
1

OPEN ARCHITECTURES FOR MACHINE CONTROL

by

Frederick M. Proctor, Brad Damazo, Charles Yang, and Simon Frechette

National Institute of Standards and Technology

Gaithersburg, Maryland 20899

ABSTRACT

A major impediment to improving the performance and functionality of machine tools is the
limited access that users or third parties have to the internals of the machine controller. This limit
has suppressed the emergence of a community of third-party vendors who could provide a wide
range of applications at competitive prices. The result is that users are often faced with all-or-noth-
ing compromises when choosing controllers, and are restricted to the original controls vendors for
everything from spare parts to software. Machine tool users would benefit from an open architec-
ture that can serve as both a target for innovative third party product development, and as a
specification which produces multiple competitive sources for interoperable products.

The National Institute of Standards and Technology has initiated a project which will demon-
strate the feasibility of open architectures for machine control. This project, the Enhanced Machine
Controller (EMC), has selected several target applications which improve the accuracy and ease of
use of machine tool controllers: selectable look-and-feel, tool management, alternate part program-
ming languages, spline-based motion, in-machine inspection, and thermal-geometric error
compensation.

1. INTRODUCTION

The National Institute of Standards and Technology (NIST) has been working with a variety of
industry representatives and organizations to investigate the application of open architecture con-
cepts to machine tool controllers. The objective of the NIST effort, the Enhanced Machine
Controller program, is to develop methods which will reduce the cost of controller development.
The cost reductions are intended to impact members of several categories: machine tool builders,
controller retrofitters, system integrators, and end users. As a means to this end, the EMC program
has defined an architecture which supports the integration of commercial off-the-shelf components
[1]. The resulting benefits are numerous:

• machine tool builders and controller retrofitters would enjoy competitive sources for con-
troller components, such as computing hardware, motion control hardware, and
input/output systems, which would be compatible with one another;

• system integrators would be able to seamlessly connect machine tool controllers into an
effective factory enterprise;

• maintenance personnel could select from a variety of spare parts sources to meet their costs
and schedules;

• entrepreneurs would have a target for commercializing new technology.

The EMC program is targeting several applications that will illustrate the benefits of the archi-
tecture, and demonstrate what is required to support their cost-effective integration. To this end,
NIST has established a testbed that will focus on integrating existing commercial components and

2

enhancing them with additional capabilities. Ultimately, the same rapid revolution that typified
office computing in the past decade would take place on the shop floor, and capabilities that are not
yet concepts would become commodities.

2. OBJECTIVES

The objective of the EMC program is to develop methods to reduce the cost of controller devel-
opment. These methods must support those who want to piece together their own systems
component by component, who want to modify or improve their controller, who wish to apply
existing modifications from one open controller to another open controller, or who intend to start
small and upgrade as they grow. These requirements mean that the controller architecture must be
modular, extensible, portable, and scalable.

2.1 Modularity

Modularity refers to the ability of machine tool builders, retrofitters, and maintenance person-
nel to purchase and replace components without unduly affecting the rest of the controller. For the
EMC, this means the ability to replace motion control boards, motherboards, disks or RAM with
equivalent products from another source. The key to being able to do this is the definition of the
modules which make up a controller, their functionality and interfaces, and the basic controller
infrastructure (buses, CPU chipsets, operating systems) which support them.

2.2 Extensibility

Extensibility gives users and third parties the means to incrementally add functionality to a
module without replacing it completely. For example, an extensible part program interpreter would
allow developers to add new statements to the language. If the part programming language were
EIA-274-D [2], users could add a new M code applicable to custom tooling. An extensible
input/output system would allow the easy addition of the actuators or sensors associated with the
custom tooling.

2.3 Portability

Portability makes it easy to transfer applications or enhancements which have been developed
on one controller to a controller based on another platform. Portability normally refers to software
source code, which should be easily compilable to run on a variety of CPUs and operating systems.
Portability is of primary importance to developers of software that is intended to run in an open
controller. If controllers conformed to common and public specifications, then the effort required
by entrepreneurs to support different manufacturers would be drastically reduced.

2.4 Scalability

Scalability gives machine tool builders and retrofitters the ability to build controllers around
their customer’s needs and budget. This gives customers the freedom to “scale up” to a higher-per-
formance implementation as their needs and budgets increase. For example, if a particular shop
floor application were undemanding, a low-cost solution would be available. If, at a later date, the
application’s performance requirements increased, portions of the controller could be upgraded to
meet these new demands.

3

3. EMC ARCHITECTURE

The EMC modularity objective implies that the architecture must specify the components
which make up a controller, and their interfaces and behavior. The extensibility objective implies
that each components’ functions and data must be made available. Portability and scalability imply
that controllers be comprised of commercial off-the-shelf components, and that controller services
such as the computing hardware, mass storage devices, and operating systems be non-proprietary.

A controller based on a candidate architecture has been implemented on a Laboratory Devel-
opment Controller, described in Section 4.2. This architecture is derived from the NIST Real-time
Control System reference model architecture (RCS) [3] and NASREM, the NASA/NBS reference
model architecture [4]. RCS builds upon experience acquired in the Automated Manufacturing
Research Facility [5] during the 1980’s for constructing hierarchies of controllers for machining
workcells which include robot, machine tool, and coordinate measuring machines as components.

The architecture defines the following components: Workstation Planning, Workstation Man-
agement, Plan Interpretation, Discrete Input/Output, Trajectory Generation, and Servo Control, as
shown in Figure 1. These components communicate by message passing. A distributed world
model is comprised of data made public by each component, and made available through messages
which return the values of data. In the figure, the blocks to the right indicate independent applica-
tions which are free to communicate with the specified components, and provide some additional
functionality or enhancement. An example of such an application is the Operator Interface, which
reads values from each component for display, and sends messages to each component requesting
action. Each of the components is described in the following sections.

3.1 Workstation Planning

Workstation planning is responsible for taking a part design and generating the sequence of
operations which will transform stock into a finished part. In a traditional system, planning may
involve the generation of numerical control (NC) programs by a PC-based CAD/CAM system. In
more complicated scenarios, the workstation planner may rely on scheduling and process planning
software, solid modelers, and expert systems to automatically produce a complex part requiring
machining on several tools and robot part handling and assembly. If the workstation planning com-
ponent can accept feedback from the controller, more intelligent machining may be accomplished.
For example, if the programmer specifies a 2-inch end mill during the NC code generation phase,
and only a 13/4-inch end mill is available at run time, the part programmer is required to repeat the
programming phase. If the workstation planner can accept feedback, a tool mismatch could signal
the workstation planner to automatically regenerate the NC code based on the existing tools.

3.2 Workstation Management

Workstation management is responsible for maintaining the modes of the controller. In a work-
cell with a single machine, such as a three-axis mill, the job of the workstation management
component consists mainly of arbitrating between automatic and manual mode, and insuring that
actions that share resources do not occur simultaneously. For example, a typical workstation man-
agement component would insure that the operator could not jog the axes during machining, or that
tool changes can only be requested when the spindle has been retracted. If the workcell consists of
several machines operating in tandem, such as a machine tool and pallet loader, then more compli-
cated management is required.

4

3.3 Plan Interpretation

Plan interpretation reads and executes the sequence of machining instructions. Traditionally,
these instructions would be NC code files. The actual functions are carried out by the plan inter-
preter’s subordinates. The interpreter must insure that instructions have been executed to
completion, if that is required by the semantics of the programming language. In the EMC archi-
tecture, the function of plan interpretation has been modularized so that a single controller can at
different times execute part programs written in different languages, such as EIA-274-D or Binary
Cutter Location (BCL) [6].

Figure 1. The Enhanced Machine Controller architecture.

Servo
Control

Trajectory
Generation

Plan
Interpretation

Workstation
Management

Discrete
Input/Output

Encoders

Valves and solenoids
Motors

Limit switches

T
oo

l M
an

ag
em

en
t

O
pe

ra
to

r
In

te
rf

ac
e

O
th

er
 a

pp
lic

at
io

ns

Workstation
Planning

Servo
Control

Tach

5

3.4 Discrete Input/Output

The discrete input/output component is responsible for executing programs that read input or
compute output for the sensors and actuators that are not synchronized with coordinated axis
motion, for example, limit switches and valves for tool changers. Traditionally, this component has
been termed the programmable logic controller, or PLC, and its programs have been written in lad-
der logic. Modularizing this functionality allows system integrators to include I/O systems from a
variety of vendors, or to program them in languages that suit their experience or the experience of
the field service or shop floor personnel.

3.5 Trajectory Generation

The job of the trajectory generation component is to plan and execute coordinated axis motion,
such as linearly interpolated moves or circular arcs, specified by the part program. Although the
bulk of NC programs include only straight lines and circular arcs, industries such as aerospace
design more complex shapes that do not lend themselves to these simple motion primitives. Fur-
thermore, CAD/CAM systems have increasingly been incorporating smoothing techniques which
generate mathematically more complex curves. Approximating these curves with straight line seg-
ments leads to a trade-off between accuracy and size of the part program: the greater the desired
accuracy, the more segments required for the approximation and the longer the part program. Since
there appears to be a trend to design more complex parts, there is a strong justification for modu-
larizing the trajectory function so that it may be enhanced with more complex motion primitives
should the application demand it.

3.6 Servo Control

The trajectory generation component computes a sequence of positions (plus velocities or other
quantities, depending on the sophistication of the controller) to the servo control component, which
converts them to axis positions and issues control signals to the motors. Typically, machine tool
servo controllers use a proportional control law. In more difficult control applications entirely dif-
ferent control laws may be desired, such as pole placement or gain scheduling. Alternatively, if the
process is undemanding, open-loop motor control may be preferable, for example using stepper
motors. In any case, modularizing the servo control function allows control builders to choose
which motion equipment is the most suitable for the job, given constraints such as cost, power con-
sumption, and packaging. Providing extensibility in the servo control component would allow
service personnel to modify the control gains to tune the performance, or would enable sophisti-
cated users to install different control algorithms altogether.

3.7 Independent Applications

Just as the desktop computing industry has enjoyed a proliferation of hardware and software
products which have originated from a variety of entrepreneurial sources, it is expected that man-
ufacturers will benefit from enhancements developed by innovative third parties for open
architecture controllers. Instead of trying to exhaust the range of possible enhancements, and set
aside places for them in the architecture, the approach was to limit the core components to those
that are necessary in most machine tool controllers today. Excluded applications should not suffer
from this approach, since they are free to communicate with the core components described above
in exactly the same way as the core components communicate between themselves.

6

The EMC program has investigated several enhancements, primarily to determine what is
required to make the job of integrating independent applications easier and less costly. In the next
section, the NIST controller implementations are detailed, to give the enhancement descriptions
some context.

4. SYSTEM DESCRIPTION

The controller implementation efforts at NIST are divided between two platforms, the Shop
Floor Controller and the Laboratory Development Controller. These platforms serve as testbeds to
demonstrate the benefits that can be derived from enhancements, and support investigations into
reducing the cost of integrating commercial components.

4.1 Shop Floor Controller

Many enhancements rely on sensor input or process measurements which take place on the
shop floor during machining, and must be developed in situ. In these cases, the efforts are focused
primarily on the technology and algorithms, and take place on the Shop Floor Controller [7]. The
Shop Floor Controller is based on the PMAC motion controller from Delta Tau Data Systems1, in
an environmentally-enclosed 486 PC. The 486 is running the DOS operating system. This control-
ler is connected to a Monarch VMC-75 3-1/2 axis vertical machining center, which has a positioning
W axis and a tool changer. A VGA monitor, keyboard, and trackball were mounted into an enclo-
sure for the operator console, replacing the GE Mark Century 2000 controller console. In addition,
the control console includes jog buttons, a handwheel, and mode select switches. All the Monarch
control input and output lines run into a terminal block inside a cabinet at the back of the machine,
and are interfaced to the PMAC motion controller using a variety of interconnect modules provided
by Delta Tau. The Shop Floor Controller is depicted in Figure 2.

In the Shop Floor Controller, the host computer is running Delta Tau’s PMAC-NC program,
which provides operator interface functions such as graphics display and control panel input, man-
ages data such as tool offsets and parameter tables which affect axis motion, and manages the
rotary buffer used to download part programs to the PMAC board. NIST developed graphics “CNC
front ends” for this controller which can emulate either a Fanuc 10, GE 2000, or Allen-Bradley
8200 interfaces. EIA–274–D part programs are first parsed by the PMAC-NC program, and trans-
lated into the PMAC native language. The PMAC board communicates to the host PC using a dual-
ported RAM mechanism. The PMAC board performs the coordinate system trajectory planning,
the axis trajectory interpolation, the servo computations, all of the PLC tasks (ZW axis selection,
control panel I/O, and tool changer), and axis limit checking.

4.2 Laboratory Development Controller

Once the technology underlying an enhancement has been proven, the application programs
and any support hardware necessary are transferred to the Laboratory Development Controller,
which focuses on software engineering. Here, any platform-specific references are noted and local-
ized so that the application can be made portable.

1. Equipment listings are provided throughout this document for the sole purpose of clarifying the discussion,
and in no way imply recommendations by NIST.

7

The Laboratory Development Controller is hosted by a 486 PC, like the Shop Floor Controller.
However, this system differs in several ways. Most importantly, it is not connected to a production
machine tool, but to a desktop three-axis mill which contains DC servomotors, incremental encod-
ers, and a 3000 rpm spindle suitable for cutting machining wax or soft aluminum. This allows
development work to proceed without anxiety about injury or damaging expensive production
machinery. The Laboratory Development Controller is running a real-time Unix operating system
which is POSIX compliant, and uses X Windows and Motif for graphics services. The Laboratory
Development Controller is depicted in Figure 3.

Most of the functions performed by the PMAC board in the Shop Floor Controller are per-
formed in software on the PC host, namely PLC programs, part program interpretation, and
trajectory generation. PLC programs are written in the C language, and read and write to a com-
mercial off-the-shelf digital input/output board through the PC bus. Part programs are first
translated from EIA-274-D into a C language program which is then compiled, and are executed
in software by the trajectory generator component. Two trajectory generators are supported, dem-

3 operator interfaces (PC graphics)

encoders

PMAC CNC
board

host CPU (486, DOS, EISA bus)

network board

Novell LAN

Monarch
VMC-75

control panel

motorsamplifiers

Figure 2. Shop Floor Controller.

8

onstrating modularity: Level 2 from the Indiana Business, Modernization, and Technology
Corporation, and TMOS from Trellis Software and Controls. The trajectory generator communi-
cates via message passing through shared memory to the servo control component, which is
comprised of a software interface and hardware support. The software portion has been written to
support modularity, and supports the PMAC board as well as the Matrix4 board from DSP Control
Group.

5. ENHANCEMENTS

To validate that the architecture is all it purports to be, NIST placed itself in the role of system
integrator to incorporate some enhancements into each controller. These enhancements included
selectable look-and-feel, tool management, alternate part programming languages, spline-based
motion, in-machine inspection, and thermal-geometric error compensation.

operator interface (X/Motif)

encoders

servo board

host CPU (486, POSIX, EISA bus)

network board

TCP/IP LAN

digital I/O board

proLIGHT 2000
mini mill

control panel

motorsamplifiers

Figure 3. Laboratory Development Controller.

9

5.1 Selectable Look-and-Feel

Consider the benefits of emulating the look and feel of a suite of existing controller displays on
a single controller. A machinist familiar with, say, the Fanuc interface would feel at home one
minute, and the machinist on the next shift could select the Allen-Bradley look and continue work-
ing on the same machine. This capability can be a significant advantage: in some cases, controllers
which have exceeded their lifetimes have been replaced with identical but technologically obsolete
controllers to eliminate the need for expensive operator training. If a newer and technologically
superior controller were open, operator interfaces emulating the older controller could have been
developed, bringing the benefits of new technology while eliminating training costs.

In the Shop Floor Controller, NIST programmers have emulated the look-and-feel of three
common commercial operator interfaces: the Fanuc 10, Allen-Bradley 8200, and General Electric
Mark Century 2000. The programs for each may be run independently of the controller; in fact, the
operator may terminate one and run another during machining. The programs are written in the C
programming language. The Fanuc 10 interface has also been ported to the Laboratory Develop-
ment Controller, rewritten to use the X Windows and Motif standards.

There are several key requirements of an open architecture to support the development of inde-
pendent graphical user interfaces. First, the controller must make available to independent parties
all the mode and state information that machinists expect to view at the display during machining.
Based on an analysis of the existing operator interfaces, this information includes:

• current machine positions: relative, absolute, distance to go

• feedrate

• spindle speed

• actual feedrate

• actual spindle rate

• increment value

• program name and text

• current line executed

• tool offset

• work zero offset

• operator messages

Additional diagnostic and maintenance information must also be made available. This informa-
tion includes

• controller gains

• velocity profiles

• acceleration times

• state of discrete input and output points

Another area of operator interface that has been explored is the operator panel, which typically
provides jog buttons, mode switches, and other “hands-on” items that machinists use to direct the
operation of the machine. NIST engineers designed a custom, non-proprietary operator panel
which provides all the common functions available on the previous controller. Unlike the graphic

10

display, however, the panel is not subject to “on-the-fly” selectability by the operator, since it is a
hardware device. However, discussions with machinists have indicated that the most difficult infor-
mation to assimilate when learning a new controller is not the physical, static layout of the operator
panel, but the layout of the many individual screens which make up the graphic display. This indi-
cates that for the machinist, a tremendous improvement can be realized solely in software.

5.2 Tool Management

Effective tool management is a vital part of a production control system [8, 9, 10]. The overall
goal of any tool management system is to provide the right tools to the right machines at the right
times. Proper tool management strategy must contain elements that allow for monitoring and con-
trol of tooling used in the production facility. Along with process planning, shop floor scheduling,
tooling database, tool inventory, and tool identification, the machine tool controller is an essential
hub in the tool management system. The functions of the machine tool controller related to tool
management include:

• Cutter length and diameter compensation, typical of tool geometry in Figure 4.

• On-machine tool identification

• Tool breakage detection

• Tool wear monitoring

• Tool location tracking

• Tool data storage

• Tool assembly storage control

• Tool data transfer

L1

L2

D2

D1
Figure 4. Typical tool geometry data.

11

The machine tool is the ultimate consumer of tooling and tooling data. Machining activities
also generate tooling data which impacts other production control systems. This information must
be accurately processed and maintained. The machine tool controller is the front line system
responsible for processing and collecting data required for machining operations. This data
includes:

• Accumulated cutting time

• Remaining tool life

• Magazine storage location

• Speed and feed override

• Cutter length

• Cutter diameter

• Cutter compensation values

• Tool number

• Tool assembly ID number

• Tool assembly size code

• Job number

Many tool management systems are commercially available. Many machine tool control ven-
dors offer tool management software as an option for their controller. Almost all of these systems
are completely incompatible. Unless a user selects all his systems from one vendor, systems inte-
gration is extremely difficult. Communications and data protocols are incompatible. The data types
themselves may not match (e.g., no tool assembly ID number field). An open architecture machine
control system would make it possible to integrate tool management applications.

NIST has implemented two components of a tool management system on the Laboratory
Development Controller: an interface to a commercial radio-frequency tool tag system, and a tool-
ing database which contains the data for the tools in the Monarch VMC-75 tool carousel. These
components provide the functions necessary for applications running on the controller to verify
tools and update the tooling information, most notably the NC code interpreter.

5.3 Alternate Part Programming Languages

Many companies use cutter location (CL) data output from CAD/CAM systems as a source
programming language for machine tool control. The CL data must be postprocessed, or translated,
into machine language for a specific controller before it can be executed. If the job has to be trans-
ferred to a different machine, the program must be postprocessed again into the machine language
for the new machine. The two predominant machine languages are specified by the Engineering
Institute of America (EIA) [2] and the International Standards Institute (ISO). In US companies,
most controllers use the G-codes and M-functions of the EIA specification. These controllers, how-
ever, differ widely in their use of unspecified codes for functions common to a particular class of
machine. Vendor variations within the “standard” programming languages have resulting in a pro-
fusion of dialects.

Translating the source programming language into the various dialects can become a time con-
suming task. Developing and maintaining a postprocessor for each controller dialect can become
extremely expensive. Programming all jobs with one language would allow program interchange

12

between similar machines, reduce postprocessor development maintenance, reduce training, and
ease program archiving.

To reduce the amount of resources devoted to postprocessor development and maintenance,
many companies are shifting to generic post processors. With a generic postprocessor, the required
parameters for a machine and controller are contained in a single data file. Rather than a different
post processor for each machine, a single post processor is used and a data file is developed for each
machine. To eliminate reprogramming, a standard CL file format is required. An existing standard,
EIA-RS494 (Binary Cutter Location, or BCL) [6] specifies an NC file format that different-make
machines can share. Standard controller input allows schedulers and shop supervisors to move jobs
between similar NC machine tools without incurring reprogramming delays. Users can move jobs
to remote facilities or suppliers without reprogramming.

The higher cost of BCL-compatible controllers makes users reluctant to investigate the benefits
of a standard language capability. An open architecture control would provide an opportunity to
implement an on-machine language translation capability at a low cost, since the entire NC code
interpretation process is contained with the plan interpretation component.

NIST has investigated integrating a commercial BCL system on the Laboratory Development
Controller, for both off-line program translation and on-line interpretation. With off-line transla-
tion, the BCL file is first translated into EIA-274-D, and the resulting program is run on the
controller. This method is applicable to most controllers today, but suffers the drawbacks that pro-
gram single-stepping or line edited are done in the translated EIA-274-D and not the original BCL.
An alternative is to modify the part program interpreter so that it can execute BCL directly. This
requires that the BCL interpreter provide tools for linking the appropriate function calls to the axis
and I/O systems to the interpreted BCL statements, and that the controller provide access to these
function calls. Alternatively, if the source code to the interpreter is provided, any necessary modi-
fications to the interpreter can be made directly. NIST has selected to pursue the second option,
executing a non-disclosure agreement with the vendor.

5.4 Spline-based motion

Tool paths that are not lines, circular arcs, or helical arcs are typically approximated with line
segments. This approximation produces a small error between the desired path and the commanded
path, which is termed chordal deviation. Non-uniform rational B-splines (NURBS) have long been
favored in CAD systems because they offer an exact, uniform representation of a wide variety of
common curves such as circles, parabolas, ellipses, lines, and hyperbolas [11, 12]. NURBS are also
computationally efficient and allow great flexibility in defining free-form curves and surfaces. By
basing the tool path on NURBS, the position error generated by approximating curves with straight
lines is reduced significantly. Also, velocity errors created by commanded tool positions are signif-
icantly smaller with NURBS-based trajectories than from those with a linear approximation.

Another benefit of using NURBS is that the amount of space occupied by part programs and
the time taken to execute them can be significantly reduced. Large sections of part programs often
consist of many small linear moves. Each of these moves must be read by the controller and exe-
cuted. In some cases, the feed rate of the machine is limited by the rate at which these lines can be
read. Additionally, these part programs consume large amounts of mass storage, and can take con-
siderable time to download to the controller.

13

The reader familiar with drawing programs may have already used splines: many drawing pro-
grams provide a polygon tool which creates closed or open polygons that can be smoothed. With a
relatively small number of polygon vertices (“control points”), complex shapes can be created.
NURBS are an extension of these smoothed curves which give greater control over the degree to
which the curve approaches these control points, by introducing a “knot vector” of coefficients for
the polynomial used to fit the control points.

In Figure 5a, a typical second-order curve has been approximated with the line segments AB

and BC. The controller will interpolate linearly between these points during machining, generating
points 1 through 6, which do not lie on the curve. This is the chordal deviation, which is usually a
parameter specified to the CAD/CAM system for use in determining the number of lines to use for
the approximation. The smaller the acceptable chordal deviation, the more line segments used to
approximate the curve, and the larger the part program.

In contrast, if the controller were able to handle NURBS directly, the interpolated points would
lie exactly on the second-order curve, as shown in Figure 5b. Also, only one motion instruction is
required: a single NURBS move from A to C. The benefit is a more exact fit of the tool path the
curve, with a reduction in the size of the part program (in this example, from 2 linear moves to 1
NURBS move.) Note that the interpolated points will be sent to the servo control module, which
generally performs its own subinterpolation between these. The subinterpolated points are equally
spaced in time, not distance, and must be computed at the servo update rate. The errors associated
with subinterpolation are much smaller than those due to linear approximation in the trajectory
generator, and may be minimized using techniques in [13].

The benefits are not without cost, for the trajectory generation component of the controller must
be improved to handle the new NURBS motion type. While most probably this requires a software
modification, the increased complexity may also require that faster computing processors be used.
However, with a modular open architecture, the decision to incorporate NURBS trajectories can be

A

B

C

2

1

3

4

5

6

Figure 5. (a). Approximation of curve with line segments. Numbered points
are generated by interpolation during machining.
(b). Fit of curve with NURBS. Numbered points and point B are
generated during machining, and exactly lie on the curve.

A

B

C

2

1

3

4

5

6

(a) (b)

14

based on the application’s demands, and the effects of the choice are localized to a small portion
of the controller.

NIST has integrated NURBS trajectory generation in the Laboratory Development Controller.
Incorporating NURBS requires the extension of three components: workstation planning, plan
interpretation, and trajectory generation. The workstation planner, in this case a CAD/CAM sys-
tem, must be able to represent geometries using NURBS. This is the original source of the NURBS
data. In fact, many CAD/CAM systems have this capability already [14]. Since the output of
CAD/CAM systems is an NC part program, new instructions in the part programming language
need to be added in order to signify the new motion type. In the EMC, the part programming lan-
guage is EIA-274-D, and the extensions required to support NURBS paths are summarized below:

5.5 On-machine Inspection

In an earlier effort related to the EMC, researchers from the New York University Courant Insti-
tute of Mathematical Sciences developed an open-architecture machine tool controller to serve as
a platform for research on fundamental issues in chip mechanics, surface finish quality, sensor-
based machining, and adaptive control [15]. This controller, MOSAIC, was based on off-the-shelf
motion hardware, CPUs, buses, and workstations, and supported C-language programming in Unix
environments. One application demonstrated by the MOSAIC program was automatically deter-
mining the location of arbitrarily positioned workpieces. The application was based on a mesh
routing algorithm which drove a touch probe around the workpiece, generating accurate coordi-
nates of the boundary points. Once the boundary coordinates were acquired, they were statistically
fit to a model of the part, determining its “best fit” position and orientation. This eliminated the
need for an operator to accurately fixture the part, speeding up the machining setup cycle.

In cooperation with the NYU program, NIST obtained the mesh routing algorithm software to
demonstrate that applications such as automatic part location could be easily integrated into the
EMC architecture. An analysis of the algorithm has led to some observations on the requirements
for openness. These are discussed below.

5.5.1 Plan Interpretation

Because the software has been written modularly, the fundamental mesh routing algorithm
required no modification. However, since the mesh routing algorithm cannot be written as an EIA-
274-D program, the plan interpreter requires some extension to handle instructions signifying the
initial conditions and other flags that govern the probing. This is analogous to adding a “canned
cycle” for probing.

The difference is that canned cycles are macros, simply a shorthand for a fixed sequence of NC
code instructions. For probing, the sequence of movements is not fixed in advance, but depend on
the part geometry. Now, instead of simply parsing the instructions, expanding macros, and issuing

Table 1: NURBS Extensions to EIA-274-D

G code Function

G81 Set knot vector

G82 Define a control point

G83 Begin machining

15

messages to the trajectory and discrete I/O components, the plan interpreter must handle condi-
tional expressions that determine how the probing is proceeds as data is acquired. However, the
program for this has already been written by NYU researchers, and extending the plan interpreter
simply becomes a matter of linking a call to the NYU mesh routing function with the new instruc-
tion for probing, and replacing a handful of function calls in the NYU code with message passing
statements to the trajectory generator.

5.5.2 Trajectory Generation

The impact of probing on the trajectory generator is minimal. Probing requires that a new
motion type be added to the repertoire of the trajectory generator, implying extensibility. This
motion type is a “guarded move,” which is a conventional move to a particular point with the addi-
tion that a probe trip causes an immediate deceleration to a stop. A request for this motion type is
generated by the plan interpreter during the execution of the mesh routing algorithm. Additionally,
a flag indicating whether the probe tripped or the motion completed with no contact must be
returned to the plan interpreter.

5.5.3 Servo Control

For accuracy, it is required that the signal generated by the probe cause a capture of the axis
positions a quickly as possible. Any delay between the generation of the probe signal and the posi-
tion capture will result in inaccurate position reporting. For this reason, hardware latching is often
preferred, since the delay results in negligible probing error even at high speeds. Latching in soft-
ware places a burden on the coupling of the probe signal with the position capture function. It is
also desirable to trip the probe during a constant velocity portion of the move, so that the distance
traveled during the delay can be characterized. The real burden is placed on the operating system
of the controller, so that the function which connects the probe signal with the position and velocity
data executes deterministically. In practice, this is effected by a device driver and interrupt service
routine, if they can be made to execute deterministically and at high speed.

Currently, NIST has developed the software which reports the hardware position capture on the
Shop Floor Controller, based on the signal from a touch-trigger probe. Software has also been
developed which backs off the axes appropriately once a trigger has occurred.

5.6 Thermal-geometric error compensation

A significant source of error in the overall tool position for machine tools originates in thermal
growth. At NIST, researchers have developed a method to characterize the effects of thermal
growth which relies on comprehensive kinematic and geometric-thermal models of machines [16].
These models are derived from the structure of the machine and pre-process characterization mea-
surements. The geometric-thermal model relies on measurements of actual machine temperature
during machining, read from thermocouples mounted at key points on the structure. Using the set
of thermocouple measurements, and the current position of the axes, the models are evaluated to
produce a set of values, one for each axis, that represents the amount each axis needs to be offset
in order to compensate for the thermal deviation.

The Monarch vertical machining center at NIST has been fitted with thermocouples, and is
serving as the testbed for thermal-geometric error compensation integration. The mechanism by
which the corrected tool offsets are integrated into the controller is based on the openness of the
servo control module. First, the current position of each axis must be available to the system which
evaluates the models. This exemplifies one aspect of openness: the ability of independent parties

16

to observe the state of the controller. In the Shop Floor Controller, the current axis positions are
available through dual-ported RAM, accessible to any program running on the host computer. To
support extensibility, the servo control module provides a matrix which is referenced during each
servo calculation. This matrix is a homogeneous transform which contains the offsets that are to be
used to modify the outputs to each axis. Initially zero, they may be loaded with offsets which orig-
inate from an external source, in this case the results of the calculation of the thermal-geometric
error compensation model. This exemplifies another aspect of openness: the ability of independent
parties to modify the state of the controller, to extend the functionality of the machine.

NIST is currently integrating thermal-geometric error compensation on the Shop Floor Con-
troller. To date, thermocouples have been installed, models have been developed, and a software
interface to the thermocouples have been written.

6. SUMMARY

The NIST Enhanced Machine Controller program has demonstrated the feasibility of open
architectures for machine control. By assembling controllers from commercial off-the-shelf com-
ponents, and integrating a variety of enhancements, the benefits of reduced development cost and
improved performance have been realized. Two controller testbeds have been implemented, a Shop
Floor Controller for a 3-1/2 axis vertical machining center with a tool changer, and a Laboratory
Development Controller for a 3-axis desktop milling machine. The focus of the Shop Floor Con-
troller is integrating technology and algorithms for actual machining processes, while the focus of
the Laboratory Development Controller is on the software engineering required to develop stan-
dard interfaces which fit into an architectural framework. Several enhancements have been
investigated and are currently under development: selectable look-and-feel, tool management,
alternate part programming languages, spline-based motion, on-machine inspection, and thermal-
geometric error compensation.

7. REFERENCES

1. Frederick M. Proctor and John Michaloski, “Enhanced Machine Controller Architecture
Overview,” to be published as a NIST Internal Report.

2. Electronic Industries Association, “Interchangeable Variable Block Data Format for Posi-
tioning, Contouring, and Contouring/Positioning Numerically Controlled Machines,” EIA
Standard EIA-274-D, February 1979.

3. Albus, J. S., “RCS: A Reference Model Architecture for Intelligent Control,” IEEE Journal
on Computer Architectures for Intelligent Machines, May 1992.

4. Albus, J. S., Lumia, R., Fiala, J. C., and Wavering, A. J., “NASREM: The NASA/NBS
Standard Reference Model for Telerobot Control System Architecture,” Proceedings of the
20th International Symposium on Industrial Robots, Tokyo, Japan, October 4-6, 1989.

5. Simpson, J., Hocken, R., and Albus, J., “The Automated Manufacturing Research Facility
of the National Bureau of Standards,” Journal of Manufacturing Systems 1 (1), 1983.

6. Electronic Industries Association, “32 Bit Binary CL (BCL) and 7 Bit ASCII CL (ACL)
Input Format for Numerically Controlled Machines,” EIA Standard Proposal No. 2918,
February 22, 1992.

17

7. Brad Damazo, Charles Yang, and Bob Gavin, “Enhanced Machine Controller Project:
Shop Floor Controller Implementation Guidelines,” to be published as a NIST Internal
Report.

8. Editors, Modern Machine Shop, “NC Tool Management,” Modern Machine Shop 1993
CNC Software Guide, April 1993, pp. 187-208.

9. William A. Gruver and Mark T. Senninger, “Tooling Management in an FMS,” Mechani-
cal Engineering, March 1990, pp. 40-44.

10. Ali S. Kiran and Richard J. Krason, “Automated Tooling in a Flexible Manufacturing Sys-
tem,” Industrial Engineering, April 1988, pp. 52-57.

11. P. E. Koch and K. Wang. “The Introduction of B-splines to Trajectory Planning for Robot
Manipulators,” Modeling, Identification And Control, Vol. 9, No. 2, 1988, pp. 69-80.

12. W. Boehm, G. Farin, and J. Kahmann, “A Survey of Curve and Surface Methods in
CAGD,” Computer Aided Geometric Design, Vol. 1, No. 1, 1984, pp. 1-60.

13. Curtis S. Wilson, “How Close Do You Have to Specify Points in a Contouring Applica-
tion?,” Delta Tau Data Systems, 9036 Winnetka Street, Northridge, CA 91324.

14. Lynn Hock and Jim Hock, “NURBS is Not NURBS,” Modern Machine Shop 1993 CNC
Software Guide, April 1993, pp. 87-94.

15. Steven Ashley, “A Mosaic for Machine Tools,” Mechanical Engineering, September 1990,
pp. 38-43.

16. M.A. Donmez, D. S. Blomquist, R. J. Hocken, C. R. Liu, and M. M. Barash, “A General
Methodology for Machine Tool Accuracy Enhancement by Error Compensation,” Preci-
sion Engineering, Publication No. 0141-6359/86/040187-10, 1986.

