MSFP-208

US Plans for the JEM-EUSO

Presented by Jim Adams

- Optics Investigations
- Trigger Design
- Event Reconstruction

Issues for the US proposal

- Low Technical Risk for Optics
 - We must demonstrate the capability to make the optics
- Concerns
 - Diffractive
 - We need to find someone who can make it
 - CYTOP
 - How to diamond turn it
 - Uniformity
 - Other maturity issues?
 - Other optics manufacturing issues
 - Surface roughness
 - Throughput
 - Scattered light from outside the field of view

Optics Investigations

- Lens Manufacturing
 - Manufacture two 1 meter lenses from PMMA
 - Test lenses in the UV to determine
 - Spot size versus field angle
 - Throughput versus field angle
- CYTOP Testing
 - Diamond turning tests
 - Refractive index uniformity tests
- Diffractive Testing

Lens Manufacturing

- Manufacture two lenses from PMMA
 - Diamond turn on the Moore machine
 - Post-polish to reduce surface roughness
- Manufacture a metering structure

 Holds the lenses to create the optic for testing
- Test the optic
 - Use the AMOR facility
 - 2 meter uniform beam
 - ~350 nm

CYTOP Testing

- Diamond Turning
 - We have a limited amount of CYTOP
 - We were not successful in our first try
 - We are looking for advice
- Uniformity Testing
 - We plan to use a Fizeau interferometer
 - Use a tank with optically flat walls
 - Immerse CYTOP in index matching fluid

Diffractive Testing

- We can test a diffractive for JEM-EUSO
 - We understand that a diffractive can be manufactured in Japan
 - We have a design for a 10 cm f/5 diffractive lens with 1 meter focal length
 - If it can be manufactured in Japan, we will test it at UAH

Optics Investigations

- Lens Manufacturing
 - Manufacture two 1 meter lenses from PMMA
 - Test lenses in the UV to determine
 - Spot size versus field angle
 - Throughput versus field angle
- CYTOP Testing
 - Diamond turning tests
 - Refractive index uniformity tests
- Diffractive Testing

Lens Manufacturing

- Manufacture two lenses from PMMA
 - Diamond turn on the Moore machine
 - Post-polish to reduce surface roughness
- Manufacture a metering structure

 Holds the lenses to create the optic for testing
- Test the optic
 - Use the AMOR facility
 - 2 meter uniform beam
 - ~350 nm

Diffractive test details

- Diffractive Design
 - Design wavelength: 0.357 microns
 - Maximum depth of cut: 0.695 microns
 - Total number of facets = 3500
 - Mean facet width = 14 microns
 - Maximum facet width = 845 microns
 - Minimum facet width = 7 microns
- Matching smooth plano-convex lens
 - Radius of curvature 513.58 mm
- Determine the diffractive efficiency by comparison

Trigger Design

- Space Sciences Lab (UCB) trigger
 Designed by Crawford and Judd
- Multilayer trigger
 - 1st layer trigger (rate ~ 1 kHz)
 - Overlay frames from successive gate timing units
 - Shift successive frames to account for
 - Shifting image of non-vertical tracks
 - Look for good signal/noise
 - 2nd layer trigger (<0.1 Hz)
 - Use pattern recognition to recognize CR tracks

Event Reconstruction

- Use ESAF simulations
 - Investigate trigger threshold
 - Use ESAF simulated events
 - Determine trigger efficiency
 - Investigate event reconstruction threshold
 - Examine ESAF simulated events
 - To find the lowest energy event that can be reconstructed to find its energy and arrival direction
 - Can JEM-EUSO be done without a diffractive?

100 events simulated at 60° and 10²⁰ ev

Point Spread Function

- 100 events were simulated at 60° and 10^{20} ev.
- Each photon is tagged with its' GTU.
- For GTUs that contained more than 10 photons
 - The mean radius vector for the GTU was calculated
 - Subtracted this from the radius vector for each photon.
 - Giving the distance spread about the GTU center
 - This distance is plotted in the next figure.

Note: The event moves across the focal plane during the time of one GTU broadening the distribution. At 60° the movement is estimated to be about 2.5 mm per GTU.

Discussion Points

- How can we coordinate our investigations for JEM-EUSO?
- Cytop Testing
 - Can we work with you to find out how to machine CYTOP?
- Can you manufacture a diffractive for us to test?
- How can we coordinate simulation efforts better?