

Ecological Risk Assessment for Fish

Representative Species

3 Lines of Evidence

Site-Specific Studies

- <u>Phase I toxicity (USGS)</u>:
- Spawning bass from Housatonic River
- Directly assessed both <u>adults</u> and their lab-reared <u>offspring</u>
- Phase II toxicity (USGS):
- PCBs injected into clean eggs of fish (bass extracts, reference standards)
- Bass, medaka, rainbow trout eggs
- Field studies:
- EPA biomass study
- GE largemouth bass study

Exposure Assessment

EPA Fish Collections (1998-2000) - Observed Mean tPCB Concentrations - All Ages

Tissue PCB concentrations among highest ever observed Trends: • - Trophic level - Reach - Age - Lipid Similar spatial and species patterns for TEQ

Effects Assessment – Literature Reviews

- Reviewed scientific literature
- Focused on PSA-relevant species (sensitivity)
- Extrapolated from egg to whole body PCB concentrations if required
- Determined effects
 thresholds for PSA fish

Effects Assessment – Phase I Toxicity Results

<u>Largemouth bass fry</u>: A – normal

- B head deformity
- C edema
- D vertebral anomaly
- E partially external swim bladder (15-days post-swim up)

- Effects consistent with PCB/dioxin-like toxicity
- Increased effects relative to reference (Threemile Pond)
- <u>Adults</u> –liver; abnormal gonads
- <u>Offspring</u> reduced survival at swim-up; delayed development; deformities; slower growth

Deformity Rates (N/1000) in 15-Day Offspring of Largemouth Bass Fry from the Housatonic River

Deformity	Three- Mile Pond	Rising Pond	Woods Pond	Deep Reach
Swim Bladder				
- Uninflated	ND	333 ª	9 ^a	24 ^a
- Partially- inflated	ND	120 ^a	429 ^a	88 ^a
- External	ND	67 ^a	27 ª	24 ^a
Shortened				
Operculum	ND	ND	ND	220 ^a
Tail Deformity	ND	ND	18 ^a	ND

Effects Assessment – Phase II Toxicity Results

Largemouth bass PCB126 standard **External Swim Bladder**

Rainbow trout Housatonic River extracts **Head deformity**

Rainbow trout Housatonic River extracts **Yolk sac edema**

- Trout, medaka, bass all showed reproductive and developmental responses
- Effects most pronounced at later stages (post swim-up)
- Several abnormalities doserelated
- Housatonic extracts consistent with PCB/TCDD standards
- Trout slightly more sensitive than warmwater species

Effects Assessment – Phase II Toxicity Results

Concentration-response observed

Combined survival and deformities Derived PCB and TEQ thresholds for effects (ppm tissue)

Effects Assessment – Field Studies

- Effects of PCBs are not "catastrophic"
- Populations of largemouth bass and other warmwater fish present in PSA
- Reproduction of LMB is occurring
- Age class structure and numbers reasonable
- Some indications of poor nest condition and reduced growth
- However, studies not designed to detect
 - subtle effects
 - impacts from additional stressors

Risk Characterization

Measurement Endpoints	Weighting	Evidence of Harm	Magnitude		
A. Site-Specific Toxicity					
A1. Phase I reproductive effects	Mod/High	Yes	Low		
A2. Phase II reproductive effects	High	Yes	Intermediate		
B. Fish Body Burden					
B1. Observed fish tissue/ Literature toxic levels	Mod	Yes	Low		
B2. Observed fish tissue/ Phase I toxic levels	Mod/High	Yes	Low		
B3. Observed fish tissue/ Phase II toxic levels	Mod/High	Yes	Low		
C: Fish Community and Reproduction Studies					
C1: EPA Study and GE Community Study	Low/Mod	Undetermined	-		
C2: GE Reproduction Study	Low/Mod	Undetermined	-		

Summary of Risks by Species

Extrapolation of Risks

- Other warmwater species in PSA similar to ERA surrogates
- Trout assumed to be 4 times more sensitive
- No risks to warmwater species (e.g., bass, sunfish) downstream of Woods Pond

- Coldwater species (e.g., brown trout, rainbow trout) have marginal risks between Woods Pond and MA/CT state line
- No risks to fish in Connecticut

