
JavaGenes: Evolving Graphs with Crossover

JavaGenes: Evolving Graphs with Crossover

NAS-00-018
Al Globus, Veridian-MRJ Technology Solutions, Inc. at NASA Ames Research Center

Sean Atsatt, Sierra Imaging, Inc.
John Lawton, University of California at Santa Cruz
Todd Wipke, University of California at Santa Cruz

Abstract

Many genetic algorithms use binary string or tree representations. We have developed a novel crossover
operator for a directed and undirected graph representation, and used this operator to evolve molecules
and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible
graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A
steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test
the graph crossover operator. The JavaGenes code has evolved pharmaceutical drug molecules and
simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules
and very small circuits in reasonable time. Since the representation strongly affects genetic algorithm
performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial.

Introduction

[Holland 1975] applied the principles of Darwinian evolution to searching through the space of fixed
length binary strings representing solutions to various problems. This technique, genetic algorithms, has
been applied to a wide variety of fixed and variable lengthed strings of many kinds of symbols; for
example, bits, characters, integers, real numbers, etc. [Koza 1992] extended this technique to
hierarchical trees representing computer programs; this is usually called genetic programming. Both
genetic algorithms and genetic programming use crossover and mutation to evolve solutions to
problems. Related techniques, evolutionary algorithms and evolutionary programming, use only
mutation to evolve solutions. For an excellent review of evolutionary software techniques as of the
spring of 1997 see [Baeck, et al. 1997]. Evolutionary software has been applied to a wide variety of
problems as evidenced by a voluminous literature and many conferences devoted to the subject.

Genetic algorithms seek to mimic natural evolution's ability to produce highly functional objects.
Natural evolution produces organisms. Genetic algorithms produce sets of parameters, programs,
molecular designs, and many other structures. Genetic algorithms usually solve problems by some
variant of the following algorithm:

1. Randomly generate a population of individual potential solutions.
2. Evaluate each individual using a fitness function.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (1 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

3. For each new generation, repeatedly select parent individuals at
random with a bias towards better individuals, and create
children by applying transmission operators. Transmission
operators may include:

1. Crossover: each of two parents is divided into two parts
and one part from each parent is combined into a child.

2. Mutation: a single ‘parent’ is randomly modified to create
a child.

3. Reproduction: a single ‘parent’ is copied into the new
generation.

4. Continue until an acceptable solution is found or exhaustion
sets in.

If genetic algorithms can be usefully applied to two data structures, strings and trees, one might ask:
"Can the same techniques may be usefully extended to other data structures; for example, graphs?" In
this paper, a graph is a set of vertices and a set of edges, where each edge connects two vertices.
Specifically, we are not referring to an image representing data when we use the term "graph." Applying
genetic algorithms to new data structures is important because the representation has been shown to have
a strong affect on performance. As [De Jong 1990] states:

"The key point in deciding whether or not to use genetic algorithms for a particular
problem centers around the question: what is the space to be searched? If that space is
well-understood and contains structure that can be exploited by special-purpose search
techniques, the use of genetic algorithms is generally computationally less efficient. If the
space to be searched is not so well understood, and relatively unstructured, and if an
effective GA representation of that space can be developed, then GAs provide a
surprisingly powerful search technique for large, complex spaces." (italics added by
[Forrest and Mitchell 1993])

Genetic algorithms evolve populations by mutation and crossover. Graph mutation operators are fairly
obvious and easy to implement. JavaGenes implements several graph mutation operators (add vertex,
add edge, change vertex, change edge, etc.), but these are not the focus of this paper. Crossover is easy
to implement for strings and trees because these data structures can be divided into two pieces at any
point. Crossover applied to graphs is non-trivial.

Crossover on Various Data Structures

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (2 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

Crossover can be applied to strings, trees, and graphs. Note that
only graph crossover sometimes requires breaking multiple edges,
and that fragment combination must work on fragments with
different numbers of broken edges.

For the purpose of our discussion, crossover may be considered to have two parts:

● Division, where each parent is divided into two fragments.
● Fragment combination, where two fragments are fused into one.

Graph crossover can be accomplished by breaking edges. However, graph crossover is complex because:

● Graph crossover cannot trivially divide the data structure at any point, because any edge may be a
member of one or more cycles. All of these cycles may need to be broken to divide the graph into
two pieces because the edges to break must be chosen at random to avoid biasing the search. One
cannot avoid breaking edges involved in cycles, because then the cycle structure will not evolve.

● Graph fragments produced by division may have more than one crossover point ("broken edges")
that requires reattachment during fragment combination.

● When two fragments are combined they may have different numbers of broken edges to be
merged.

● For a graph crossover operator to potentially reach any possible graph from an initial random
population, the crossover operator must be able to create and destroy individual cycles, fused
cycles (cycles that share edges), cages (two or more cycles, each pair of which share at least two
edges), and combinations of fused cycles and cages.

The primary contribution of this paper is to introduce a new graph crossover operator that:

● Can operate on any connected directed or undirected graph. A connected graph is one where

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (3 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

every pair of vertices is connected by at least one set of edges.
● Divides graphs at randomly generated cut sets. A cut set is a set of edges which divides a

connected graph into two parts.
● Can evolve arbitrary cyclic structures given at least some cycles in the initial population.
● Always produces connected undirected graphs.
● Almost always produces connected directed graphs.

Our graph crossover operator was applied to evolving pharmaceutical drug molecules and simple digital
circuits. Molecules are represented as a set of atoms (vertices) connected by a set of bonds (edges).
Digital circuits are represented as a set of devices (vertices) connected by a set of wires (edges).

Our original motivation was to evolve molecules. At first, we attempted to devise a tree representation
of molecules. However, many molecules contain cycles; which chemists call rings. Therefore, any
attempt to use genetic programming to design molecules must have a mechanism to evolve cycles. This
is non-trivial when crossover can replace any sub-tree with some other random sub-tree. After much
thought, we were unable to devise a crossover-friendly tree representation of arbitrary cyclic graphs.
Crossover-friendly means that any sub-tree is a potential crossover point without restriction.

Note that the problem we are solving here involves constructing graphs, rather than examining graphs.
Many classic graph theoretical problems, graph coloring, finding Hamilton circuits, graph isomorphism,
and maximal subgraphs discovery, have been studied in the computer science search literature. For
example, see [Cheeseman, et al. 1991]. All of these problems investigate one or more graphs. Our
problem is to find a graph representing a molecule or circuit with desirable properties. Thus, the
characteristics of our search space are quite different from the classic graph problems in the literature.
There is little or no reason to believe that crossover would be useful for solving these classic graph
problems. It is possible to view the graph design problem as a search through the space of all possible
graphs, and this space can be represented as an extremely large graph, as is explained in the next
paragraph. However, rather than determining some property of the graph representing the search space,
we simply look for one or more points in that space that possess desirable properties.

The space-of-all-graphs has very little in common with a multidimensional continuous Cartesian space.
The space-of-all-graphs consists of a large number of discrete points, each of which represents a
particular graph. One may define the neighbors of a graph to be all the graphs that could be formed by a
single mutation. These mutations might be:

● adding or deleting an edge,
● adding an edge connected to a new vertex,
● deleting a vertex and the edges connect to it,
● changing a vertex's type,
● changing an edge's type,
● or adding a vertex to the null graph. The null graph has no vertices or edges.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (4 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

If each point in the space-of-all-graphs is considered to be a vertex, and each of these vertices is
connected to its neighbors by edges, then the space-of-all-graphs becomes, itself, a graph. Note that this
space has no derivatives. If each graph (or vertex in the space-of-all-graphs) is associate with a number,
such as a fitness, then the space-of-all-graphs may have multiple, local optima if more than one graph
has better fitness then all of its neighbors.

Previous work

[Weininger 1995] patented genetic algorithms for molecular design, and used the standard graph
representation of a molecule in the crossover operator. The patent describes the straightforward and
fairly obvious parts of mapping genetic algorithm techniques to graph-based molecular design, and the
non-obvious portions: the crossover algorithm and fitness functions. The crossover algorithm described
in the patent depends on two parameters: a digestion rate, which breaks bonds, and a dominance rate,
which controls how many parts of each parent appear in a child. As described by the text and figure 7 in
the patent, [Weininger 1995]'s crossover algorithm removes random bonds from parents according a
"digestion rate" to create fragments, and does not connect the fragments from both parents with new
bonds when forming children. A "dominance rate" determines how many fragments of each parent are
placed in the child, which can obviously lead to disconnected children. When restricted to generating
connected children (covalently bound molecules), [Weininger 1995]'s crossover operator generates a
child that is simply a fragment of one parent, so in this case the operation is not really crossover at all,
but rather a form of mutation. [Weininger 1995] uses the Tanimoto index (described below) as a
distance measure for a number of fitness functions. Daylight Chemical Information Systems, Inc., which
holds the patent, reports using genetic algorithm techniques to discover lead compounds for
pharmaceutical drug development and other commercial successes.

Circuit design is another field for which genetic algorithms using a graph representation should, in
principle, be well suited. Genetic algorithms using a variable length string representation [Lohn and
Colombano1998] and genetic programming [Koza 1997] [Koza 1999] have been used to design analog
circuits. In the genetic programming case, a tree language capable of generating a subset of the analog
circuits compatible with the SPICE (Simulation Program with Integrated Circuit Emphasis) simulator
[Quarles, et al. 1994] was developed. The system was used to design a lowpass filter, a crossover filter, a
four-way source identification circuit, a cube root circuit, a time-optimal controller circuit, a 100 dB
amplifier, a temperature-sensing circuit, and a voltage reference source circuit. Thus, genetic algorithms
can design graph-structured systems. Therefore, it may be advantageous to directly evolve graphs rather
than strings or trees that are be interpreted to generate cyclic graphs.

[Nachbar 1998] used genetic programming to evolve molecules for drug design by sidestepping the
crossover/cycles problem and representing molecules with trees. Each tree node represented an atom
with bonds to the parent-node atom and each child-node atom. Hydrogen atoms were explicitly
represented and are always leaf nodes. Rings were represented by numbering certain atoms and allowing
a reference to that number to be a leaf node. Crossover was constrained not to break or form rings. Ring
evolution was enabled by specific ring opening and closing mutation operators.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (5 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

[Teller 1998] reported developing a graph crossover algorithm as part of his dissertation at Carnegie
Mellon University, but supplied few details. This technique was applied to Neural Programming, a
system developed by Teller to combine neural nets and genetic programming.

[Globus, et al. 1999] reported results evolving pharmaceutical drug molecules with the crossover
operator discussed in this paper. The crossover operator was only capable of operating on undirected
graphs, not the directed graphs required for circuits. Furthermore, after publication, a bug was
discovered that severely limited cycle evolution. [Globus, et al. 1999] reported adequate performance
evolving small molecules but poor results evolving larger molecules with more complex cycle
structures; as might be expected in hindsight. The present paper reports results evolving the same
molecules with the corrected operator as well as results on undirected graphs representing digital
circuits. The molecular results are significantly better. See the Results section for details.

Method

Genetic Algorithm with Graph Representation

Molecules

One approach to drug design is to find molecules similar to good drugs. Ideally, a candidate replacement
drug is sufficiently similar to have the same beneficial effect, but is different enough to avoid negative
side effects. To use genetic algorithms for similarity-based drug discovery, we need a good similarity
measure that can score any molecule. [Carhart, et al. 1985] defined such a similarity measure, all-atom-
pairs-shortest-path, and searched a large database for molecules similar to diazepam. We use this
similarity measure to evolve a population of molecules towards a target molecule.

JavaGenes uses undirected graphs to represent molecules. Vertices are typed by atomic element. Edges
can be single, double, or triple bonds. Valence is enforced. Heavy atoms (non-hydrogen atoms) are
explicitly represented by vertices, but hydrogen atoms are implicit; i.e., any heavy atom with an unfilled
valence is assumed to be bonded to hydrogen atoms, but these are not represented in the data structure.
Since we're interested in the properties of the crossover operator, for this study JavaGenes evolved
populations using crossover only and mutation was not used.

Each individual in the initial population was generated by the following algorithm:

1. atoms = random number between half and twice the number in the target molecule
2. rings = random number between half and twice the number in the target molecule
3. while (true)

1. for some number of tries
1. choose first atom at random
2. for atoms-1

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (6 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

1. if possible, add random atom bonded (with random bond) to a random
existing atom, respecting valence

3. for number of rings
1. if possible, add random bond between two randomly chosen atoms,

respecting valence
4. if molecule has correct number of atoms and rings, return molecule

2. rings--

The random atoms were chosen with equal probability from the elements in the target molecule. Thus,
the initial population of a run searching for cholesterol would consist of roughly equal numbers of
carbon and oxygen atoms. The random bonds (single, double, or triple) were chosen with equal
probability from the bond types in the target molecule. The last step (rings--) is necessary because it is
possible to run out of empty valence before molecular construction is complete. Consider the case where
the first atom is chlorine. If the second atom is also chlorine, the two chlorine atoms must share a single
bond and the valence of both atoms will be filled, so no additional atoms may be added. If the random
generation algorithm fails to make a molecule with the proper number of atoms and rings, then the
algorithm tries again. Some choices of "atoms" and "rings" require a molecule with more rings than is
possible given the number of atoms. Consider searching for cubane. If atoms = 4 and rings = 16, it is
impossible to build a molecule to the specification. Therefore, after trying to generate a molecule several
times, the algorithm will reduce the number of required rings by one and try again. Since all of the target
molecules contain at least one element with a valence of two or more, there is no hard limit to the
number of atoms that may be in a molecule.

The number of rings, by our definition, is always equal to bonds – atoms + 1. For this definition,
single, double, and triple bonds are counted as one bond each. This formula corresponds to the following
unambiguous definition of the rings in a molecule taken from [Corey and Wipke1969]. In this definition:

1. the set of all rings must include all the bonds participating in any ring,
2. removing any ring will result in at least one bond not being included in any ring,
3. no ring may share more than half its bonds with any other ring,
4. and the set of rings chosen must be at least as large as any other set of rings with the first three

properties.

While this definition is precise and useful for coding, it comes to the interesting conclusion that cubane
(a cubic molecule) has five rings, not six. Consider the six sides of cubane to be the six rings in the set of
rings. If any one of the six rings is removed from the set of rings, all bonds are still included in the set
of rings. Therefore, only five rings are necessary to meet the definition.

Tournament selection was used to choose parents in a steady state genetic algorithm. Tournament
selection means that each parent is chosen by comparing two randomly chosen individuals and taking
the best. Steady state means that new individuals (children) replace poor individuals in the population
rather than creating a new generation. The poor individuals are also chosen by tournament, but the worst

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (7 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

individual is selected for replacement. By convention, after population-size individuals have been
replaced, we say that one generation is complete. The implementation follows this procedure:

1. Generate a random population of molecules
2. Repeat many times, gathering data periodically:

1. Select two molecules from the population at random. Call
the better molecule father.

2. Select two molecules from the population at random. Call
the better molecule mother.

3. Make a copy of father and divide it randomly into two
fragments.

4. Make a copy of mother and divide it randomly into two
fragments.

5. Combine one fragment of the copy-of-father and one fragment
of the copy-of-mother into a molecule called son.

6. Combine the other fragment of the copy-of-father and the
other fragment of the copy-of-mother into a molecule called
daughter.

7. Choose two molecules from the population at random. Replace
the worst one with son.

8. Choose two molecules from the population at random. Replace
the worst one with daughter.

3. Repeat until satisfied

Crossover requires two procedures: one to divide molecules into two fragments, and a second to
combine two molecular fragments. To divide a molecule into two fragments we use the following
procedure:

1. Choose an initial random bond
2. Repeat

1. Find the shortest path between the initial bond's vertices
(the first time this will simply be the initial bond).

2. Remove and remember a random bond from this path. These
bonds are called "broken edges."

3. Until a cut set is found, i.e., no path exists between the
initial bond's vertices.

To combine fragments we use the following procedure:

1. Repeat
1. Select a random broken edge. Determine which fragment it is

associated with.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (8 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

2. If at least one broken edge in other fragment exists
1. choose one at random
2. merge the broken edges into one bond; respecting

valence by reducing the order of the bond if necessary
3. Else flip coin (this step was disabled by a bug in [Globus,

et al. 1999])
1. if heads -- attach the broken edge to a random atom in

other fragment (respecting valence)
2. if tails -- discard the broken edge

2. Until each broken edge has been processed exactly once

 Graph Crossover of Butane and Benzene to Create a Child

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (9 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

Butane and benzene are divided at random points. Then a
fragment of butane and a fragment of benzene are combined. Note
that benzene must be cut in two places. Also, during fragment
combination the benzene fragment has more than one broken
edge. A random choice is made to connect this extra broken edge
to a random atom in the butane fragment. Alternatively, the extra
broken edge could have been discarded.

Forming Fused Cycles and Cages with Crossover

Graph crossover can generate fused cycles and cages. The "flip
coin" step of the crossover algorithm is crucial to this functionality.

Our crossover operator can open and close rings using crossover alone, and can even generate cages and

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (10 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

higher dimensional graph structures as long as there are rings in the population. Unfortunately, if there
are no rings in a population, none can be generated. Also, once a population consists entirely of two-
atom-molecules, no molecules with more than two atoms can be generated. Nonetheless, this crossover
operator is the most general of those we examined or found in the literature. In particular, unlike
[Nachbar 1998], no special-purpose ring opening and closing operators are necessary. Unlike
[Weininger 1995], no parameters are necessary and disconnected "molecules" are never produced.

The computational resources required for genetic algorithms to find a solution is a function of the size of
the search space, among other factors. The space of all possible graphs is combinatorial and enormous.
For molecular design, this space can be radically reduced by enforcing valence limits for each atom.
Thus, a carbon atom with one double and two single bonds will not be allowed to add another bond.
Also, avoiding explicit representation of hydrogen atoms substantially reduces the size of the graph.

Digital Logic

Since our group at NASA Ames is interested in molecular electronics, and the best way to design
molecular electronic circuits is unclear, we thought it might be interesting to use JavaGenes to evolve
digital circuits. If reasonably successful, it might then be possible to apply JavaGenes to designing
molecular circuits once simulators are available to implement appropriate fitness functions.

JavaGenes uses directed cyclic graphs to represent circuits. In other words, each vertex has a set of input
edges and a set of output edges, and each edge has an input vertex and an output vertex. Each vertex and
edge has a current state (usually 0 or 1). Vertices are the digital devices And, Nand, Or, Nor, Xor, and
Nxor. The initial value of a device may be zero or 1. Each device can have any number (including zero)
of input and output edges. If there are no input edges, And, Or, and Xor output 0, and Nand, Nor, and
Nxor output 1. If there is one input edge, it is copied to output or inverted for Nand, Nor, and Nxor
vertices. If there are two or more input edges:

● And will output 0 if any input value is 0, or 1 if all input values are 1.
● Or will output 0 if all input values are 0, or 1 if any input value is 1.
● Xor will output 0 if an even number of input values are 1, or 1 if an odd number of input values

are 1.

For the devices whose names start with N and have two or more input edges, the output is inverted (0
becames 1, 1 becomes 0). This scheme allows vertices to have any number of input and output edges,
thereby simplifying the crossover operator substantially. Nonetheless, any circuit represented this way
can be easily mapped to a circuit restricted to two and three terminal devices plus fan out.

There are two special vertices in each circuit: input and output. The input vertex does no processing, but
simply accepts values from a simulator and outputs those values to all output edges. No input edges are
allowed. The output vertex is a digital device like the others, but has no output edges. The output vertex
hands output values to a simulator.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (11 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

Each individual in the initial population was generated by choosing a random number of vertices and
edges where the numbers fell within upper and lower bounds set by the JavaGenes input parameters.
Vertex types were randomly chosen from all possible types. The circuits were created as follows:

1. Input and output vertices were created
2. The rest of the vertices were added one at a time by attaching one output edge to the input of a

vertex already in the circuit.
3. An output edge from the input vertex was connected to a random vertex.
4. Edges were added at random to create the required number of cycles.

Because edges were directed and there were two special vertices in each circuit (the input and output
vertices), the crossover algorithm was somewhat different than for molecules. During division, instead
of choosing a random edge and cutting random edges connecting the vertices of the chosen edge, the
input and output vertices were chosen and edges between them were broken until the graph divided into
two parts. This guaranteed that each fragment had exactly one input or one output vertex, but never both.
Obviously, only fragments containing an input vertex were combined with fragments containing an
output vertex, and vice versa. Furthermore, during combination, broken edges with the output vertex
removed were only merged with broken edges where the input vertex was removed, and vice versa.

This modified crossover operator has the interesting property that, under certain rare conditions, a
disconnected circuit can be created. This anomaly requires multiple generations to occur, and is caused
by the fact that the edges are directed. While we have not collected data, the anomaly appears to occur
only once for every few thousand crossover operations. When this occured, we simply discarded the
child.

Evolving a Disconnected Circuit

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (12 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (13 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

This sequence of evolutionary events results in a disconnected
directed graph. Fortunately, this occurs rarely. The key event
comes in the second generation when the left-hand individual is
broken into fragments. One fragment contains an input vertex
and a single broken edge that can only be attached to an output
edge of a vertex. Such a fragment can rarely be attached to a
fragment containing an output vertex.

Fitness Functions

Molecules: all-pairs-shortest-path similarity

A key to successful genetic algorithm search is a good fitness function [Kinnear 1994] -- for tournament
selection, a function that can determine if one molecule is better than another. This function must be
very robust, since the randomly generated initial molecules rarely make much chemical sense. Fitness
functions must also make fine distinctions between any two molecules, even if both are very good or
very bad. These fine distinctions are necessary to avoid flat regions in the fitness space where evolution
has no direction. Also, for our initial studies, we wanted a fitness function that only required the graph of
a molecule, not the xyz coordinates of each atom.This simplifies initial studies and avoids the necessity
of equilibrating the structure of candidate molecules, a CPU intensive step. The all-atoms-pairs-shortest-
path similarity test chosen [Carhart, et al. 1985] is a robust graph-only fitness function. The fitness
function algorithm was as follows:

1. Each atom is given an extended type consisting of a tuple containing the element and the number
of single, double, and triple bonds the atom participates in. For example, the carbon in carbon
dioxide is represented by the tuple (C,0,2,0). The C indicates that the atom is carbon. The zeros
indicate that the atom participates in no single or triple bonds. The 2 indicates that the atom
participates in two double bonds.

2. The shortest path between each pair of atoms is found.
3. A bag is constructed with one element for each atom pair. A bag is a set that contains duplicate

elements. Each element in the bag is a tuple consisting of the sorted extended types of the two
atoms and the length of the shortest path between them. For example, the path between a carbon
and one oxygen in carbon dioxide would be represented by: ((C,0,2,0),(O,0,1,0),1). The first two
elements in the tuple are the extended types of the atoms. The 1 is the length of the path between
them.

4. The fitness of each candidate molecule is the distance between its bag and the similarly
constructed bag of a target molecule. The distance measure used is the Tanimoto index. This is:

|c intersection t| / |c union t|

where c is the candidate's bag and t is the target's bag. Two elements are considered
identical for the purpose of the intersection and union operators if the atoms have the same

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (14 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

extended types and the distance between them is identical. Each duplicate in the bag is
considered a separate element for the purpose of the intersection and union operators. The
Tanimoto index always returns a number between 0 and 1. We prefer fitness functions that
return lower numbers for fitter individuals, so we subtract the Tanimoto index from one to
get the fitness.

Search spaces with many local optima are difficult to examine because many algorithms tend to
converge to local optima and miss the global optimum. The all-pairs-shortest-path fitness function has
many local optima over the space-of-all-molecules whenever the target molecule contains rings.
Consider benzene, a six membered ring, as the target molecule. Any ring other than a six membered ring
will be at a local optima because a bond must be removed, lowering the fitness in most cases, before
bonds and atoms can be added to generate benzene. Thus, any target molecule containing rings will have
an associated search space containing many local optima. Interestingly, a small modification in the
definition of the space-of-all-molecules eliminates these local optima. Consider mutations that

1. replace an edge with a vertex and two edges,
2. or replace a vertex and two edges with one edge.

These mutations can change the size of rings. If these mutations are allowed to create neighbors in the
space-of-all-molecules, then incorrectly sized rings are not local optima. This illustrates the difficulty of
understanding the space-of-all-molecules.

The targets for this study were benzene, cubane, purine, diazepam, morphine and cholesterol. All targets
contain rings and thus generate a search space with local optima. The fitness function can not only find
similar molecules, which is useful in drug design, but can also lead evolution to the exact molecule used
as the target. This can prove that the algorithm can find particular molecules. In addition, the number of
generations to find the target provides a crude quantitative measure of performance.

Digital Logic

For digital logic circuit evolution, we attempted to evolve correct 15-step delay, parity, and one-bit add
serial circuits. By "serial circuit" we mean that only one bit is input and output at each time step. The
fitness of a circuit was the percentage of wrong output bits generated when processing 100 random input
bits. Thus, a score of zero indicated a perfect circuit and a score of one a totally incorrect circuit. The
circuits were simulated by assuming that every device (vertex) and wire (edge) required unit processing
time . While this is not particularly realistic, it is easy and quick to implement and is sufficient to
exercise the directed graph crossover operator. No attempt was made to generate optimal circuits, a task
of greater interest to the digital hardware community.

Some initial runs ran out of memory when the circuits became extremely large. To reward parsimony, a
fitness penalty of one percent was assessed against a circuit for each additional edge or vertex the circuit
grew above a certain size. The penalty-free size was chosen to be well above that necessary to create the

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (15 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

circuit.

Implementation

All computational experiments were run using the Condor cycle-scavaging batch system [Litzkow, et al.
1988] managing approximately 150 SGI workstations at NASA's NAS supercomputer center [Globus, et
al. 2000]. Condor watches a "pool" of desktop workstations. When a workstation appears to be unused,
Condor will match a waiting job with the workstation. Each genetic algorithm run was a single Condor
job. The workstation will run the job until mouse or keyboard activity is detected, or the non-Condor
CPU load exceeds a certain value. The job is then removed from the workstation. The job will execute
later on (usually) another workstation. Jobs typically save their state periodically or when they are
informed that they must leave a workstation. Saving state is called checkpointing. Checkpointing allows
jobs to restart near where they left off. JavaGenes checkpoints periodically, usually at 30 minute
intervals. With Condor, workstations that would otherwise be idle can perform useful computation.

JavaGenes is implemented in Java. Java was chosen because its syntax is similar to C++, many useful
libraries are available (the graph layout software [Tunkelang 1998] and some statistics code were
contributed by others), garbage collection vastly simplifies memory management, and Java’s array
bounds checking and other bug-limiting features seem to substantially reduce debugging time and
produce more robust code than C++, Fortran or C. A run-time penalty is paid for these advantages, but a
generation of 500 individuals typically takes less than a minute to compute. The only significant
performance problem has been with Java serialization. JavaGenes used serialization to checkpoint.
Serialization is the process of flattening a data structure into an array of bytes, a form that can be saved
to disk. Serialization is a standard part of the Java language. Although standard Java serialization
worked well for small data structures, when the data structures grew large, serialization could take
hours. Standard Java serialization was replaced with custom checkpoint/restart code, reducing
checkpoint/restart time to around 10 seconds in most cases with a maximum around five minutes. See
[Globus, et al. 2000] for a more detailed investigation of this problem.

Long serialization times created a serious problem. In the initial implementation, JavaGenes started a
new random number generator after restart. Because of this, evolution did not follow the same path
taken after the last checkpoint. The genetic algorithm was controlled by different random numbers and
therefore searched a different part of the space-of-all-graphs. Because the number of generations to find
a specific target was used as the performance measure, re-starting the search repeatedly after a
checkpoint made the algorithm appear more efficient than it was. Consider the case where a job ran for
100 generations up to a checkpoint and 20 more generations before being killed. When the job was
restarted, a different set of populations would be constructed and one of the new generations, say the
10th, might find the target. Therefore, it would appear as if the target was found in 110 generations, but
actually 130 populations were generated. Thus, when checkpoint times were long compared to the time
available for execution on a single workstation, jobs might repeatedly search the region around the last
checkpoint and stop if a solution were found, reporting an inaccurately small number of generations to
completion. It was therefore necessary, at job restart time, to restart the random number generator with

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (16 of 31)10/22/2004 2:18:20 AM

http://www.nas.nasa.gov/

JavaGenes: Evolving Graphs with Crossover

the same seed and then execute the random number generator until the sequence was where it left off.
This should have insured that jobs followed the same evolutionary path regardless of checkpoint history.
Unfortunately, although this fix worked properly when a job was restarted on the same machine,
different results were observed in normal execution on the Condor pool, where jobs frequently move
between machines. The changing evolutionary path was presumably caused by differences in the Java
libraries on different versions of the SGI operating system. This may change the order of certain lists in
JavaGenes and cause the same random number to pick a different item from a list. While this problem
may make the results reported below somewhat optimistic for the larger molecules and circuits, we
believe that the effect is fairly minor now that checkpointing is fast. There should be little effect on the
smaller molecules because most jobs completed before the first checkpoint. Because checkpointing was
fast, computations would usually proceed to the next checkpoint before being stopped and restarted.
Only ~6% of all generations were repeated once the checkpointing performance problem was corrected.

There was an additional problem during circuit evolution that was also caused by checkpointing. Each
time a job restarted, a different set of random binary inputs was chosen to evaluate candidate circuits.
This could have the effect of changing the fitness of a given circuit, although usually the change would
be minor if the input sequence was long. Nonetheless, individuals generated after a restart could find
themselves with a lower or higher fitness with respect to an older individual than if the restart had not
taken place. We do not believe that this had any significant effect on the results.

Experimental Setup

Molecules

To see if JavaGenes could find molecules of interest, we tried to find the following targets:

1. benzene (C6H6) a simple ring molecule.

2. cubane (C8H8) a cage molecule.

3. purine (C5H4N4) fused rings and heteroatoms.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (17 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

4. diazepam (C16H13ClN2O) used in [Carhart, et al. 1985].

5. morphine (C17H19NO3) Dr. Wipke's group has worked on morphine

analog design for many years.

6. cholesterol (C27H46O) a non-drug molecule.

 Stereochemistry and hydrogens are left out of the molecular diagrams since JavaGenes does not believe
in them.

Digital Logic

We attempted to evolve thee different serial circuits:

● 15-unit delay

● parity

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (18 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

● 1-bit add. Note that this circuit wouldn't work in
hardware, but because our simulator assumes unit propagation delays for every device and wire,
the simulated circuit will perform properly.

Results

Since the algorithm is stochastic, 31 runs (each run is one execution of JavaGenes) with identical input
parameters were conducted for each experiment. The number of generations and population size were
varied. Once the target was found, runs stopped. Runs also stopped after a fixed, maximum number of
generations. We use the number of generations to find a perfect individual as a performance measure.
Combined with the population size, this provides a quantitative measure of performance, although the
precise value of the numbers should not be taken too seriously. Even with 31 runs per experiment,
variation between experiments with identical input parameters (other than the random number seed) was
observed (see the comparison of purine and diazepam runs below). We display the results with line
graphs where the horizontal axis is generations and the vertical axis is the percent of runs that had found
a perfect individual by the given generation. Thus, all curves will be monotonically increasing. Rapidly
rising curves indicate that the target was found quickly. Curves that do not reach 100% indicate that not
all runs found the target.

Finding Small Molecules

First we examine JavaGenes performance searching for three small molecules using a population size of
25 and a maximum of 1,000 generations:

Finding Benzene, Cubane, and Purine

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (19 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

Note that two benzene jobs did not find the target at all, even though benzene was usually found in just a
few generations. The runs that could not find benzene lost all of the cycles in the population in the first
generation created by crossover. When a population consists entirely of non-cyclic molecules, the
crossover operator can not generate cycles.

Finding Larger Molecules

Now we examine JavaGenes performance searching for three larger molecules using a population of 500
and a maximum of 5,000 generations.

Finding Diazepam, Morphine, and Cholesterol

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (20 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

Although each run consisted of 31 jobs, only ten runs found diazepam and cholesterol, and only seven
runs found morphine. Note that JavaGenes performance is much poorer on these larger molecules.
Presumably, this is because the size of the space-of-all-molecules explodes combinatorially as molecule
size increases. We also noticed that some populations lost all of the rare elements in the target. For
example, diazepam has only one chlorine and one oxygen atom. Several of the diazepam jobs lost all of
one these elements from the population and were forever doomed. Interestingly, runs that lost all oxygen
and/or chlorine from the population did so within about 400 generations. Using vertex mutation should
avoid this situation, but this paper is concerned with the properties of the crossover operator.

Now we examine JavaGenes performance searching for the same three molecules using a population of
1,000 and a maximum of 10,000 generations.

Finding Larger Molecules with a Larger Population

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (21 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

Performance is improved with a larger population and more generations, but 20 runs still failed to find
diazepam, 17 couldn't find morphine, and 12 failed to find cholesterol.

Effects of Population Size

We now examine the effects of population size by showing the results of searching for purine with a
population size of 25, 50, and 100:

Finding Purine With Different Population Sizes

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (22 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

As expected, increasing the population size improves performace. Interestingly, with a population size
of 25 and 50, the last job to find the target molecule took about the same number of generations. This is
probably a random event, suitable for publication in the Journal of Irreproducable Results.

Variability Between Runs

Since each run uses a different random number seed, results are somewhat different. To illustrate this
variability, we ran five experiments looking for purine using identical parameters (except the random
number seed). Population size was 100.

Identical Experiments Finding Purine

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (23 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

The variability between experiments is quite small for this molcular target. Most of the difference
appears in the last two or three runs to find purine from each experiment. To see if variablity was
different with a more difficult target, we compare two experiments searching for diazepam using a
population size of 500 and a maximum of 5,000 generations:

Identical Experiments Finding Diazepam

Note that although each run consisted of 31 jobs, only 7 and 10 runs, respectively, were able to find
diazepam in 5,000 generations. Nonetheless, although one experiment clearly out-performed the other,
the results of the two experiments are roughly comparable.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (24 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

Finding Circuits

JavaGenes was able to successfully find small circuits that implement delay and parity functions. We
compare results finding parity using a population of 600 and finding delay with populations of 200 and
600. In all cases, the maximum number of generations was 5,000:

Finding Circuits

Note that only 22-24 (out of 31) runs succeeded in finding a proper circuit in each experiment. Results
are very similar for most of the successful runs with substantial variability only for the worst performing
runs that succeeded. In spite of many attempts, we were never able to evolve a perfect 1-bit add circuit.
The source of the problem is unclear, although it may be that the crossover operator does not preserve
useful sub-graphs very often.

Progress of a Run

This figure shows the fitness of the best individual for each of 31 runs searching for morphine.
Population size was 500 and the maximum number of generations allowed was 5,000. Each data point
was 10 generations apart. In other words, fitness data were collected from the population every 10
generations.

31 Runs Searching for Morphine

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (25 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

The initial random populations all had a best individual fitness near 0.9, but quickly inproved to around
0.25. Most runs then leveled off with long periods of no improvement, occasionally punctuated by
sudden bursts of increasing fitness. Notice that morphine was often found even when the previous best
fitness was quite poor, as evidenced by the long verticle lines ending at the x-axis. This indicates that
fitness improved very rapidly over the course of a few tens of generations.

We now examine the mean fitness of each run in the same experiment:

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (26 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

The mean fitness of each run dropped rapidly from about 0.96 to somewhere near 0.6 and stayed there
with only very minor improvement. This may be caused by the extremely destructive nature of the
crossover operator, which can be expected to generate many very unfit children from fit parents. Eery
generated child was placed back into the fixed-size population, and there was no guarantee that the
individual replaced had lower fitness than the child. It might be interesting to develop a procedure that
rarely replaces individuals if the child has worse fitness. One might expect the average fitness to
continue to improve as evolution proceeds.

Effect of the "Coin Flip" Step

As mentioned before, [Globus, et al. 1999] provided results from the crossover algorithm, but with a bug
that effectively eliminated the "flip coin" step in fragment combination. The results discussed above
used code with additional modifications beyond the bug fix, primarily in the way that the initial
population was generated. Table 1 compares performance before and after the bug fix, with no other
code modifications. Input parameters were identical except for the number of runs per experiment and

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (27 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

the random number seeds for each run. The numbers in parentheses refer to results from [Globus, et. al
1999].

Table 1: Finding Small Molecules With and (Without) "Coin Flip" Step

31 runs for
each
molecule
(20 with bug)

Population size Median
generations to
find target

Minimum
generations to
find target

Number of
runs that
failed to find
target

Maximum
generations

Benzene 100 (200) 3 (39.5) 0 (2) 0 (8) 10 (1000)

Cubane 100 20 (46.5) 4 (13) 0 (0) 140(NR)

Purine 100 38 (245) 6 (19) 0 (4) 269(1000)

NR = not recorded. Because of run-to-run variability, and because many runs did not complete, median,
rather than mean, generations to find the target is used, a procedure suggested by [Claerbout and Muir
1973].

Diazepam, morphine, and cholesterol were never found more than once each in [Globus, et al. 1999].
The difference in results before and after the bug fix show the importance of the "flip coin" step.

Comparison with Random Search

The great fear of search algorithm research is that, after months or years of effort, one's cherished
algorithm will do no better than random search. To see if our crossover operator was better than random
search, we searched for purine under three conditions: crossover alone, generating random molecules
using the same algorithm as for the initial population (random search), and a 50-50 mix of crossover and
random search. Twenty-one runs of 1000 generations on a population of 200 were conducted in each
case. The [Globus, et al. 1999] algorithm was used. The fixed algorithm should do even better.

Comparison With Random Search

 case
number of runs that found
purine

median generations to find purine

random search 0 N/A

crossover alone 21 37

50-50 mix of crossover and random
search

21 48

Clearly the crossover operator is better than random search.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (28 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

JavaGenes can clearly find molecules and simple circuits. The algorithm consistently finds molecules
but has great difficulty with circuits. Even the simple delay and parity circuits were not always found.

Summary

Algorithms and software to evolve graphs using genetic algorithm techniques were developed and
applied to pharmaceutical drug and digital logic circuit design. Results suggest that the software can
indeed discover a variety of molecules and very simple circuits. Significant additional work will be
required to determine if applying genetic algorithms using a graph representation to molecular design is
beneficial, but our results are encouraging. Unfortunately, we were not able to evolve non-trivial
circuits. Even the simple delay and parity circuits were difficult to evolve. This may be due to dividing
circuits in two fragments with a single input or output vertex each. This division may not preserve
useful sub-units very often. An alternate crossover operator that chose a subgraph that does not include
either the input or output vertex as one fragment might perform better. Our results do, however,
demonstrate that genetic algorithms can be applied to directed graphs.

Chemists have known for over a century that graphs are the most natural representation for molecules,
just as logic designers use graphs to represent circuits. Furthermore, the space-of-all-graphs is not well
understood or characterized. Therefore, it is reasonable to presume that searching for graphs using
genetic algorithms will be profitable in a number of domains. We hope that our crossover operator will
make a contribution.

Acknowledgments

Many thanks to Daniel Tunkelang, formerly of Carnegie Mellon, for providing his Jiggle code
[Tunkelang 1998]. Jiggle arranges arbitrary graphs for easy viewing. Thanks to NWP Associates, Inc.
for providing their Student T-Test code. Thanks to Rich McClellan, University of California at Santa
Cruz, for providing the mol file reading and atomic element code. Thanks to Gail Felchle for much of
the graphics art work. Thanks to Jason Lohn and Deepak Srivastava for reviewing this paper. This work
was funded by NASA Ames contract NAS 2-14303.

References

[Baeck, et al. 1997] Thomas Baeck, Ulrich Hammel, and Hans-Paul Schwefel, "Evolutionary
Computation: Comments on the History and Current State," IEEE Transactions on Evolutionary
Computation, volume 1, number 1, pages 3-17, April 1997.

[Carhart, et al. 1985] Raymond Carhart, Dennis H. Smith, and R. Venkataraghavan, "Atom Pairs as
Molecular Features in Structure-Activity Studies: Definition and Application," Journal of Chemical
Information and Computer Science, volume 23, pages 64-73.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (29 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

[Cheeseman, et al. 1991] Peter Cheeseman, Bob Kanefsky, William M. Taylor, "Where the Really Hard
Problems Are," Proceedings of the 12th International Conference on Artificial Intelligence, Darling
Harbor, Sydney, Australia, 24-30 August 1991.

[Claerbout and Muir 1973] J. F. Claerbout and F. Muir, ``Robust Modeling with Erratic Data,''
Geophysics, volume 38, pages 826-844.

[Corey and Wipke 1969] E. J. Corey and W. Todd Wipke, "Computer-Assisted Design of Complex
Organic Syntheses," Science, volume 166, pages 178-192, 10 October 1969.

[De Jong 1990] K. A. De Jong "Introduction to the Second Special Issue on Genetic Algorithms,"
Machine Learning, 5 (4), 1990.

[Forrest and Mitchell 1993] Stephanie Forrest and Melanie Mitchell, "What Makes a Problem Hard for
Genetic Algorithm? Some Anomalous Results in the Explanation," Machine Learning, volume 13,
pages 285-319.

[Globus, et al. 1999] Al Globus, John Lawton, and Todd Wipke, "Automatic Molecular Design Using
Evolutionary Techniques," Nanotechnology, volume 10, number 3, September 1999, pages 290-299.

[Globus, et al 2000] Al Globus, Eric Langhirt, Miron Livny, Ravishankar Ramamurthy, Marvin
Solomon, Steve Traugott, "JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms," Java
Grande 2000, sponsored by ACM SIGPLAN, San Francisco, California, 3-4 June 2000.

[Holland 1975] John H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press.

[Kinnear 1994] Kenneth E. Kinnear, Jr., "A Perspective on the Work in this Book," Advances in Genetic
Programming, edited by Kenneth E. Kinnear, Jr., MIT Press, Cambridge, Massachusetts, pages 3-20,
1994.

[Koza 1992] John R. Koza, Genetic Programming: on the Programming of Computers by Means of
Natural Selection, MIT Press, Massachusetts, 1992.

[Koza, et al. 1997] John R. Koza, Forrest H. Bennett III, David Andre, Martin A. Keane and Frank
Dunlap, "Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming," IEEE
Transactions on Evolutionary Computation, volume 1, number 2, pages 109-128, July 1997.

[Koza, et al. 1999] John R. Koza, Forrest H. Bennett, Martin A. Keane, Genetic Programming III :
Darwinian Invention and Problem Solving, Morgan Kaufmann Publishers, ISBN: 1558605436.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (30 of 31)10/22/2004 2:18:20 AM

JavaGenes: Evolving Graphs with Crossover

[Litzkow, et al. 1988] M. Litzkow, M. Livny, and M. W. Mutka, "Condor - a Hunter of Idle
Workstations,'' Proceedings of the 8th International Conference of Distributed Computing Systems, pp.
104-111, June1988. See http://www.cs.wisc.edu/condor/.

[Lohn and Colombano 1998] Jason D. Lohn and Silvano P. Colombano, "Automated Analog Circuit
Synthesis Using a Linear Representation,'' Second International Conference on Evolvable Systems:
From Biology to Hardware, Springer-Verlag, 23-25 September 1998.

[Nachbar 1998] Robert B. Nachbar, "Molecular evolution: a Hierarchical Representation for Chemical
Topology and its Automated Manipulation," Proceedings of the Third Annual Genetic Programming
Conference, University of Wisconsin, Madison, Wisconsin, 22-25 July 1998, pages 246-253.

[Quarles, et al. 1994] T. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli, SPICE
3 Version 3F5 User's Manual, Department of Electrical Engineering and Computer Science, University
of California at Berkeley, CA, March 1994.

[Teller 1998] Astro Teller, "Algorithm Evolution with Internal Reinforcement for Signal
Understanding," Computer Science PhD Thesis, Carnegie Mellon University, Publication Number:
CMU-CS-98-132.

[Tunkelang 1998] Daniel Tunkelang, A Numerical Optimization Approach to Graph Drawing,
Dissertation, Carnegie Mellon University, School of Computer Science, December 1998.

[Weininger 1995] David Weininger, "Method and Apparatus for Designing Molecules with Desired
Properties by Evolving Successive Populations," U.S. patent US5434796, Daylight Chemical
Information Systems, Inc.

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-018.html (31 of 31)10/22/2004 2:18:20 AM

http://www.cs.wisc.edu/condor/
http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-189.html

	nasa.gov
	JavaGenes: Evolving Graphs with Crossover

