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A pulsating form of hydrodynamic Instability has recently been shown to arise during l|qald-propellant defla-
gration in those parameter regimes where the pressure-dependent burning rate ls characterized by a negative
pressure sensitivity. This type of Instability can coexist with the classlcai cellular, or Landau (Landau, L. D., "On
the Theory of Slow Combust|on_"Aeta Physicochimlca URSS, Vol. 19,1944, pp. 77-85; also Zhurnal Eksperbnen-
tal'noi i Teorel_heskoi Fizlki_VoL14,1944, p. 240), form of hydrodynandc instability, with the occurrence of either
dependent on whether the pressure seasitlvlty is sufficiently large or smaU In magnitude. For the inviscid problem,
it has been shown that, when tim burning rate Is realistically allowed to depend on temperature as well as pressurep

t_l_fsufticiently large values of the temperature sensitivity relative to the pressure seJtsltivity causes the pulsathlg
form of hydrodynamic instability to become dondnant. In that regime, steady, planar burning becomes Intrlasi.

early unstable to puisat|ng disturbances whose wave numbers are sufllclenfly small This analysis IsAextended to
the fully viscous case, where It is shown that although viscosity is stabilizing for Intermed|ate and'larger wa_.-)
number perturbations, the Intrinsic pulsating instability for small wave numbers remains. Under ti_ese cand-i=-
tlons, Iiquidopropellant combustion Is predicted to be characterized by large unsteady cells along the liquid/gas
Interface.

!.

Nomenclature

= burning rate
= pressure-, temperature-sensitivity coefficients
= coefficients in perturbation solution, where i

is equal to 1, 2 ..... 10
= mte-of-stxain tensor
= Froude number

= inverse Froude number (gravitational acceleration)
= perturbation wave number ....
= unit normal
= Prandtl number

= pressure
= quantity defined following Eq. (26) " ..

ffi quantity defined following Eq. (26)
= time variable
= perturbation velocity vector
ffivelocity vector
= moving coordinate system "
= surface-tension coefficient

ffismall bookkeeping parameter .
= perturbation pressure
ffigas-to-liquid thermal diffusivity ratio
= gas-to-liquid viscosity ratio
= gas-to-liquid density ratio
= location of gas/liquid interface
= perturbation in location of gas/liquid interface
= complex perturbation frequency

Subscripts and Superscripts

i - inner wave number regime or integer variable :'

of. outerwavOu berreg  e
= liquid

d =gas 0kFk,._ e so . = outer way umber regime
, . scaled quantity .
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Introduction

YDRODYNAMIC (Landau t) instability in combustion.is typ-ically associated with the onset of wrinkling of a flame surface,
which corresponds to the formation of steady cellular structures as
the stability threshold is crossed. This type of instability was orig-
inally described by Landau I and is attributed to thermal expansion
across a combustion front. Although gaseous combustion was de-
termined to be intrinsically unstable in Landau's analysis, it was
demonstrated that additional effects, such as gravity and surface
tension, that enter when the unburned mixture is a liquid result in a
specific stability criterion. However, this analysis, along with a later
study by Levich 2 that considered viscous effects in lieu of surface
tension, assumed that the the combustion front propagated normal to
itself with constant speed, whereas it is now recognized that there is
a dynamic interaction between the burning rate and local conditions
at the front.

For those problems in wlficb pyrolysis, exothernfic decomposi-
tion m_d/or combustion occursin an intrusive region in the vicinity

of the liquid/gas interface, the dynamical coupling of the burning
rate with the underlying hydrodynamics of the flow can be achieved
through an analysis of the thin combustion/interface region. An al-
ternative approach, however, is to simply postulate a, phenomeno-
logical dependence of the local burning rate on pressure and tem-
perature and to obtain results in terms of suitably defined sensitiv- .
ity parameters. Both types of methodologies have been applied to
the problem of solid-propellant combustion, and each offers certain
advantages) ,4 in the present series of studies on liquid-propellant
combustion, s-7 the latter approach has been adopted, thereby gen-
eralizing the Landaul/Levich z model to allow for a coupling of the . :

burning rate with the local pressure and temperature fields. ".: • '
.J_ll,_ummarizing,_n_ome of the results obtained from the _...--'+. i

present model, it has been shown that when only the pressure sen- : ;. ;"
sitivity of the burning rate is taken into account, an appropriately ,. , ;..ri; ' ,
general red stability criterion for cellular (Landau l) instability is ob-. " ': _ ';!': :=:
tamed. Exploiting the reahstac hnut of small gas-to-liqtud density _, ;= .:..i:._;_
ratios, tt *s found that the stable regmn occurs.for negative values of,: _:'.: ;: =r-_.:=.
the preSsure-sensitivity parameter with the original Landau model' _.__.i,'i "ii-:

being intrinsically unstable in this limit. In'partlcular, tl,e neutral " i' ._ii:'

stability boundary possesses a local minimumwhen plotted against ii"ii, .3:!:
the disturbance.... wave nmnber, which suggests,that as. the. pressure-. ' : i :

sensmwty parameter decreases m magn rude, tile hqu d/gas rater- .
face/front develops cells corresponding to classical hydrodynamic

This report is a preprint of an article submitted to a journa} for
publication. Because of changes that may be made before formal
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instability, s This minimum rcflectsathat surface tension and viscos-
ity are stabilizing influences for sfi_rt-wave disturbances, whereas

gravity is a stabilizing influence for long-wave perturbations, As a
result, the effect of reducing the gravitational acceleration to mi-
crogravity levels is to shift the neutral stability minimum to smaller
wave numbers. Thus, in the microgravity regime, Landau instability
becomes a long-wave instability phenomenon, implying the appear-
ance of large cells along the combustion interface.

Aside from the classical cellular form of hydrodynamic instabil-

}(p,_ ity, this dynamic generalization of the Landautllevich 2 model alsoi predicts the appearance of a_ form of hydrodynamic in-
stability, corresponding to the onset of temporal oscillations in the
location of the liquid/gas interface. This form of hydrodynamic in-
stability occurs for negative values of the pressure-sensitivity param-
eter that are sufficiently large in magnitude. _ Consequently, stable,
planar burning is predicted to occur in a range of negative pressure
sensitivities that lies below the cellular boundary and above the pul-
sating boundary just described. A stable range of negative pressure
sensitivities is applicable, for example, to certain types of hydroxy-
lammonium nitrate- (HAN-) based liquid propellants for which non-
steady modes of combustion have been observed, a.90"hough less
common, ranges of negative overall reaction orders/pressure sensi-

•tivities have been reported for sufficiently diluted gaseous hydrocar-
bon fuels as well1°). The appearance of both pulsating and cellular

forms of hydrodynamic instability is ana/ogous to the two corre-
sponding types of thermal/diffusive instabilities that occur for sup
ficiently large and sufficiently small Lewis numbers, respectively, tl

When the effect of a temperature sensitivity in the burning rate
is included in the analysis, substantial modifications to the preced-
ing stability description can occur. Specifically, if the temperature-
sensitivity parameter is sufficiently large relative to the parameter
corresponding to pressure sensitivity, the pulsating hydrodynamic

" I_ stability boundary can develop a turning point, that is, become
L_,nktt L C shaped, in the (distttrbance-wav_umber, pressure-sensitivity)
_'[T plane. In that case, the stable region for small wave numbers dis-

, appears, and liquid-propellant combustion is predicted to be intrin-
sically unstable to the nonsteady form of hydrodynamic instability
for all sufficiendy large disturbance wavelengths. This has been de-
scribed in detail in the limit of zero viscosity/and the purpose of the
present work is to extend that analysis to the fully viscous model.
Viscous effects were shown to have a substantial influence in the

absence of thermal sensitivity, where it turned out that the stable
region became significantly widened when viscosity was present,
and the same result will be demonstrated when thermal effects are

present. However, the same intrinsic pulsating instability that occurs
for sufficiently large temperature sensitivities and sufficiently small
wave numbers in the inviscid case will be shown to be preserved
even when viscosity is included. These results lend further support
to the notion that a likely form of hydrodynamic instability in liqtfid-
propellant combustion is of a nonsteady, long-wave nature, distinct
from the steady, cellular form originally predicted by Landau. I

The physical nature of the pulsating form of hydrodynamic in-
stability described here, like the pulsating form of thermal/diffusive
(or reactive/diffusive) instability? is manifested through an oscil-
latory imbalance between reaction-front perturbations and those'
processes that act to dampen such perturbations. In the case of a
pulsating reactive/diffusive instability, such as occurs in gaseous

;,, combustion, t! smaller mass-to-thermal diffusivity ratios, that is,
._( larger Lewis numbers, allow a relatively greater concentration of

L " .,= reactant in the reacdon zone. This in turn triggers, for sufficiently
_ " large Zel'dovich numbers, a more intense reaction, which leads to

.,. : an imbalance between temperature perturbations that accelerate the
' " front and cause the profiles to steepen, and diffusion, which trans-

: _ ,i: fers heat to the unburned mixture and thereby reduces the reaction
.":" :."'.i:'intensity. In the purely hydrodynamic problem, a negative pressure

; : sensitivity plays a somewhat analogous role to that of diffusion be-
- " cause positive pressure nerturbations will either locally accelerate

. " _._:_'.. or decelerate the front, depending on whether thepressure semi-
3 :";,; tivity is positive or negative. Thus, positive pressure sensitivities

lead to intrinsic instability, s whereas negative pressure sensitivities

that are sufficiently large in magnitude lead to an overcorrection
in the local burning rate in response to a hydrodynamic pressure

disturbance. In the latter case, an oscillatory imbalance between hy-
drodynamic perturbations and corresponding variations in the Local
burning rate is/thus/established. As indicated by the subsequent ,/vy
results, the inclusiodof viscosity and a thermal sensitivity in the re- i,
action rate, where the latter results in a coupling of the thermal and

hydrodynamic fields, accentuates this effect through the inclusion
of thermal/diffusive processes as already described.

Summary of the Mathematical Model

The madmmatical model was described previously, s,_z but is

briefly smnmarized here for completeness. Specifically, it is as-
sumed that the combustion front coincides with the liquid/gas inter- .;
face, where pyrolysis and/or exothermic decomposition occurs. De-
noting the nondimensional location of this downward-propagating
interface by x3 = 4)(xl, zz, t), where x3 is the vertical coordinate and

the adopted coordinate system is fixed with respect to the stationary
liquid at x3 -- -to, we uansform to the moving coordinate system
x =xl, y = x2, and z =xj - ep(xh x2, t) such that the liquid/gas
interface always lies at z = 0. Cot_servation of mass, energy, and
momentum within each phase then gives

V v=O z#O {1)

°°°°°° {:1Ot Ot Oz t-v. VO= V2®, z_;O (2)

Ot Ot OZ t'(v'V)v=(O'O'-Fr-))- _) Vp :,
!

+ { P[I}_2p,_pr. z_O (3)

where ® is temperature, Prt and Pr a are the liquid- and gas-
phase Prandll numbers, X and c {to be used) are thermal diffusivity
and heat-capacity ratios, and Fr-' is the inverse'Froude number

(gravitational acceleration). Other nondimensional parameters in.
troduced subsequently include the gas-to-liquid viscosity ratio V,

(pkPrj = lzPq) and the unburned-to-burned temperature ratio _r,.
Equations (1-3) are subject to a set of boundary and interface

conditions given by

v = 0, 0 = 0 at z -----oo

O = 1 at z = +oo, ®6-o- = O6-o+ (4)

t%,x v_ = t%,x v+ (5)

r%,. (v_ -- pv+) = (I -- p)S(d_)_ (6)

'.h,, v_ - S(¢) = ACPh,o÷, ®6-0) ,: (7)

ph-o- - ph-o* = h, . [pv+(h, . v+) - v_Ca, . V-)

-- pXPr, e+ . h, + Prle_ . h,] + h, . (v_ - ;v+)S(O)'_'t _

/

- y(-V. h,) ._ ":' (8)

,_,x p,+(,_,,v+)- v_(,_,.__)+ c_-- pv+)s(*) j

_- _, x (pLPr_e+ I_, -- Prze_ ns) :_ (9)

h,. (cpkVOh.o+ - VOt=a )

= t2,. [(cpv+ - v-)Oh=0 + 2(a, pv+ - v_)] _ <.

+[(l -cp)O t=o+ E(l-_r,p)]S(¢) _-=--, " e=.----'---',:'.!:,, ..,!:

, -_ .. (Io) : ;

where va = vh = o_, e:L= e6 = o*, and F.qs. (5-I 0) correspond to con- '

tinuity of the transverse velocity components (no-s!ip), conservation

of (normal) mass flux, the mass burning ra!e ' (pyrolysis) law,

-[ ,_:
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conservation of flux of the normal and transverse components
of momentum, and conservation of heat flux. Here, S(O)=

(I + O_ + ¢2)-J/2, the unit normal t_, = (-Ox, -@y, I)S(¢), and
the expressions for the gradient operator, the Laplacian, and the
curvature in the moving coordinate system are given by V =

,a_ ay= yy)a +
@.(1 + _2) _ 2_y_.y, respectively. However, the vector v still
denotes the velocity with respect to the (xt, x2, x3) coordinate sys-
tem. Finally, we note'that the nondimensional mass burning rate
appearing in Eq. (7) is assumed to be functionally dependent on
both the local pressure and temperature at the liquid/gas interface.
By definition, A = 1 for the case of steady, planar burning, but per-
turbations in pressure and/or temperature result in corresponding
perturbations in the local mass burning rate.

Because the thermal and hydrodynamic fields are coupled only
through the temperature dependence of the mass bta'ning rate A ap-
pearing inEq. (7),thestrictlyhydrodynamicproblemforp,v,and
@, can be analyzedscparatclywhen A isassumed todependon
pressureonly.S.61nthepresentwork,we focuson thcfullycouplcd
problcmtodeterminehow thehydrodynamicstabilityboundaries
are modified when the local burning rate depends on temperature as

well as pressure. Ourstability results will/t:hus/depend on two sensi-
tivity parameters, Am and Ae, defined as Am= BA /BpIo = _,p,.o and
Ao =aA/a®lO.Lr,O, where ®= 1, and p=O are the interface
values of temperature and pressure of the basic solution in Eq. (11).
Though an explicit expression for the reaction rate A is not needed
in the present analysis, we note that, because the nondimensional
activation energy is typically large, the temperature sensitivity Ao
would likely be larger in magnitude than the pressure sensitivity

A e, which will have some bearing on the relative scalings of these
parameters that will emerge in the following analysis.

Basic Solution and Its Linear Stability

The nontrivial basic solution of the preceding problem that corre-
sponds to the special case of a steady, planar deflagration is given by

_o = -t, v ° = (0, 0, v°)

vo= O, z<0 ®O(z)=
p-i--l, Z>0, Z>0

_Fr-Zz + p-Z _ 1, z < 0
PO(z! = [-pFr-Zz, z > 0 (11)

The problem governing its linear stability may be formulated, be-
fore inuoducing any ftu'ther approximations, in a standard fashion
by introducing the perturbation quantities ¢,(x, y, t) = ¢(x, y, z, t)

- D°(t), u(XloY/Z,t) = v(x,y,z,t) - v°(z), _(x,y,z,t) =
p(x, y, z, t) -- p (z), and O(x, y, z, t) = ® - ®°(z) - _, dO°/dz.
The problem obtained when Eqs. (1-10) are lineadzed about the
basic solution (I I) is then given in terms of these perturbation vari-
ables by

aut Oua au3 "

a-T+ _ + _ = 0, z ¢ o (12)

11 au au { a_ [ 1 | Fr_jar

• z_o 03)

[l}ao ao /-u3e'/ [ 1 I/a2o a2o a_o'_

• - z_O (14)

u=O, 0=0 at z=-_

0 = 0 at z = +_, Oh=_ - Ohio- = _, (15)

I

utl==o-- uih=0* = (p-t _ 1)4,.

u_h=o- - uz[_=o+ = L®-I - 1)¢_, : : (16)

u_h=o- - push=o+ = (1 -- p)q_, .,.

U31,.0" --_, = Ap_'l=.o+ + Ao0I,.o+ (17)

_'h-o- - _'h-o+ = 2(u_h.o* -u_h.o-)

/"" au_ au_ l (1-. +2Prll-- --•
- r(_,, + ¢,.) ,. (18)

_ {atql .q _ Prtka Z Iz.O. "bo-71,.o. ,.o+- I,.o-/
= o (19)

,-o+/ \0,1,.o_ + 0y ,-o-/

= 0 (20)

ao} _za°IcpA-:- - - -cOb=o+ +Oh.o- = -ush.o- +¢',"
oz ,-o-

:' (2I)

where Eqs. (16) and (17) have been used to simplify Eqs. (18--21),
Nontnvial harmonic solutions for 4), u. and /:, propor-

tional to exp(io_t+iklx+ik_y), that satisfy Eqs. (12-14) and

the boundary/boundedness conditions at z =4-00. are give n by
#=exp(iwt + ik_x +ik_y) and .!.i "

• Ibletz -- Fr-I, ,
_"= exp(io_t + ik_x + ikzy) t b2e_gU: -- pFr_l,

ul = exp(iwt + iktx + ik_y)

• Ibaeq_ - ikt(ico + k)-_bte _z,
_ . x [b4e'_ _ ik_(iwp - k)-ibae -_:, "

u_ = exp(iwt + iktx + ik_y)

IbseqZ - ik_(ica + k)-_ble _:, ' "

x [bte,= ik2(iwp "7 k)-Ib-ze -t=,

ua = exp(imt + ik]x + ikay) . .

x [bTeq_ - k(ica + k)-_bte *:,
[bier z + k(iwp - k)-_bae -_,

0 -- exp(iwt + ik_x + ikzy)

1'

•'i

z<0

z>0

z<0

z > 0 (22)

(23)

.]
]

,- J

=_ .}

"i

[
I

I

i

' "* r

'. !

/
z<O •

z>0 (24)_'

z<0

Z >. 0 (25) - . . ,

; _ • .. , _i t
e .

" ':_ " " " , _i :::,

" '" [ lbe_=-[iw'l'kz-q(q+l)]-_e(q+t)= " " i '. ,:I'
_<{ +_:[(io02-kh-'b,e"+'>=; :/i: z'<O '-: ! .. i •ii::i

• lb,oe'=, -:;., i z > 0 (26) _:::i :_::;;ii_•';!:

where k=(k +k.) is tile overall disturbance wave number. ,:..: _,;_.:[_.,..
and the quanut|es p q r and s are defined as 20= l.+[l.-I-_i;._:_':_.:_L%:_,,
4(iw + k:)]'/2 2Prl q' = '1.+ [1 + 4Pr,(ico + Prl ka)] ,}'z,'21_Prtr =:Z:!¢4.__':i!:i_{i_: .i

I - [1 + 4#Pr¢(twp + lzPrlk )] , and . 2pAs -- 1 - [1 +.,. :!_,_:;:':_i".:[',
2 2 1/2 ec n k _4p Z(iw+Ak )} .Substitutingthissolutionintotheinterfac o -! (.','.':-: .;"/_::

ditions (I 6-21) and using Eq. (12) for z _ 0 yield 11 conditions for: __')'i • : ._i_!_'_
the 10.coefficients bt-b_o and the complex frequency (dispersion ....
relation) ion(k). In particular, these conditions,are given by.- -- :: ,_ .... _

• b.

..... .! ..... , _.... -i " i : !
• ;! , , , ", r_ • !

. r .,"_!! .' ,. ..,,_
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2iklkl.tPrl bz
bcPrlrb4 + teop - k

- iklPrl b_ -_ 0

_ _ 2ikzkbtPrt
_t'rlrb6 + _ b2

- ikzPrlb7 = 0

2ikikPri •
+ ikff_Prlbs - Prtqb3 + _ot

iw+k

(30

2ikzkPrl .
+ ikzl*Pr_bs - Prtqb_ + _Ot

iw+k

(32)

bid - b9 + [ko + k2 - q(q + l)]-Ib_ - k[(iw) 2 - kz]-I bI = l

: (33)

[ ](1 -- e-l-c,oJ_)blo- p/_ 4- i_o+k2 _q(q + 1) + I /_

: " i_ + k Li_ - k + l bt = 1+ iw (34)

Although the preceding problem is linear in the coefficients
bl--bm, which can/'thus/b¢ eliminated to give a single equa-
tion for is), the resulting dispersion relation is quite long and
highly nonlinear. Explicit results may bc obtained for certain spe-
cial cases, including the original problems considered by Landau l

tap =Ao =Prl = p.- 0) and Lcvich 2 tAp = Ao =/_= y =0), as
well as a particular case (Ae=l*=Prt=O) of the generalized
model described earlier.5A3 To obtain more general results, it is
possible to exploit the smallness of certain parameters and to seek
asymptotic solutions for the neutral stability boundaries• In partic-
nlar, realistic limits to exploit include the smallness of the gas-to-
liquid densit_y and viscosity ratios p and/_, and, in the microgravity
regime, Fr-L Pursuing this approach, tractable asymptotic results
have so far been obtained for Ao -- 0 (Refs. 5 and 6) and for the
inviscid problem when Ae is nonzero (Ref. 7). The present work

essentially completes the asymptotic analysis of the dispersion rela-
tion embodied in Eqs. (27-347 5y extending the last of these studies
tothefullyviscouscase.

Parameter Scalings and Asymptotic Analysis
of file Dispersion Relation

Focusing on the realistic regime p << l (typical values are on the
order of 10 -3 or 10-4), we formally introduce a bookkceping param-
eter _ << I and introduce the reasonable scalings p = p'e,/* =/_'e,
Pr# _O(I), and either Fr -I =g or g*E, where Fr -I _O(f) cot-

•responds to the case of greatly reduced gravity. In this parameter
regime, the appropriate scaling for Ap to describe the neutral stabil-
ity region is Aa = A'p_ (Refs. 5 and 6), whereas the appropriate scale
that describes the main effects of thermal coupling turns out to be

Ao = A_te l/_ (Ref. 7). Based on this sc'.iling, we note that the ratio
Ao/A e ". 0(_-314) >> 1, as might be expected based on an overall
Arrhenius reaction-rate dependence on temperature..

Based on our earlier analyses, the scaiings introduced induce a set
of corresponding regimes for the wave number k (and the complex
frequency iw) in the dispersion relation determined by Eqs. (27-

34). These first emerged in our analysis of cellular instability using
tile generalized model in the limit Ao = 0, but they are also relevant
when one considers the pulsating form of instability and when As is /
allowed to be nonzero• In particular, in the case of cellular instability .,Jiilil'i¢l,and zero temperature sensitivity, there are three way,lumber scales It'-
to be considered• First, there is an O(1) outer .wav_.umber region, _t,
where the stabilizing effects of surface tension_ viscosity, and gravity
are all relatively weak. Second, there is a far outer scale k _kJ¢,
where surface tension and/or viscosity are strongly stabilizing and
gravitational effects are, to a first approximation, negligible• Finally,
we have an inner scale k "-,k_ or k_¢_, where gravity is the dominant
stabilizing effect (the first scale is valid for normal gravity, the latter
for the reduced gravity regime) and where viscosity and surface-
tension effects are absent at leading order. In each of these regimes,
the cellular stability boundary, obtained by seeking solutions of
the dispersion relation for which io_ is identically zero, is given,
respectively,by

p*
A;( 7~ -T

.
- ~

2p'p.*P[l +kl(P'y +2,='e + 2p*e)] _

";'"~-" + + 7r- /7"

R = (1 + 4p.'ze2k}) t (36) '

where P =- Prt. Matching these solutions to one another then leads
to the composite stability boundary

A_ tO _ -p° ';.

2p°v.*P[I + _k(p'l, + 2/.d' P+ 2p'P)] .... ;

4_.P(i + d,o.e) - 0,'v + 2_.P)[I : (l + 4v..zez.=kz)i] .: o•

p,2 {_g : (377+ _ .¢Zg* ;

as shown in Fig. 1.Clearly, the stable region lies below A_, = - p* ]2
(negative values of A _,over certain pressure ranl[et are characteristic
of a nmnbcr of HAN-based liquid propellants, J'_with the locaiion
of the minimum in the cellular boundary increasing to less negative
values of Ap With increasing values.of the stabilizing parameters
1_, Po, Iz °, and g (or 8'). In Fig. I_i'diecurves are &awn for ted

case ¢ =0.04, p* = 1.01_g= 6.01_." _2.0. The solid curves corre-
spond to die inviscid li_lit (P =0) with nonzero surface tension
(_, = 2.5). The dash--dot curves correspond to nonzero surface ten-
sion (l' = 2.5) and liquid viscosity (P = 1.0), but zero gas-phase vis-
cosity (#* P = 0). The dash-dot--dot curves differ from the dash--dot
curves by the addition of gas-phase viscosity (_° P --- 1.0) and are
similar to the dash-dot--dot-dot curves, where the latter correspond
to larger viscosities (P = #" P = 2.0). The dash-dot--dot--dot--dot

curves correspond to a viscous casee_(P =/z ° P = !.0), but with zero
surface tension.lll]Sff'_ie two sets of curves cor-
responding to tllb no_ and reduced gravity cases, it is clear that
the critical wave number for instability becomes small in the latter

regime. That is, cellular hydrodynamic instability becomes a long-
wave instability in the limit of small gravitational acceleration. Far-
ther discussion of this stability boundary and its relationship to the
original Landau=/l.,evich _ predictions, is given in Ref. 5.

Considering the pulsating stability boundary (in the .limit
Ao = 0), which is obtained by seeking solutions of the dispersion
relation for which only the real part ofia_ vanishes, it is found _ that:
the corresponding expressions in the inner and'outer wave number;

regionsaregivenby " :' "_ "(:::'"'....".'__:

" " A* "" -p*, A* _ -p*(i"+'2Pk)_ = = :(38)i:
P P _t'ir:, :'i', • " L..,fi.- i • "

respectively, in flds case, it is clear that d_e outer solutiot_ is, in fact,

the compositc solution, which lies below tile _llular bo_ :

I !

. :..;

• !:-2..', = ,_ l ',.-%,, +,e• 7<'.r -
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HYDRODYNAMIC STABILITY BOUNDARIES (p << I)

(¢p,_n..1,o)unstable /c ((¢¢_,)-'.o1

_. HYDRODYNAMIC STABILITY BOUNDARIES _o << I)

,4;, ViscousCase (P> 0)
unstable
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"_" i _ • ""*,, _'_ ......... ,. .... P _ .1

_'_ _,, %°°'°'°"°-,,°°, .............. _.,°,_.,

_' unstable _P=a '_P=l "i' ; ;' "

Fig. 2 Asymptot|¢ represen/al|on of the pulsating hydrodypRmlc s/a- / |

blllty boundary fur the viscouscase (P > 0)_¥ 7",J_@_.._/j/(_f_ _/_j _r_;p l

Introducing the already defined parmnetcr scalings, the quantifies ,'_r_,._:/ II

p, q, r, and s defined following Eq. (26) are expanded as _" ". j
. _.... : _

stable

Fig.1 AsymptoticrepresenIattonofthecellularhydrodynam|¢ neutral

sIabil|tyboundar|es.

recedes tonegative values of Ap thatarc largerin magnitude than

O(e) as k becomes large(Fig.2).Clearly,thisstabilityboundary

ismore sensitiveto the stabilizingeffectsof the liquidviscosity

pararneterP than isthe cellularboundary, having a leading-order

stabilizingeffectforO(I) wav_hmbcr disturbancesinti_iscase.In
A thelimitP _ 0,the pulsatingboundary co|lapsestothestraightline

A_ = -p', thatis,A_ = - l inFigs.I and 2,but even inthatlimit,

thereisa region of stabilitycorresponding to valuesof A_ greater

than-p* and lessthanthe minimum inthecellularboundary,which

isgreaterthan -p*/2. However, ifone now considerstheeffectsof

a nonzero temperature sensitivity in the inviscid limit P = 0, then,

for Ao _ O(¢ I/4), the pulsating boundary possesses a turning point

such that the stability region disappears for sufficiently small wavl_.)
number pettutbatlo_. _ T_s is shown in F_g. 3, which indicates _za_

the pulsating boundary then frames the stable region except along

the upper branch that asymptotes to the previous celldar boundary
-- as k becomes large in the outer wavl_iumber region. The evolution
A from a stability diagram that indicates a stable region delineated by

distinct pulsating and cellular hydrodynamic stability boundaries

to the pulsating-dominated one shown in Fig. 3 can be shown to

occur in the parameter regime Ao "-' O(_n), wlfich, based on the

estimate Ao/Ap ~ Oe -_p > 30 (i.e., of the same order as a typi-

q _ qt__) _-_ + qo + "" "

r",r(_)_½q-r_-Vrl_-t-..., S "" lt½)(_½) q- • • • (40)

where

P(-i) = (ia,'o) ½, 2p0 = [1 + iw,/(iwo)½ }

8p(t) = (io._)-½ [1 + 4k _ + 4ia._- (iwi)2/i_]

q(-t) = (iw°ie)½' 2eqo = [1 + iw;/(i_ao/P)½]

rt½) = s(½) = -i¢_)op °, rlt ) .-_ -i"hp*
q 7 .

ri = --i_vzp* -- (I t. Pk) z ' :
t= ]

I

.i

,I
Ik

!

1

!

1

._>,.ca/nondimensional activation energy), appears to be attainable for

many types of liquid propellants. We now extend the analysis that

produced the fully developed pulsating boundary shown in Fig. 3 to

Finally, the b_ are conservatively postdated to have the expansions' • • .-t,
' ," i= : , . _.: " ,.:','t T_'

b,= bl-',-' + t,l-i', -i + _,_-t>,-t+ ....; •: i= 1,2.8 , ",..<.''_"_:,c-tl

, ¢. ;:a,,l_),-_|_':

i. h_.,!<_7!,.
. , =:,2q;F:._l I'
, iP>_,_'7; 7ii'

i' ii!?=ii :i •i

ii. i.!itilill:

lhe viscous case in which both P and itl' are allowed to be nonzero. . ,'_"

Owing to the complexity of the fully viscous problem, we analyze b..........................=bJt-t)e-½ +b_(-_)e- t +b(°) +..., ; i.,_ =3 4,5 6'.: c,, " ,';¢'".._._._"
Eqs. (27-34) directly by seeking appropriate expansions for the _ , . i . . , , .... _. ,.:_ :_.

: complex frequency ita and the coeflicicnts b#. This differs from our . -- ( , i) __ t (0) 0 (t) t .... , _, ._ f,,:
': ;_ approachintheinviscidlimitwhercitwasfeasibietofu-stcliminate b_-b_ _ +b_ e +b_ _ +.. ...... !,,iS7,9,10._:(41)._:_,¢,_q¢:.

i........"7 .'. {he bt to obtain a single_iimplicit equation for io_ alone. We first . : . ; . . ...... ". ,..';:;_--: : ':". :_ _','_'.:_'_:':'_"._;,'.:,,,._c.:_' _

;i.'_ ;i:_"constder,the O(1) wav_r_aber region and, based on our earlier, where the form of the latter expansions is again, partly..: mouvated... ,..bY.k'_' '¢_:''' '_'__q
"" analyses, seek an expans|on for the dispersion relation iw(k ) in thJs • .°ur earher analyses of more spec altzedcases..d ¢":''. , . . , ....... _: :':',._,_ : _:: _ :":._ ,,,.,,, ,

" region in the form . ....... ', ' ,_ :., :. . _ ,. Substituting the precedmg expansions rote Eqs. (27-34) and+_ 'i-: ":i._
, equating coefficients of like powers of _, we obtain the. leading-:: : ,:_.L_

ita_,_-l(io_+,tia_|-- ÷_½io_z+...) (39) order conditions : ,: '," ' _;i i. ;_l _20'_ _.,¢;:W:,:'"!;_' i_!:i
l
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iktb_ -½) + ik2b_ -½) + qt_t)b[, -t_

i_tb_-½)+ .- -l-t) ' .(-x)
= _k2u6 +rt½)o t =0

b_-"= -k'/p', b_-"= -(i,,,o//k

b_-l),,l-l)= vxo -- 0 (43)

hi-"+ - 2bl-'>=O, b;-')= -(k/P')O+a;/P')
: (44)

where the last of these was obtained from the leading-order differ-
ence of the first and second of Eqs. (29) using the last of Eqs, (43).

From Eqs. (43) and (44) we/thus/conclude that the leading.order
dispersion relation is given by •

(ia.'o)2 = (k/p*)Z(2A_4-p*) (45)

which is the same result as that obtained in the inviscid case

when A_ = 0. In particular, Eq. (45) implies that (in.,0)2 _ 0 for

A*p_ -p*/2, which recovers the leading-order cellular boundary
(35) for O(1) wavenumbers, but gives no definitive information re-

garding stability for A_ < -p*/2 because ioJu is purely imaginary
in that region. That is, fluestability'of the basic solution in the latter
region is determined by the real parts of higher-order coefficients in

Composite pulsating/cellular hydrodynamic stability boundary for AO ,-, C)(¢t/4) in rite ilnflt of zero viscosity.

conclude that b_-xp') = ia_(l - A*Jp'). However, _iwx ---0 im-
plies the need to continue the analysis at the next order t'b determine
la_j Proceeding in this fashion, we obtain from the earlier results and

(42) Eqs. (29-34) at this next higher order anew set of cunditions given by

".."',-A,/o:),
"' " :', " : i . ! (49)

• vx'l-l)- .:v,_.t-j)=,,,o(2ke-'i+A:/p').._.(50)

b(-l) • . (p-(ao/,)b o= (5 7

_(k/itou)b(t-½)_(io>o)½b(i])_2iw2-_2Pk", J b't/_j,(| )
_10

•- (52)

where Eq. (5 I) was actually obtained from the next higher-order dif-
ference of Eqs. (29) and the second of Eqs. (49) was obtained from

the sum of F-xl/.(31) ,nultiplied by ikx and Eel. (32) multiplied by
(X/l) ( XlII

i ka. Equations (49-52) constitute a closed system for bl- , bs- ,
b(t/4) ,10 ,anca ia._. Eliminating the first three of these in favor of the last
and using the result (45) for ia._, we finally obtain the dispersion
relation for i_ as .

i_ = --2PC + k(,_;/_," - i)

.p,t'xx!
¢, :

!
>,';!

!.:.2

-,(i
.'i

ili

"1

the expansion (39) for i_o, although lm(ia,,o} :_ 0 implies that distur-

bances have a pulsating character for values of A_, below the cellular
stability boundary.

At the next order in the analysis of Eqs. (27-347, we obtain a
second set of conditions given by

ikxb_-t) -t- ikab(s-t) + q[_ l)b(_°) 4" qob(1-t) = 0 (46)

•;" (-_)+ ik2b_ -t) + r(_)b(s-l)+ rll)b(s-O 0 (477

=b'x -- = b':½)= =

=/,(9°)- ,,(o)_ b_ )- -xo - = 0 (48)

where the last of Eqs. (48) was deduced from the next-order dif-
ference of Eqs. (29). Finally, from the sum of the first of Eqs. (28)
multiplied by ikt and the second of Eqs. (28) multiplied by ika, we

1

•(53) .I
I

Stability in the region A_, < -p*/2 below the cellular b°undary , [

is determined by the real part of iwz. In that region, the principal _t_[¢., !
value of the complex factor in Eq. (53) may be written as_A;l _l'_J" ['

* -314 * * -3/4 -3X;t/4 1_ _ _ "p + 1) =[-(Ao/p +1)] e , and thus the h_ _, [
stability condition "Reli_z}-0 leads to an'implicit equation ","'_' _iI

i_t ,,

for the (pulsating) neutral stability boundary "A*.(k; A_, P). In _' ¢_. I_[
terms of the new .pressure sensitivity paramete_ b defined by 'l'r_'-{ '¢_ i![

'_ • _ ' 1['¢¢' i'
An, = moo/2)(1 + bY, where b represents the negative deviation, in ,_tl _ #'.I !,1
units ofp •/2.from the cellular boundary A_, = -p*/2 this boundary A ': [lt_" iti[

is given by ,1".: ' " ':.... _.... "i(:_ "._`_:'_Y[I

b (3 4- _) [(3 4- b)(l - $) + 8Pk] = ct /k,i ? o_ = 4A e/p .:_:..)_:,,::_.:_t_'__"- ] -_ " 2 ½ .... ' " .4 '. .......,._..... _,

...... Th¢, "".'Inthehm,tk-->co, xtxsclearthatt_etwosolutm,_sofEq.(54) _ •'.':"li]
, , t/2 P' I

givenbyb=O, thatis, Ae=- p /2,tmdb_-l+2(l+2Pk) , " " !':Ii[

• :/!:_i
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that is, A_/p' _-(1 +2Pk) t/_. Thus, the pulsating boundary is
clearly multivalued, as in the inviseid case (Fig. 3), with one branch

approaching the cellular boundary and the other branch approaching
the pulsating boundary for Ao = 0 (Fig. 2) in the limit of large k.

More generally, Eq. (54) may be rewritten as a cubic equation for
the inverse relation k(b) as

64P2k 3 + 16(3 + b)(l - "b)Pk 2 + (3 + b)2(l - b)2k

-=½0 + k)2i,-t = o (55)

which is clearly seen to collapse to the previous inviscid result _ in
the limit P -+ O. For arbitrary P, typical plots of k(b) are shown

in Figs. 4a-4d, which, when rotated -90 deg so that the k axis is
/_#-. horizontal, is readily interpreted in the context of Figs. 1-3, where

_ the lines A ° =-p*/2 and -p* correspond to L,=0 and 1 respec-
,A A Uvely. It is clear that thes_curves asymptote to the lines b = 0 and

l" A-1 + 2(1 + 2Pk) U2 as k ..t. oo, where the latter corresponds to the
_" viscous pulsating boundary in the limit A_---* 0. They cross the

line b = I, which corresponds to the inviscid pulsating boundary in.,..
_M'_limit, at k_=otU2/4P _. That the pulsating boundary "

becomes C shaped (in the rotated frame of reference) for Ah > 0
implies that steady, planar burning is intrinsically unstable for suffi-
ciently small wave numbers. In addition, because the portion within

ti,e C-shaped curve is the stable region, any crossing of the C-shaped
boundary from the stable to the unstable region corresponds to the
onset of a pulsating instability. As A_ increases, the turning point of
the C-shaped pulsating boundary shifts to larger values ofk. On the

other hand, as A_ becomes small, the turning point shifts to small,..,

values of k such that this point eventually leaves the O(1) wav(_/
number region for which Eq. (54) is valid. Indeed, it turns out that
the transition to separated pulsating and cellular branches occurs as
Ae decreases through O(_ U2) values for intermediate O(_ I_) wave
numbers. 7 Thus, as A_ becomes small, the original pulsating and
cellular boundaries are recovered in the O(1) wave number regime,
but as A_ becomes large, the original cellular boundary lies within
the unstable region for O(1) wave numbers, and the basic solution
becomes intrinsically unstable to oscillatory disturbances.

Composite Neutral Stability Botmdary

A composite asymptotic solution for the neutral stability botmd-
at), in the regime Ao _ O(E 1/4) iSthUSobtained by matching the cel-
lular and pulsating boundaries in the far outer wave number regime,

where the former is given by Eq. (36) and the latter by the second
of Eq_(38_with the appropdate solution branch of Eq. (54) in the

O(_ wav_-aber region. In particular, reverting back to the pa- /i '_ Z
rammer A _, we denote the two solution branches of Eq. (54), which ,-
correspond to the portions of Fig. 4 timt lie to the left and to the

k Ae.O(tm),k~O{l}:p'.l,P=O.I
k _ - o_d#), k - oU_,. ,". L e, o._s so

:Ill // !ii ,- Jamb/_ ' 40 •

L \, .." /J_ ,-: .....II, "r-.._ " - .," .," P :> ' ' ,

 ,:ii' .. , :.,
} a) o,s 1 1.s 2 c) 1 2 _ 4 S S

I

k Ao - O(a_#).k - O(11.-p' • L P • 0.01 /¢ A. - O(("_ _.t - OU_.-.a" I 1. e i ,'

•-_ "; ,o ,," -! //_

I t'./>'/,..,,-,-..-•:_0I, \::"._../ '" ..I/ "_,,.,o,, j... //,/ _I',,' . ""-" / / ,¢" . . .

,o_\\_" -I',,I," "," "i"-"'+_ "_,, _--_"- - -'_:._' _., ..... :i:'_1 . _, ..i, H,. ;'_', "V:,... ' +. "'I ',

....... .. .... , _., ;,I,_.._.._..,. t "I i_z'__ '_':;_1_':'..... •... • .... .... ....... ._l _.-'_ .... _.._,. i ,_• :,,.......

" ", ..... . .... :,...;.-:..-.+i" ..,,,+,+b'."i'+):.¢ :" /:+ 1
b) " .-_..,. 0.S., .... , . 1. ....... i I.S i... :a . d) _.S s 7 S . 10 .... ::12.$ . :':15":' )e: : :i ;i_:..'.i-!:_'_:t

Fig.4 Pu_atlnghydrodynandcstab_llyboundarleslork,_O(1)andAo C9(_ )h_thegeaer,,Ivbcoustaselorp =1 a_da)P=.OOl, b)P=O.Ol_ .. "],::i'_!'i/
c)P=O.l, andd)P=l.O. " " ....... ' . . .:_:._. .:'.." ::.-":, '; .-_;
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j_ .#_¢,t right of the turning-point minimum, by A*p(o")(k) and A*p(_._(k),e p _owhere the superscript o i,l(as before, the outer, or O(1), wavt_tm-
[t,v ber region and the superscripts u and l ._ the upper and _'ower

,._,t-- (rotate Fig. 4 by -90 deg) portions of the double-valued pulsating
_" boundary A*_(k). Along the upper branch A*J °'"_..-r -p*/2, that

is,i_ _ 0, as"k _ to, which can be matched w'ith Eq. (36) because
A A_ I) --_ -p*/2 as k I .-+ O. Similarly, A" to,0 _ _p. (1 + 2Pk)t/2

[i:e., b--_ -1 + 2(1 + 2ek) I/2] as k _ ¢:_, which clearly matches
the viscous pulsating boundary given by the second of Eqs. (38)

in the far outer wave number region• As a result, a leading-order

Composite pulsatingteeHular hydrodynamic stability boundary for Ae ,., O(e 114)In the general vlscou_ case." : "'

!

with the combustion front, realistically possessesboth apressure and

"t_ temperature sensitivity. In the present work, the fully viscous ease
was considered, thereby generalizing previous analyses in which
either the viscosity of the fluid and/or the temperature sensitivity
of the reaction rate was neglected. As in these;preceding studies,
the smallness of the gas-to-liquid density ratio was used to define
a small parameter that allowed an asymptotic treatment of a rather
complex dispersion relation. Specifically, it was again shown that
in addition to the classical Landau, or cellular, stability boundary,
there exists a pulsating hydrodynamic stability boundary as well. For

composite stability boundary spanning both the outer and far outer su_ciendy small values of the temperature-sensitivity parameter,
_" wavt0umber regions is given by there is a stable region between these two boundaries corresponding

I .-__..- " 0 g.

... pressed in terms of the out(l_av_l_umber variable k. As the pressure sensitivity decreases in magnitude, the cellular
/t The composite stability boundar_ls shown in Fig. 5. Based.on the stability threshold is crossed, leading to classical Landau instabil-

preceding construction, the lower branch of Eq• (56) is a pulsating ity. Surface tension, viscosity (both liquid and gas), and gravity

boundary for all wave numbers, whereas the upper branch transitions are all stabilizing effects with respect to this type of instability.

from a pulsating boundary for O(1) wave numbers to a cellular However, only gravity stabilizes small way,lumber disturbances, ,_
boundary for O(a -]) wave numbers. Indeed, from Eq. (45), the size and thus Landau instability becomes a long-wave instability in the
oftheupperregionofoscillatoryinstability, which is bounded below reduced-gravity limit. Alternatively. as the pressure-sensitivity pa-
by the upper branch of the pulsating stability boundary and above rameter increases in magnitude, the pulsating boundary is crossed,

and liquid-pr0pellant combustion becomes unstable to oscillatory rby the region of nonoscillatory instability beyond the outer cellular

boundary A*. _--p*/2 for A_ = 0, shrinks to zero as k becomes perturbations. This type of hydrodynamic instability is more semi- . ! ]
•_ large on the"O(1) wave,umber scale. In this regime, the lack of a tivc to the stabilizing effects of(liquid) viscosity than is the cellular ..... ..: !

,, ,_, stable region for sufficienfly small wave numbers/thus/lmplies an . " :.+¢ rboundary, but the stabilizing influence of viscosity does not ex- . i;, :_, [.,.,
¢1/./2" intrinsic instability to long-wave pulsating perturbations, tend to small way,umber disturbances, and gravity turns out not ; ._:_ii_.',_ii_?_:,?_::.l

to have a significant effect on this type of hydrodynamic instabib-i_,_.' _!_ii_-_'_
: ! : (i i . , . . it:,'. ,..onsequeady"for sumcieudy _arge values '6f:the temperature-'i:__ I :_.is_._i_i_!_,_J_!_l
: .i::,- " " ..., Conclusion :' "..... " ' _ '' • '"" _.',,""" _:t

, senstttvtty., parameter, the pulsating, boundary develo,ps a turmng :__._._',_,_':: "_ _'_,".t;q._i [1 present work further extends our recent formal treatment :! point and becomes Cshaped. In this parameterregtme correspond- : _,*;-_(_l&'_i:The

of hydrodynamic instability in liquid-propellant combustion. The ' ing to ratios of the temperature-to-pressure sensitivities of the order:." :_!_i?i! ;. _i![

analysis is based on a generalized Landau/Levich model in which of 200-1000, steady, planar combustion _s intrinsically unstable to ,'. : .: ! ;!, ['
the dynamic motion of the liquid/gas interface, assumed to coincide nonsteady long-wave perturbattons. In that case, the pulsating form . .,, _. ,: {.

)..... ! :-'"";i:'!
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of hydrodynamic instability is predicted to dominate, leading to

large unsteady cells along the burning liquid/gas interface.
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