in the FORTRAN 77 code dvg1d. This code reads
two input files and writes two output files. The first input file is dvg1d_inp.dat. This file contains
the basic physical and numerical parameters to set up and run a dvg1d simulation. The second
input file is dvg1d_sta.dat. This file contains a list of the velocity states (see Figure 2 and
Table 2). Two numerical parameters for a simulation are not included in these files but are
included in the parameter statements in dvg1d: ns, the number of velocity states; and nx, the
number of cells. These parameter statements must be checked for consistency prior to any run. In
particular, the number of velocity states ns must be consistent with the file dvg1d_sta.dat.
Examples of these two files are provided below.

dvg1d_sta.dat: This input file provides the velocity states for dvg1d (see Figure 2 and Table 2).
The file for the 8-state model is shown below. The first column is a reference index, and the next
three columns are the  components of the velocity state .

1  -1  -1  -1
2  -1  -1   1
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dvg1d_inp.dat: This input file provides the inputs for a dvg1d simulation (see Figure 4). The
lines alternate between an explanatory comment and the corresponding numerical value. The
values below are in MKS units; however, any consistent set of units is acceptable. If more than
one value appears on a line (say, for reference), only the first value is used.

Boltzmann constant
1.380658D-023
Collision flag (0 = no, 1 = yes)
1.
Viscosity ratio, hard sphere
1.016034
Thermal-conductivity ratio, hard sphere
1.025218
Molecular mass
66.3D-027
Temperature reference
273.15
Viscosity reference
2.117D-005
Pressure initial
266.644 133.322 13.3322 1.33322 .133322
Temperature initial
273.15
Velocity_y initial
0.
Temperature wall 1
253.15
Temperature wall 2
293.15
Velocity_y wall 1
0.
Velocity_y wall 2
0.
Symmetric fraction wall 1
0.
Symmetric fraction wall 2
0.
Antisymmetric fraction wall 1
0.
Antisymmetric fraction wall 2
0.
Domain length
0.001
Gravitational acceleration in y-direction
0.
Time step for move
1.0D-009
Number of move time steps
1000000
Number of ODE time steps per move time step
1
Speed scale of states
180.
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The two output files dvg1d_ini.dat and dvg1d_out.dat have the same format and differ only in
that dvg1d_ini.dat reports the initial values, whereas dvg1d_out.dat reports the final values.
This latter file is updated throughout the simulation so that intermediate results can be examined.
Quantities in these files correspond to the averages of the precollision and postcollision values.
The rows in these files report values at successive positions across the domain. The quantities in
the columns are delineated below.

Column 1: index of x cell
Column 2: x position
Column 3: number density
Column 4: mass density
Column 5: temperature
Column 6: pressure
Column 7: x component of velocity
Column 8: y component of velocity
Column 9: z component of velocity
Column 10: x component of energy flux
Column 11: y component of energy flux
Column 12: z component of energy flux
Column 13: xy component of stress
Column 14: xz component of stress
Column 15: yz component of stress
Column 16: x temperature
Column 17: y temperature
Column 18: z temperature
Column 19: x pressure (xx component of stress)
Column 20: y pressure (yy component of stress)
Column 21: z pressure (zz component of stress)

The code dvg1d resides in the file dvg1d.for and can be compiled with standard FORTRAN 77
compilers. It is important to select a compiler option ensuring double precision of numerical
constants in the code. One example is provided below in which the pgf77 compiler is used with
the -r8 flag to enforce double precision. The file pcl.for contains the collision subroutine, an
example of which is shown in Figure 3 for the 8-state model.

% pgf77 -r8 -o dvg1d dvg1d.for pcl.for
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4. Couette-Flow Benchmark Problem

4.1. Overview

The benchmark problem of Couette flow is examined. This mathematically one-dimensional
steady-state situation has a hard-sphere monatomic gas confined between a plane of antisymmetry
and a diffuse-isothermal moving wall. Of particular interest are the velocity profile and the shear
stress (constant across the domain) for near-continuum to free-molecular conditions. The DSMC,
NSSJ, and DVG methods are applied to this problem. DSMC is considered to provide the “exact”
solution to within the uncertainties arising from discretization and statistical effects. For all
conditions, the NSSJ results differ by at most several percent from the DSMC results. DVG
results are provided for several sets of velocity states and speed scales. For each set of flow
conditions, the velocity profile depends only modestly on the model, but the shear stress (the
quantity of interest for predicting structural response) depends strongly on the model.

4.2. Problem Description

Couette flow is a special case of the more general flow shown in Figure 4. A monatomic gas is
confined between two parallel planes. The right plane is a diffuse-isothermal wall with prescribed
temperature and tangential velocity, here taken to be upward, and the left plane is taken to be a
bounce-back wall (i.e., antisymmetric reflection, as discussed above). In most other studies, these
two planes are diffuse-isothermal walls with equal temperatures but opposite tangential velocities.
With that choice, the plane halfway between the two walls is a plane of antisymmetry, so the use
of a boundary with antisymmetric reflection reduces the domain by half.

For the nonturbulent flows considered here, the long-time behavior of this flow problem is steady.
This steady flow depends only on the molecular mass , the hard-sphere diameter (or,
equivalently, the absolute viscosity at a reference temperature ), the average number
density in the domain (or, equivalently, the initial pressure and the initial temperature ,
here taken to be the wall value), the wall temperature , the wall tangential velocity , and the
domain length . Of particular interest are the -profile of the -component of velocity and the
wall shear stress  (the shear stress is constant across the domain).

In the limit of small velocities, for which the flow is isobaric ( ) and isothermal
( ) and for which the DVG model can be applied, the NSSJ model yields a closed-
form solution (Vincenti and Kruger, 1965):

, , , , . (56)

Here, is the mean free path, is the mass density, and is the average molecular speed. This
result is correct in the continuum and near-continuum regimes, for which . Interestingly,
this result also is correct in free-molecular limit, for which .
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4.3. Results

The DSMC, NSSJ, and DVG methods are applied to the Couette-flow benchmark problem
discussed above. DSMC simulations are performed using the code DSMC1 (Bird, 1998), which is
modified to incorporate precollision and postcollision sampling (Torczynski et al., 2003). This
code accurately predicts noncontinuum gas flows in the above geometry (Gallis et al., 2004).
NSSJ results are generated by evaluation of the closed-form expressions above. DVG simulations
are performed using the code dvg1d, for which the numerical approach and the computational
implementation are discussed extensively in previous sections. The relevant physical parameters
for the simulations are shown in the table below and follow the order in the file dvg1d_inp.dat.

The following numerical parameters are used in the DSMC1 simulations. Hard-sphere molecules
are used, which have and . The computational domain is divided into 200
uniform cells, each having a size of 5 µm. A time step of 7 ns is used. The average number of
computational molecules per cell is 30. The gas is initially motionless at the given conditions.
Usually, 32 independent simulations are performed, which enables about 2 billion precollision
and postcollision steady-state samples to be acquired for each cell. These parameters easily satisfy
Bird’s criteria (Bird, 1998) and are known to produce steady-state results that are accurate to well
within 1% (Gallis et al., 2004).

Table 3: Relevant physical parameters in Couette-flow simulations.

Quantity Symbol Value Comment

Boltzmann constant Bird (1998)

Viscosity ratio 1.016034 CE hard-sphere

Thermal conductivity ratio 1.025218 CE hard-sphere

Molecular mass argon

Temperature reference 273.15 K = 0 ˚C standard

Viscosity reference argon

Pressure, initial 266.644 Pa = 2000 mtorr
133.322 Pa = 1000 mtorr
13.3322 Pa = 100 mtorr
1.33322 Pa = 10 mtorr
0.13322 Pa = 1 mtorr

near- continuum

near-free-molecular

Temperature, initial 273.15 K = 0 ˚C standard

Temperature, wall 2 273.15 K = 0 ˚C standard

Tangential velocity, wall 2 10 m/s much less than

Domain length 0.001 m = 1 mm Gallis et al., (2004)

kB 1.380658 23–×10 J/K

µ∞ µ1⁄

K∞ K1⁄

m 66.3 27–×10 kg

T ref

µref 2.117 5–×10 Pa s⋅

p0

T 0

T 2

V 2 c

L

ω 1 2⁄= α 1=
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The following numerical parameters are used in the dvg1d simulations and are specified either in
dvg1d itself or in the input file dvg1d_inp.dat. Hard-sphere molecules are used inherently by the
DVG method. The computational domain is divided into uniform cells, each having a
size of . An overall time step of is used, with ODE time
step per overall time step, so that the time step to integrate the collision terms is .
The gas is initially moving with the wall velocity at the indicated temperature (also the wall value)
and pressure. The flow properties are reported after time steps. Simulations
using other values of these parameters indicate that the above choices produce numerical
uncertainties of well less than 1% in the results.

DVG simulations are performed with several sets of velocity states and with several values of
the speed scale . As indicated above, these quantities completely specify a DVG model. Four
sets of velocity states are used (see Table 2): the 8-state, 32-state, 56-state, and 88-state models.
As indicated in Table 2, the square of the ratio of the speed scale to the Maxwellian most
probable speed is constrained to lie in a certain range for a given DVG model;
otherwise, the DVG model cannot represent the state of the gas. Eight values of this quantity are
selected that satisfy the constraint in Table 2 for the 88-state model: ,
0.126578, 0.166666, 0.225028, 0.284801, 0.351606, 0.425443, and 0.500000. Simulations with
one of the other models are performed using only the values that satisfy that model’s constraint.
For example, simulations with the 8-state model use only the value 0.500000 (see Table 2).

Figures 5-10 show DSMC, NSSJ, and DVG velocity profiles for the above conditions. Each plot
shows the simulation method used and the profiles at the 5 pressures that are examined. All six
sets of profiles show the same qualitative behavior. The velocity at the left boundary is zero, the
velocity rises linearly or slightly more rapidly across the domain, and the gas velocity near the
wall differs by a finite amount from the wall value. This velocity slip is very small at near-
continuum conditions (the highest pressure) but becomes comparable to the wall velocity at near-
free-molecular conditions (the lowest pressure). The NSSJ and DVG profiles have less curvature
and larger slips at the walls than the corresponding DSMC profiles. Only a selected subset of the
DVG results are displayed in these figures. This is because the DVG profiles exhibit only minor
variations for all of the different models and the different values of  that are examined.

Figures 11-16 show the corresponding wall shear stresses from the three methods. The first five
figures exhibit the shear stress at one of the prescribed pressures (from lowest to highest) as a
function of the parameter . Since the DSMC and NSSJ values are independent of this
parameter, they appear as horizontal lines. Although the NSSJ values are always within a few
percent of the DSMC values, the DVG values differ significantly from the DSMC values as the
parameter is varied, especially at lower pressures (i.e., near-free-molecular flow).
These differences are reduced slightly as the number of velocity states is increased from 8 to 88.
Figure 16 summarizes the shear-stress results for all cases examined. Although the DSMC and
NSSJ values are in close agreement at all pressures and tend to the correct limits, the DVG results
at each pressure exhibit a substantial variation about the DSMC value (a log scale is used).

Thus, the DVG method produces comparably accurate velocity profiles but far less accurate shear-
stress values than the NSSJ method does, even at near-free-molecular conditions, despite the
much greater computational effort required by the DVG method.
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Figure 5. DSMC velocity profiles.

Figure 6. NSSJ velocity profiles.
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Figure 7. DVG velocity profiles: 32 states, .

Figure 8. DVG velocity profiles: 32 states, .
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Figure 9. DVG velocity profiles: 88 states, .

Figure 10. DVG velocity profiles: 88 states, .
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Figure 11. DSMC, NSSJ, and DVG shear stress  vs.  at .

Figure 12. DSMC, NSSJ, and DVG shear stress  vs.  at .
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Figure 13. DSMC, NSSJ, and DVG shear stress  vs.  at .

Figure 14. DSMC, NSSJ, and DVG shear stress  vs.  at .
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Figure 15. DSMC, NSSJ, and DVG shear stress  vs.  at .

Figure 16. DSMC, NSSJ, and DVG shear stress  vs. pressure .
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5. Fourier-Flow Benchmark Problem

5.1. Overview

The benchmark problem of Fourier flow is examined. This mathematically one-dimensional
steady-state situation has a hard-sphere monatomic gas confined between two motionless diffuse-
isothermal walls at different temperatures. Of particular interest are the temperature profile and
the heat flux (constant across the domain) for near-continuum to free-molecular conditions. The
DSMC, NSSJ, and DVG methods are applied to this problem. DSMC is considered to provide the
“exact” solution to within the uncertainties arising from discretization and statistical effects. For
all conditions, the NSSJ results differ by at most several percent from the DSMC results. DVG
results are provided for several sets of velocity states and speed scales. For each set of flow
conditions, the temperature profile depends only modestly on the model, but the heat flux (the
quantity of interest for predicting structural response) depends strongly on the model.

5.2. Problem Description

Fourier flow is a special case of the more general flow shown in Figure 4. A monatomic gas is
confined between two parallel planes. The left and right planes are motionless diffuse-isothermal
walls with prescribed temperatures, where for convenience the left wall is colder and the right
wall is hotter. Unlike the situation of Couette flow, no plane of antisymmetry exists, so the extent
of the domain cannot be reduced.

Over long times, this flow is steady. This flow depends only on the molecular mass , the hard-
sphere diameter (or, equivalently, the thermal conductivity at a reference temperature

), the average number density (or, equivalently, the initial pressure and temperature
), the wall temperatures and , and the domain length . Of particular interest are the -

profile of the temperature  and the wall heat flux  (constant across the domain).

In the limit of small temperature differences, for which the temperature dependence of all other
thermodynamics quantities can be ignored and for which the DVG model can be applied, the
NSSJ model yields a closed-form solution (Vincenti and Kruger, 1965):

, , , ,

. (57)

Here, is the mean free path, is the mass density, and is the average molecular speed. This
result is correct in the continuum and near-continuum regimes, for which . Interestingly,
this result also is correct in free-molecular limit, for which .
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5.3. Results

The DSMC, NSSJ, and DVG methods are applied to the Fourier-flow benchmark problem
discussed above. DSMC simulations are performed using the code DSMC1 (Bird, 1998), which is
modified to incorporate precollision and postcollision sampling (Torczynski et al., 2003). This
code accurately predicts noncontinuum gas flows in the above geometry (Gallis et al., 2004).
NSSJ results are generated by evaluation of the closed-form expressions above. DVG simulations
are performed using the code dvg1d, for which the numerical approach and the computational
implementation are discussed extensively in previous sections. The relevant physical parameters
for the simulations are shown in the table below and follow the order in the file dvg1d_inp.dat.

The following numerical parameters are used in the DSMC1 simulations. Hard-sphere molecules
are used, which have and . The computational domain is divided into 200
uniform cells, each having a size of 5 µm. A time step of 7 ns is used. The average number of
computational molecules per cell is 30. The gas is initially motionless at the given conditions.
Usually, 32 distinct simulations are performed, which enables about 2 billion precollision and
postcollision steady-state samples to be acquired for each cell. These parameters easily satisfy
Bird’s criteria (Bird, 1998) and are known to produce steady-state results that are accurate to well
within 1% (Gallis et al., 2004).

Table 4: Relevant physical parameters in Fourier-flow simulations.

Quantity Symbol Value Comment

Boltzmann constant Bird (1998)

Viscosity ratio 1.016034 CE hard-sphere

Thermal conductivity ratio 1.025218 CE hard-sphere

Molecular mass argon

Temperature reference 273.15 K = 0 ˚C standard

Viscosity reference argon

Pressure, initial 266.644 Pa = 2000 mtorr
133.322 Pa = 1000 mtorr
13.3322 Pa = 100 mtorr
1.33322 Pa = 10 mtorr
0.13322 Pa = 1 mtorr

near- continuum

near-free-molecular

Temperature, initial 273.15 K = 0 ˚C standard

Temperature, wall 1 253.15 K = -20 ˚C colder

Temperature, wall 2 293.15 K = 20 ˚C hotter

Domain length 0.001 m = 1 mm Gallis et al., (2004)

kB 1.380658 23–×10 J/K

µ∞ µ1⁄

K∞ K1⁄

m 66.3 27–×10 kg

T ref

µref 2.117 5–×10 Pa s⋅

p0

T 0

T 1

T 2

L

ω 1 2⁄= α 1=
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The following numerical parameters are used in the dvg1d simulations and are specified either in
dvg1d itself or in the input file dvg1d_inp.dat. Hard-sphere molecules are used inherently by the
DVG method. The computational domain is divided into uniform cells, each having a
size of . An overall time step of is used, with ODE time
step per overall time step, so that the time step to integrate the collision terms is .
The gas is initially motionless at the indicated temperature and pressure. The flow properties are
reported after time steps. Simulations using other values of these parameters
indicate that the above choices produce numerical uncertainties of well less than 1% in the results.

DVG simulations are performed with several sets of velocity states and with several values of
the speed scale . As indicated above, these quantities completely specify a DVG model. Three
sets of velocity states are used (see Table 2): the 32-state, 56-state, and 88-state models (the 8-
state model cannot represent nonisothermal flows). As indicated in Table 2, the square of the ratio
of the speed scale to the Maxwellian most probable speed is constrained to
lie in a certain range for a given DVG model; otherwise, the DVG model cannot represent the
state of the gas. Eight values of this quantity are selected that satisfy the constraint in Table 2 for
the 88-state model: , 0.126578, 0.166666, 0.225028, 0.284801, 0.351606,
0.425443, and 0.500000. Simulations with one of the other models are performed using only the
values that satisfy that model’s constraint. For example, simulations with the 8-state model use
only the value 0.500000 (see Table 2).

Figures 17-22 show DSMC, NSSJ, and DVG temperature profiles for the above conditions. Each
plot shows the simulation method used and the profiles at the 5 pressures that are examined. All
six sets of profiles show the same qualitative behavior. The temperature rises fairly linearly across
the domain, and the temperatures near the walls differ by a finite amount from the wall values.
These temperature jumps are very small at near-continuum conditions (the highest pressure) but
become comparable to the wall temperatures at near-free-molecular conditions (the lowest
pressure). The NSSJ and DVG profiles have less curvature and larger jumps at the walls than the
corresponding DSMC profiles. Only a selected subset of the DVG results are displayed in these
figures. This is because the DVG profiles exhibit only minor variations for all of the different
models and the different values of  that are examined.

Figures 23-28 show the corresponding wall heat flux from the three methods. The first five figures
exhibit the heat flux at one of the prescribed pressures (from lowest to highest) as a function of the
parameter . Since the DSMC and NSSJ values are independent of this parameter, they
appear as horizontal lines. Although the NSSJ values are always within a few percent of the
DSMC values, the DVG values at all pressures differ tremendously from the DSMC values as the
parameter is varied. These differences are reduced slightly as the number of velocity
states is increased from 32 to 88. Figure 28 summarizes the heat-flux results for all cases
examined. Although the DSMC and NSSJ values are in close agreement at all pressures and tend
to the correct limits, the DVG results at each pressure exhibit a substantial variation about the
DSMC value (a log scale is used).

Thus, the DVG method produces comparably accurate temperature profiles but far less accurate
heat-flux values than the NSSJ method does, even at near-free-molecular conditions, despite the
much greater computational effort required by the DVG method.
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Figure 17. DSMC temperature profiles.

Figure 18. NSSJ temperature profiles.
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Figure 19. DVG temperature profiles: 32 states, .

Figure 20. DVG temperature profiles: 32 states, .
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Figure 21. DVG temperature profiles: 88 states, .

Figure 22. DVG temperature profiles: 88 states, .
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Figure 23. DSMC, NSSJ, and DVG heat flux  vs.  at .

Figure 24. DSMC, NSSJ, and DVG heat flux  vs.  at .
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Figure 25. DSMC, NSSJ, and DVG heat flux  vs.  at .

Figure 26. DSMC, NSSJ, and DVG heat flux  vs.  at .
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Figure 27. DSMC, NSSJ, and DVG heat flux  vs.  at .

Figure 28. DSMC, NSSJ, and DVG heat flux  vs. pressure .
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6. Conclusions

A method to simulate noncontinuum microscale gas based on radiation-transport methods has
been investigated. The Discrete Velocity Gas (DVG) method restricts the velocities of gas
molecules to a finite set of values. These values are described by a speed scale and a set of
nondimensional direction vectors referred to here as velocity states. Mathematica functions are
developed that allow the collision terms for these velocity states to be determined and encoded in
FORTRAN 77. Boundary conditions are formulated that represent the transfer of momentum and
heat to a solid surface under fairly general conditions (bounce-back reflection, specular reflection,
diffuse-isothermal reflection, and linear combinations thereof). The discrete Boltzmann equations
describing the temporal and spatial evolution of the number densities corresponding to the
velocity states, as well as the collision terms and the boundary conditions above, are encoded in a
FORTRAN 77 code called dvg1d. This code simulates the flow in a one-dimensional domain
bounded by two parallel planes.

To assess the accuracy of the DVG method, two benchmark problems are examined: Couette flow,
which has isothermal sliding walls, and Fourier flow, which has nonisothermal motionless walls.
The Direct Simulation Monte Carlo (DSMC) method, as embodied in the code DSMC1, is applied
to these benchmark problems to generate highly accurate results. These results are compared to
closed-form expressions derived for the Navier-Stokes Slip/Jump (NSSJ) method in the limit of
small departures from uniform conditions and to the results from DVG simulations using dvg1d.
DVG simulations are performed of these flows using the 8-state, 32-state, 56-state, and 88-state
models with up to 8 values of the speed scale for each model, as appropriate.

For both benchmark problems and for all sets of conditions, the NSSJ shear-stress and heat-flux
results are at most only a few percent different from the DSMC results, whereas the DVG results
are always significantly different from the DSMC results. Moreover, for quantities of interest to
structural-dynamics and heat-transfer simulations, such as the shear stress and the heat flux, the
DVG results can differ from the DSMC results by order-unity amounts. In fact, the agreement
between the DVG and DSMC results apparently becomes worse as the order of the moment that
determines the physical quantity increases and is worse for odd moments than for even moments.
Velocity, a first-order odd moment, is reasonably accurate, whereas temperature, a second-order
even moment, is less accurate. Shear stress, a second-order odd moment, is rather inaccurate, and
heat flux, a third-order odd moment is highly inaccurate.

Thus, the hypothesis motivating this study, namely that the DVG method might offer advantages
for the small velocities and temperature differences found in microsystems, appears to be false.
When the DSMC method cannot be used, the NSSJ method appears to offer advantages compared
to the DVG method in terms of accuracy and computational efficiency. While the causes for the
observed inaccuracy of the DVG method have not been identified, it is conjectured that the
coarseness with which the molecular velocity distribution function is represented, the anisotropy
inherent in molecular movement, and the inclusion of only discrete collisions in the molecular
collision terms may be responsible.
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