A Study of µN(eN)→TX LFV Reactions

Yoshitaka KUNO with Shinya Kanemura, Masahiro Kuze, Toshihiko Ota, Fermilab Proton Driver Workshop, October 8th, 2004

Solution on $\mu N \rightarrow \tau X$ reaction \bigvee $\mu N \rightarrow \tau X$ cross section \bigvee $\mu N \rightarrow \tau X$ cross section at DIS region $\mu N \rightarrow \tau X$ signal and backgrounds \checkmark eN $\rightarrow \tau X$ reaction Summary

hep-ph/0410044

Motivation

Lepton Flavor Violation (LFV) of charged leptons is clear signature to indicate physics beyond the SM.

IJ

$\begin{array}{c} \mu - e \text{ conversion} \\ \mu \rightarrow e\gamma \end{array}$

e

rare τ decays

T

rare τ decays HERA

Experimental Limits

decay modes	upper limits
$\mu o e \gamma$	$< 1.2 \times 10^{-11}$
$\mu \rightarrow eee$	$< 1.1 \times 10^{-12}$
$\mu^- Ti \to e^- Ti$	$< 6.3 \times 10^{-13}$
$ au o \mu \gamma$	$< 3.1 \times 10^{-7}$
$ au o \mu \mu \mu$	$< 1.4 \times 10^{-7}$
$ au o \mu\eta$	$< 3.4 \times 10^{-7}$

might be improved by only O(10) at super B factories, a tau-charm factory.

Alternatives ?

In analogy to $\mu N \rightarrow e N$, $\tau N \rightarrow \mu N$? No, taus are short-lived. How about $\mu N \rightarrow \tau N$? An energetic muon beam is needed. The tau production threshold : $E_u \sim 3.5 \text{ GeV}$ In future, a high intensity, high energy muon beam might be available at a muon collider or a neutrino factory.

LFV in SUSY Models

In SUSY models, slepton mixing induces LFV via. loop diagrams.

Gauge boson mediated : vector, tensor couplings

> Babu, Kolda Dedes, Ellis, Raidal Kitano et al.

Babu, Kolda: Brignole, Rossi: Higgs boson mediated : (psuedo) scalar coupling

∝ lepton mass→ tau-associated process not vanish for high SUSY scale (>TeV).

$\mu N \rightarrow \tau N$ vs. Rare tau Decays

Is $\mu N \rightarrow \tau N$ competitive to rare tau decays ?

Estimate the maximally allowed cross section with experimental constraints from rare tau decays.

Effective µ-t couplings

 $\mu N \rightarrow \tau N$ cross section is estimated from effective $\mu \tau$ coupling with the constraints from rare tau decay.

$$\mathcal{L} \sim \frac{4\pi}{\Lambda^2} (\bar{\mu} \Gamma \tau) (\bar{q}^{\alpha} \Gamma q^{\beta}) \quad \Gamma = (1, \gamma_5, \gamma_{\mu}, \gamma_{\mu} \gamma_5, \sigma_{\mu\nu})$$

	decay mode	A.
scalar	$\tau \to \mu \pi \pi$	2.6 TeV
psuedo-scalar	$\tau o \mu \eta$	12 TeV
vector	$ au o \mu \phi$	14 TeV
tensor	$ au \to \mu \pi$	11TeV

Black, Han, He, Sher, 2002

$\mu N \rightarrow \tau N$ Cross Section

Scalar coupling $\sigma \sim 0.1$ fb

with 10²⁰ muons/year, 100 g/cm² target mass, 10⁶ events

Psuedo-scalar coupling $\sigma \sim 10^{-5}$ fb

In SUSY, scalar coupling = psuedo-scalar coupling, cross section smaller by 10⁻⁴.

$\mu N \rightarrow \tau X$ DIS reaction

At high muon energy, deep inelastic scattering (DIS) is important. Not $\mu N \rightarrow \tau N$, but $\mu N \rightarrow \tau X$.

DIS Cross Section

Estimated Event Rates

With 10²⁰ muons/year and proton target mass of O(10²) g/cm²

Acceptance ~ 0.01

Emu	cross section	# of taus	# observed
50 GeV	10 ⁻⁵ fb	O(10 ²)	O(1)
100 GeV	10 ⁻⁴ fb	O(10 ³)	O(10)
300 GeV	10 ⁻³ fb	O(10 ⁴)	O(10 ²)

For nucleus target, multiplied by # of nucleons

Angular Distribution

Higgs mediated \rightarrow chirality flipped.

$1 - \cos^2 \theta_{CM}$

 $\mu_L \to \tau_R$ $\mu_R \to \tau_L$

backward at CM, may useful for identification.

Energy-Anglar Distribution

 $E\mu = 50 \text{ GeV}$ $E\mu = 100 \text{ GeV}$ $E\mu = 500 \text{ GeV}$ In Lab. frame, taus are emitted forward, but still with large P_T.

Signals

- For instance, use two-body haronic decay of tau leptons.
 - $\tau \to \pi \nu (\rho \nu ...) + \text{missing neutrino energy}$

tau decay products

ĕ

0.00

8

a hadron from the right-handed tau with highenergy is emitted forward

Backgrounds

3

8

Muons from elastic or inelastic scattering off target ($\mu N \rightarrow \mu X$) would become backgrounds, if they are misindentified as pions.

- Solution forward-peaked \rightarrow rejected by emission angles.
 - highly-efficient PID (pions from muons)

Hadrons from target might be soft in energy.

Need Realistic Detector Layout and Simulation

Chirality / T-odd

Model Discrimination

	$\mu_L N \to \tau_R X$	$\mu_R N \to \tau_L X$
left-handed slepton mixing	exits	vanishes
right-handed slepton mixing	vanishes	exists

T-odd correlations

 $\vec{s}_{\tau} \cdot (\vec{p}_{\mu} \times \vec{p}_{\tau})$ CP violation in LFV

$eN \rightarrow \tau X DIS Reaction$

In similar to µN→TX reacion, eN→TX DIS reaction can be considered. The same argument can be applied, if the sition is in the same magnitude of far, done, ng.
 At an electron-position far, done, ng. to be in (E=500 GeV, L=10³⁴/m promising has be are available.
 With 10 Most addeeds, and are available.

o ackg	ground	# of taus	# observed
250 cev	10 ⁻³ fb	O(10 ⁴⁻⁵)	O(10 ²⁻³)

For nucleus target, multiplied by # of nucleons

$eN \rightarrow \tau X Open Issues$

Incident e[±] makes electromagnetic shower in a fixed target, losing energy.

Ono lengthy target (100 g/cm²→10g/cm²?)
Photo-production of taus as background ?

Simulation studies are needed.

3

ğ

S

.... Near Future

8

8

8

8

In non-SUSY, cross section with scalar coupling is less constrained. $\rightarrow \sigma \sim 0.1$ fb

with 10¹⁵ muons/year and 100 g/cm² target mass, about 10~100 events

- S.N. Gninenko et al. CERN-SPSC-2004-016, SPSC-EOI-004
- SPS muon beam 10-100 GeV
 - quasi-elastic scattering $\mu N \rightarrow \tau N$
- 🕉 J-LAB

Summary

 \sim We consider the possibility of LFV $\mu N \rightarrow \tau X$ and $eN \rightarrow \tau X$ reactions in the DIS region at a muon collider and electron linear collider. 8 SUSY LFV with Higgs mediation can be studied in these reactions. (SUSY scale > TeV) Constraints in SUSY case from $\tau \rightarrow \mu \eta$ is tight. 8 at $E\mu > 50$ GeV, b-quark contribution is found to enhance the cross section significantly. Improvement of everal orders of magnitude can be expected. It is competitive to super B factories and a tau-charm factory.