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Motivation 
• Goal: characterize the vulnerability of a particular computation to silent 

data corruption 
 
• Need to understand vulnerability so we can: 

– Decide whether a non-redundant implementation is acceptable 
– Compare alternative implementations of an algorithm 
– Decide which regions of a computation deserve soft error protection 
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Fault model 
• Single event upset (SEU) 

in a user logic flip-flop: 
 
 
 
 
 
 
 
• Our study explicitly does not include: 

– SEUs in memories or configuration bits (assumed to be detectable) 
– SEUs in DSP blocks  
– Single event transients 

Portion of a Virtex-4 SLICEL, from Virtex-4 FPGA User Guide 
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Error model 
• Our focus is on “insidious soft errors” (ISEs) 
 
• ISEs are logic circuit errors that: 

– Escape error detection 
– Cause a corrupted computational result 
 

• Relation between ISEs and silent data corruption (SDC): 
– ISEs cause SDC, but there are many other causes of SDC as well  
– ISEs can start long before the SDC occurs, due to error latency 
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Which metric to use? 
• Goal: characterize the threat of an insidious soft error 

– Need to measure the extent of the vulnerability per computation  
– Need a measure during the design phase; SEU rate may be unknown 
 

• One approach: Soft error rate (SER), MTTF 
– Requires knowledge of SEU rate 
– Does not account for throughput 

• Ex.: Impl. A has SER=1 FIT and throughput of 1 results/s, while impl. B has SER=2 FIT 
and 5 results/s.  Results from B are more reliable despite higher SER. 

 
• Another approach: measure the fraction of faults that lead to errors 

– Names: architectural vulnerability factor (AVF), logic derating, error cross-section 
• vulnerability fraction (VF) 

– Does not capture the absolute extent of the vulnerability 
• For that we need to integrate across space & time 
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Vulnerability over Space & Time (VST) 
• N state elements with spatial weight ws(n) 
• K temporal intervals with weight wt(k)  
• Vulnerability at a particular space & time: 0 ≤ v(n,k) ≤ 1 
• VST is a straightforward summation of vulnerabilities per computation: 
 

 
                                                           

N       K 

VST = ∑ ∑ v(n,k) × ws(n) × wt(k) 
                                                             n=1   k=1 

 
 

• Units: (spatial elements) · (time), e.g. bit·sec 
– VST represents the intrinsic vul. of a computation, independent of SEU rate  

– Similar metrics: mean-work-to-failure4, data vulnerability of an application5 (in 
MB-seconds) 
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VST map 

Assuming all elements consist of 
1 bit and all intervals are 1 s: 

VST = 36 bit·sec 
 
If upset rate is uniform and 
assuming a single fault per 
computation: Perr = VST × λ 
Example: λ = .01 FIT 
Perr = (36 bit·sec)(2.8×10-15/bit·sec) 
Perr = 10-13 
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Methodology Flow 
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Experiment 1 
• Question: How does VST vary with different amounts of pipelining? 

 
• Generated 3 implementations of a double-precision floating-point adder, 

based on the Xilinx Floating Point Operator v3.06.  Target was Virtex-5.  
Implementation characteristics: 

 
 
 
 
 
 
 
 
• Performed exhaustive fault simulation for 10 random FP addition operations 
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Results 

Conclusions: 
• Minimum-pipelined implementation has lowest vulnerability (VST) 
• Adding pipe stages (in this case) increases frequency and throughput but 

adds vulnerable elements; net increase in VST 
• Existing VF metric gives incomplete picture 
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Experiment 2 
• VST for a serial vs. streaming implementation 

 
• Generated two implementations of the COordinate Rotation DIgital 

Computer (CORDIC) algorithm, based on the Xilinx CORDIC v3.07.  
Target was Virtex-II Pro.  Implementation characteristics: 
 

 
 
 
 
 
 
• Performed exhaustive fault simulation for ten random vector rotation 

operations 
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Results 

Conclusions: 
• The streaming implementation is the least vulnerable (lowest VST) 
• In this case the highest performing implementation also has lowest 

vulnerability, whereas the reverse was true in Experiment 1.   
• Again the existing VF metric gives a (very) incomplete picture 

Proposed VST metric                  Existing VF metric 
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Experiment 3 
• VST across different FFT implementations 
• Generated three implementations of a 1D complex fixed-point Fast Fourier 

Transform, all based on the Xilinx FFT v5.08.  Target was Virtex-II Pro. 
 
 
 
 
 
 
 
 
• Performed fault simulation of 32-pt and 64-pt FFTs 
• Built a simple model of VST vs. FFT size for each implementation, allowing 

VST to be estimated 
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VST map: 32-pt Radix-2 FFT 

Time (clock periods) 

State 
elements 
(flip-flops) 
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Vulnerability dynamics 
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Results 

Conclusions: 
• This time, the highest performing implementation also has lowest 

vulnerability (VST) 
• Again the existing VF metric gives a (very) incomplete picture 

Proposed VST metric             Existing VF metric 
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Conclusions 
• Proposed approach allows: 

– the intrinsic vulnerability of a specific computation to be characterized 
– alternative implementations to be compared w/ a single figure-of-merit 
– spatial and temporal patterns to be uncovered 
– challenge: extensive fault injection usually required 
 

• Vulnerability experiments indicate: 
– Inefficient implementations have low VF, but can also have high vul.  
– VST can be treated as an independent design criterion along with 

power consumption, area, performance 
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Thank you! 
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