

Characterizing the Vulnerability of an Onboard
Computation to Silent Data Corruption

Kenneth M. Zick

University of Michigan
NASA LaRC GSRP Fellowship

John P. Hayes

University of Michigan

MAPLD 2008

MAPLD 2008 2

Outline

• Introduction
• Vulnerability metric
• Experimental results
• Conclusions

MAPLD 2008 3

Motivation
• Goal: characterize the vulnerability of a particular computation to silent

data corruption

• Need to understand vulnerability so we can:

– Decide whether a non-redundant implementation is acceptable
– Compare alternative implementations of an algorithm
– Decide which regions of a computation deserve soft error protection

MAPLD 2008 4

Fault model
• Single event upset (SEU)

in a user logic flip-flop:

• Our study explicitly does not include:

– SEUs in memories or configuration bits (assumed to be detectable)
– SEUs in DSP blocks
– Single event transients

Portion of a Virtex-4 SLICEL, from Virtex-4 FPGA User Guide

MAPLD 2008 5

Error model
• Our focus is on “insidious soft errors” (ISEs)

• ISEs are logic circuit errors that:

– Escape error detection
– Cause a corrupted computational result

• Relation between ISEs and silent data corruption (SDC):
– ISEs cause SDC, but there are many other causes of SDC as well
– ISEs can start long before the SDC occurs, due to error latency

MAPLD 2008 6

Which metric to use?
• Goal: characterize the threat of an insidious soft error

– Need to measure the extent of the vulnerability per computation
– Need a measure during the design phase; SEU rate may be unknown

• One approach: Soft error rate (SER), MTTF
– Requires knowledge of SEU rate
– Does not account for throughput

• Ex.: Impl. A has SER=1 FIT and throughput of 1 results/s, while impl. B has SER=2 FIT
and 5 results/s. Results from B are more reliable despite higher SER.

• Another approach: measure the fraction of faults that lead to errors

– Names: architectural vulnerability factor (AVF), logic derating, error cross-section
• vulnerability fraction (VF)

– Does not capture the absolute extent of the vulnerability
• For that we need to integrate across space & time

MAPLD 2008 7

Vulnerability over Space & Time (VST)
• N state elements with spatial weight ws(n)
• K temporal intervals with weight wt(k)
• Vulnerability at a particular space & time: 0 ≤ v(n,k) ≤ 1
• VST is a straightforward summation of vulnerabilities per computation:

N K

VST = ∑ ∑ v(n,k) × ws(n) × wt(k)
 n=1 k=1

• Units: (spatial elements) · (time), e.g. bit·sec
– VST represents the intrinsic vul. of a computation, independent of SEU rate

– Similar metrics: mean-work-to-failure4, data vulnerability of an application5 (in
MB-seconds)

MAPLD 2008 8

VST map

Assuming all elements consist of
1 bit and all intervals are 1 s:

VST = 36 bit·sec

If upset rate is uniform and
assuming a single fault per
computation: Perr = VST × λ
Example: λ = .01 FIT
Perr = (36 bit·sec)(2.8×10-15/bit·sec)
Perr = 10-13

 Interval

 0 1 2 3 4 5 6 7 8 9

State
element

0
1
2
3
4
5
6
7
8
9

Time

MAPLD 2008 9

Methodology Flow

Generation of gate‐
level model

Xilinx CORE Generator tool

Generation of gate‐
level model

Xilinx CORE Generator tool

Instrumentation

process

Fault injection logic
insertion by perl script

Instrumentation

process

Fault injection logic
insertion by perl script

Fault simulation

Verilog testbench

Fault simulation

Verilog testbench

Xilinx IP
Center
Xilinx IP
Center

Visualization of
VST

Visualization of
VST

Spreadsheet
analysis

Spreadsheet
analysis

Optimization
with Cplex tool
Optimization
with Cplex tool

MAPLD 2008 10

Experiment 1
• Question: How does VST vary with different amounts of pipelining?

• Generated 3 implementations of a double-precision floating-point adder,

based on the Xilinx Floating Point Operator v3.06. Target was Virtex-5.
Implementation characteristics:

• Performed exhaustive fault simulation for 10 random FP addition operations

MAPLD 2008 11

Results

Conclusions:
• Minimum-pipelined implementation has lowest vulnerability (VST)
• Adding pipe stages (in this case) increases frequency and throughput but

adds vulnerable elements; net increase in VST
• Existing VF metric gives incomplete picture

Proposed VST metric Existing VF metric

0.0E+00

5.0E-07

1.0E-06

1.5E-06

2.0E-06

2.5E-06

Min.-
pipelined

Med.-
pipelined

Max.-
pipelined

V
S

T
 (b

it
· s

ec
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Min.-
pipelined

Med.-
pipelined

Max.-
pipelined

V
ul

ne
ra

bi
lit

y
fra

ct
io

n

MAPLD 2008 12

Experiment 2
• VST for a serial vs. streaming implementation

• Generated two implementations of the COordinate Rotation DIgital

Computer (CORDIC) algorithm, based on the Xilinx CORDIC v3.07.
Target was Virtex-II Pro. Implementation characteristics:

• Performed exhaustive fault simulation for ten random vector rotation

operations

MAPLD 2008 13

Results

Conclusions:
• The streaming implementation is the least vulnerable (lowest VST)
• In this case the highest performing implementation also has lowest

vulnerability, whereas the reverse was true in Experiment 1.
• Again the existing VF metric gives a (very) incomplete picture

Proposed VST metric Existing VF metric

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

Word serial Streaming

V
S

T
 (b

it
· s

ec
)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Word serial Streaming

V
ul

ne
ra

bi
lit

y
fra

ct
io

n

MAPLD 2008 14

Experiment 3
• VST across different FFT implementations
• Generated three implementations of a 1D complex fixed-point Fast Fourier

Transform, all based on the Xilinx FFT v5.08. Target was Virtex-II Pro.

• Performed fault simulation of 32-pt and 64-pt FFTs
• Built a simple model of VST vs. FFT size for each implementation, allowing

VST to be estimated

MAPLD 2008 15

VST map: 32-pt Radix-2 FFT

Time (clock periods)

State
elements
(flip-flops)

MAPLD 2008 16

Vulnerability dynamics

MAPLD 2008 17

Results

Conclusions:
• This time, the highest performing implementation also has lowest

vulnerability (VST)
• Again the existing VF metric gives a (very) incomplete picture

Proposed VST metric Existing VF metric

Projected vulnerability for 64K FFT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Radix-2
Lite

Radix-2 Radix-4

V
ul

ne
ra

bi
lit

y
fra

ct
io

n

0

1

2

3

4

5

6

7

8

Radix-2
Lite

Radix-2 Radix-4

V
S

T
 (b

it
· s

ec
)

Conclusions
• Proposed approach allows:

– the intrinsic vulnerability of a specific computation to be characterized
– alternative implementations to be compared w/ a single figure-of-merit
– spatial and temporal patterns to be uncovered
– challenge: extensive fault injection usually required

• Vulnerability experiments indicate:
– Inefficient implementations have low VF, but can also have high vul.
– VST can be treated as an independent design criterion along with

power consumption, area, performance

Acknowledgments
• NASA Langley Research Center GSRP Fellowship
• Kevin Somervill & Electronics Systems Branch, NASA Langley

Research Center
• John Holland, University of Michigan

MAPLD 2008 20

Thank you!

MAPLD 2008 21

References
1. Kenneth M. Zick and John P. Hayes, “High-Level Vulnerability over Space and Time to Insidious Soft

Errors”, IEEE International High-Level Design, Validation and Test Workshop (HDLVT 2008), November
2008 (to appear)

2. J. Greco, G. Cieslewski, A. Jacobs, I. Troxel and A. George, "Hardware/Software Interface for High-
Performance Space Computing with FPGA Coprocessors," 2006 IEEE Aerospace Conference, May 2006.

3. S. Mukherjee, Architecture Design for Soft Errors, Morgan Kauffman, Burlington, MA, 2008.
4. G. Reis, J. Chang, N. Vachharajani, R. Rangan, D. August and S.S. Mukherjee, “Design and Evaluation of

Hybrid Fault-Detection Systems”, International Symposium on Computer Architecture (ISCA), June 2005,
pp. 148-159.

5. P. Springer, "Assessing Application Vulnerability to Radiation-Induced SEUs in Memory," NASA Technical
Reports Server, 2001.

6. Xilinx Floating-Point Operator v3.0 Product Specification,
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf. Accessed April
2008.

7. Xilinx CORDIC v3.0 Product Specification,
http://www.xilinx.com/support/documentation/ip_documentation/cordic.pdf. Accessed April 2008.

8. Xilinx Fast Fourier Transform v5.0 Product Specification,
http://www.xilinx.com/support/documentation/ip_documentation/xfft.pdf. Accessed April 2008.

