Distributed Generation and CHP Policy Problems – Benign Neglect or Insidious Protectionism?

Gary Nakarado, DER Policy Lead National Renewable Energy Laboratory Golden, Colorado <u>Gary@Nakarado.Com</u>

DOE ROAD SHOW Thursday, March 27th, 2003 Ft Collins, Colorado

Overview

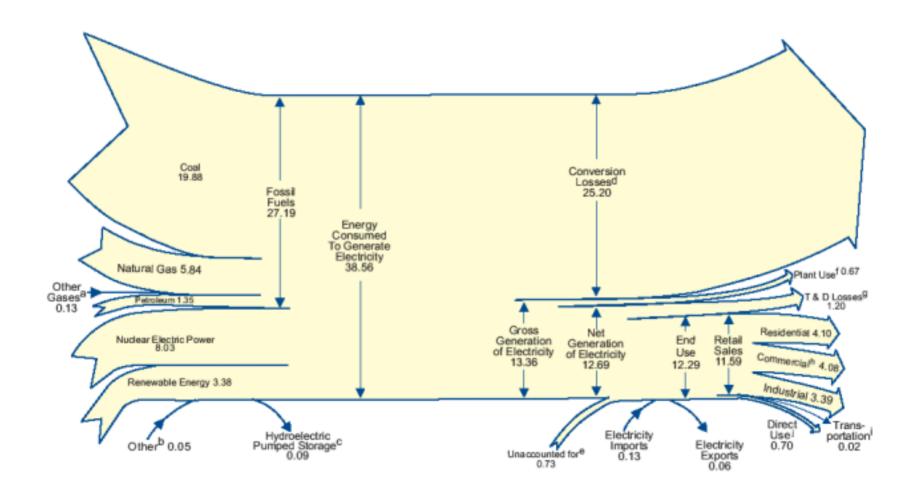
- Legacy Wisdom, Articles of Faith
- My own best examples from utility economic regulation
- Land mines of environmental regulation
- Common agreement—old approach won't work with DER
- The Impact of Air Quality Regulations on Distributed Generation
- Greatest Hits CD...

Overview (continued)

• IEEE P1547

- FERC Small Generation NOPR
- DOE NREL Tariff Project
- Summer Possibilities
- Future NARUC projects
 - Distribution engineering
 - Distribution costing
 - Development of innovative regulatory theory and practices

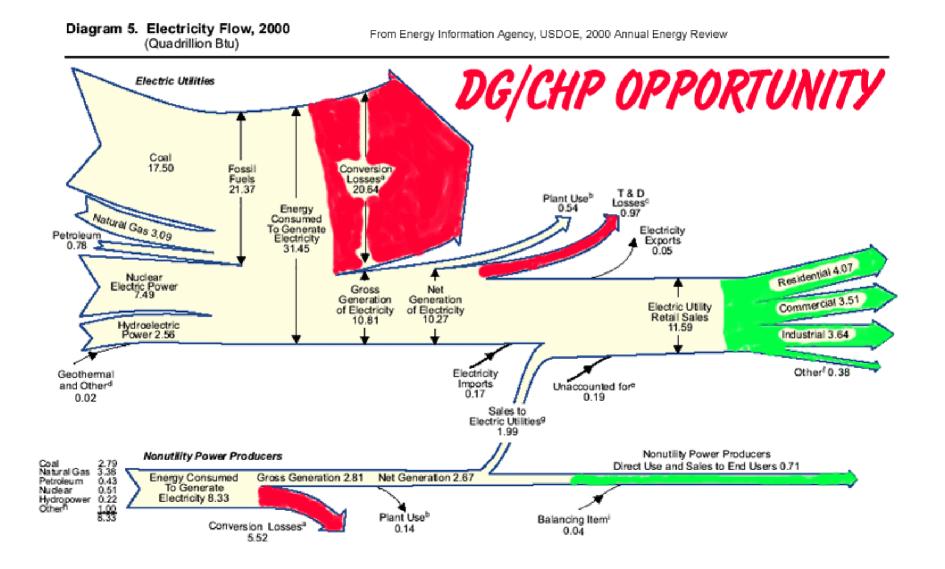
The World Has Changed Technologically The Structure of the Electric Utility Industry Is Over a Century Old


Old Paradigm

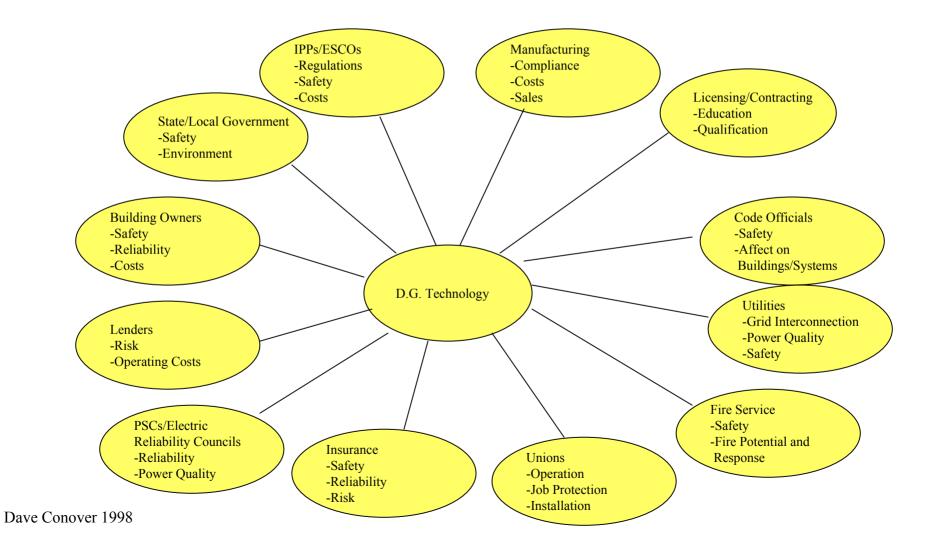
- Information Expensive
- Communication Expensive
- Monopoly: Customers Assumed
- Computation Expensive
- Labor Cost Low
- Fuel Cost Low
- Waste Disposal No Cost
- Materials Low Cost
- Centralized Model Based on Economies of Scale

New Paradigm

- Information Low Cost
- Communication Low Cost
- Customer Satisfaction Critical
- Computation Low Cost
- Labor Expensive
- Fuel Costs Highly Variable
- Waste Disposal Expensive
- Materials Expensive
- Distributed Models Based on Systems Approach


Unfortunately, in an explanatory note some 35 pages later, the EIA states, in part:

Electrical system energy losses are estimated as the difference between total energy consumed to generate electricity and the total energy content of electricity consumed by end users. <u>Most of these</u> <u>losses occur at steam-electric power plants (conventional and</u> <u>nuclear) in the conversion of heat energy into mechanical</u> <u>energy to turn electric generators. This loss is a</u> <u>thermodynamically necessary feature of the steam-electric</u> <u>cycle.</u> ...


... Overall, approximately 67 percent of total energy input is lost in conversion; of electricity generated, approximately 5 percent is lost in plant use and 9 percent is lost in transmission and distribution.

-Footnote 1, p. 252 (emphasis added}

Ultimate Driver

DG Related Stakeholders and Some Issues of Concern

How Air Regulators See DER

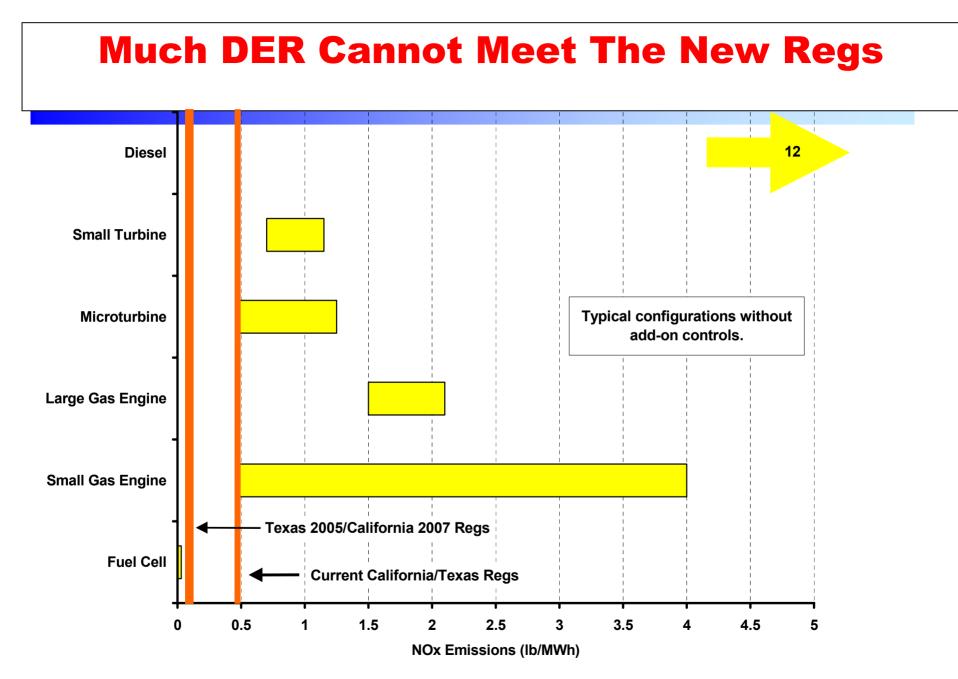
- A tidal wave of new, "unregulated" sources.
- The arrival of "clean" DG.
- More diesel engines.

Why is DER Different Than Large Generators for Air Regulation?

Large Generators

- Individually designed/field erected
- Large capital cost
- High transaction cost
- Industrial site
- Skilled operators

DER


- Mass produced
- Low capital cost
- Low transaction cost
- Possible non-industrial site
- No operators

CHP - Beneficial But Difficult to Regulate Appropriately

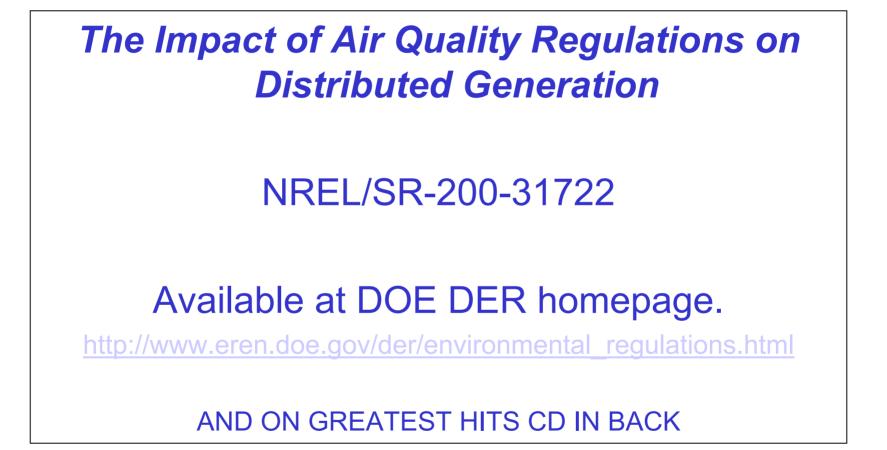
- Simultaneous generation of heat and power from one heat input.
- Increases efficiency, reduces total emissions.
- Replaces two conventional emission sources.
- Difficult to fit into conventional air permitting framework.

Recent Regulatory Experience

- States beginning to develop new air regulations for DER focused on:
 - Limiting use of diesel peakers.
 - Standard limits for new units CA, TX.
- Regulatory limits for new units are pushing the limits of current small DER technology.

From Joel Bluestein EEA, Lead Author of The Impact of Air Quality Regulations on Distributed Generation

The Impact of Air Quality Regulations on Distributed Generation


- Recent NREL report assesses impact of air quality regulations on DER.
 - Through interviews with developers, regulators and OEMs
 - Analysis of regulatory/technology issues
- What are the problems?
- What solutions can be proposed?

Summary of Problems Found

- Case-by-case permitting not appropriate for small systems.
- No credit for CHP.
- Inadequate credit for pollution prevention and efficiency.
- No credit for avoided or displaced emissions.
- Need for outreach and education.

List of Recommendations

- Develop uniform, achievable air emissions standards for DER.
 - Recognize efficiency and P2.
 - Promote certification
- Provide credit for CHP and avoided/offset emissions.
- Provide outreach and education for regulators and developers.

National "Model" Emissions Rule

- A national "model" rule incorporating most of these features has been developed under DOE funding through a stakeholder process facilitated by the Regulatory Assistance Project.
- Draft rule available at: http://www.rapmaine.org/workgroup.html

Model Rule

- Sets uniform output-based standards.
- Includes credit for CHP and avoided emissions.
- Encourages precertification.
- Three phases of progressively more stringent limits.

Proposed Model Rule Emission Limits¹ (Ib/MWh)

 $CO PM^2$ NO_{x} NO_x Attnmt Nonattnmt Phase I - 040.70.6 10 4 Phase II - '08 1.5 0.3 2 0.07Phase $III^{3-1}2 = 0.15$ 1 0.15 0.03

¹All non-emergency engines ² Non-gas technologies only

³Subject to technology review. Only low sulfur diesel can be used.

Conclusions

- For better or worse, DG has attracted the attention of air regulators.
- The most negative DER aspects seem to be the most prominent in the market today.
- DER technology is improving but the environmental "promise" of DG is still a promise.
- In the interim, the elements of appropriate "driving" regulation have been proposed.

NREL DER Test Facility

NREL Distributed Power Testing Capabilities

Diesel Generators

PV Array

Additional Information

http://www.eren.doe.gov/distributedpower/

 Gary_Nakarado@NREL.Gov, or 303-275-3719