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Abstract

Experience with the first 2 years of high quality data from the Moderate Resolution Imaging Spectroradiometer (MODIS) through quality

control and validation has suggested several improvements to the original MODIS active fire detection algorithm described by Kaufman,

Justice et al. [Journal of Geophysical Research 103 (1998) 32215]. In this paper, we present an improved replacement detection algorithm

that offers increased sensitivity to smaller, cooler fires as well as a significantly lower false alarm rate. Performance of both the original and

improved algorithm is established using a theoretical simulation and high-resolution Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) scenes. In general, the new algorithm can detect fires roughly half the minimum size that could be detected with the

original algorithm while having an overall false alarm rate 10–100 times smaller.
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1. Introduction

As part of NASA’s Earth Observing System (EOS), the

Moderate Resolution Imaging Spectroradiometer (MODIS)

is carried on both the Terra and Aqua satellites. The MODIS

instruments, which began collecting data in February 2000

(Terra) and June 2002 (Aqua), are being used to generate

oceanic, atmospheric, and terrestrial data products (Kauf-

man, Herring, Ranson, & Collatz, 1998; Masuoka, Fleig,

Wolfe, & Patt, 1998). Since launch, emphasis has been

given to characterizing instrument performance, determin-

ing and monitoring the quality of the data products, and

undertaking validation (Morisette, Privette, & Justice,

2002). Based on this understanding, improvements have

been made to all of the algorithms. The MODIS active fire

products fall within the suite of terrestrial products and

provide information about actively burning fires, including

their location and timing, instantaneous radiative power, and

smoldering ratio, presented at a selection of spatial and

temporal scales (Justice, Giglio et al., 2002; Kaufman,

Justice et al., 1998). A detection algorithm that identifies
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the active fires within each MODIS swath forms the basis of

these products.

Although the original MODIS fire detection algorithm of

Kaufman, Justice et al. (1998) functioned reasonably well

following several initial postlaunch revisions collectively

known as ‘‘version 3’’ (Justice, Giglio et al., 2002), two

significant problems limited the overall quality of the prod-

uct. Firstly, persistent false detections occurred in some

deserts and sparsely vegetated land surfaces, particularly in

northern Ethiopia, the Middle East, and Central India. Not

unexpectedly, most of these were caused by the algorithm’s

absolute threshold tests. Secondly, relatively small (yet

generally obvious) fires were frequently not detected. In

response to these problems, we have developed a replace-

ment version 4 contextual algorithm that offers superior

sensitivity to smaller, cooler fires and have yielded fewer

blatant false alarms. In this paper, we describe this algorithm.
2. Algorithm description

The improved detection algorithm is based on the orig-

inal MODIS detection algorithm (Kaufman, Justice et al.,

1998), heritage algorithms developed for the Advanced Very

High Resolution Radiometer (AVHRR) and the Visible and



L. Giglio et al. / Remote Sensing of Environment 87 (2003) 273–282274
Infrared Scanner (VIRS) (Giglio, Kendall, & Justice, 1999;

Giglio, Kendall, & Mack, in press), and experience with the

first 2 years of high quality MODIS data.

The algorithm uses brightness temperatures derived from

the MODIS 4-and 11-Am channels, denoted by T4 and T11,

respectively. The MODIS instrument has two 4-Am chan-

nels, numbered 21 and 22, both of which are used by the

detection algorithm. Channel 21 saturates at nearly 500 K;

channel 22 saturates at 331 K. Since the low-saturation

channel (22) is less noisy and has a smaller quantization

error, T4 is derived from this channel whenever possible.

However, when channel 22 saturates or has missing data, it

is replaced with the high saturation channel to derive T4. T11
is computed from the 11-Am channel (channel 31), which

saturates at approximately 400 K for the Terra MODIS and

340 K for the Aqua MODIS. The 12-Am channel (channel

32) is used for cloud masking; brightness temperatures for

this channel are denoted by T12.

The 250-m resolution red and near-infrared channels,

aggregated to 1 km, are used to reject false alarms and mask

clouds. These reflectances are denoted by q0.65 and q0.86,

respectively. The 500-m 2.1-Am band, also aggregated to 1

km, is used to reject water-induced false alarms; the reflec-

tance in this channel is denoted by q2.1. A summary of all

MODIS bands used in the algorithm is shown in Table 1.

2.1. Cloud and water masking

Cloud detection was performed using a technique based

on that used in the production of the International Geo-

sphere Biosphere Program (IGBP) AVHRR-derived Global

Fire Product (Stroppiana, Pinnock, & Grégoire, 2000).

Daytime pixels are considered to be cloud-obscured if the

following condition is satisfied:

ðq0:65 þ q0:86 > 0:9Þ or ðT12 < 265 KÞ or
ðq0:65 þ q0:86 > 0:7 and T12 < 285 KÞ

Nighttime pixels are flagged as cloud if the single condition

T12 < 265 K is satisfied. These simple criteria were found to

be adequate for identifying larger, cooler clouds but consis-

tently missed small clouds and cloud edges. One advantage,
Table 1

MODIS channels used in detection algorithm

Channel

number

Central

wavelength (Am)

Purpose

1 0.65 Sun glint and coastal false alarm rejection;

cloud masking.

2 0.86 Bright surface, sun glint, and coastal

false alarm rejection; cloud masking.

7 2.1 Sun glint and coastal false alarm rejection.

21 4.0 High-range channel for active fire detection.

22 4.0 Low-range channel for active fire detection.

31 11.0 Active fire detection, cloud masking.

32 12.0 Cloud masking.
however, is that fire pixels were never observed to have

been mistakenly flagged as cloud. As noted previously

(Justice, Giglio et al., 2002; Seielstad, Riddering, Brown,

Queen, & Hao, 2002), this problem has been experienced

with other cloud masking methods, including the MODIS

cloud mask product (Ackerman et al., 1998). Recent

improvements in the latter, however, may allow use of the

MODIS cloud mask product to be reincorporated into the

fire product during a future reprocessing.

Water pixels were identified using the 1-km prelaunch

land/sea mask contained in the MODIS geolocation product.

Significant errors have been noted in this data set, and an

improved water mask is being developed by members of the

MODIS Science Team.

2.2. Detection algorithm components

The purpose of the detection algorithm is to identify

pixels in which one or more fires are actively burning at the

time of the satellite overpass; such pixels are commonly

referred to as ‘‘fire pixels’’. As with most other satellite-

based fire detection algorithms, our approach exploits the

different responses of middle-infrared and long-wave-infra-

red bands to scenes containing hot subpixel targets (Dozier,

1981; Matson & Dozier, 1981). In particular, the algorithm

looks for a significant increase in radiance at 4 Am, in both

an absolute sense as well as relative to the observed 11-Am
radiance. This characteristic active fire signature is the result

of the enormous difference in 4- and 11-Am blackbody

radiation emitted at combustion temperatures as described

by the Planck function.

The algorithm examines each pixel of the MODIS swath

and ultimately assigns it to one of the following classes:

missing data, cloud, water, non-fire, fire, or unknown. Pixels

lacking valid data are immediately classified as missing data

and excluded from further consideration. Cloud and water

pixels are identified using the previously described cloud

and water masks and are assigned to the classes cloud and

water, respectively. The fire detection algorithm considers

only those land pixels that remain.

2.2.1. Identification of potential fire pixels

A preliminary classification is used to eliminate obvious

non-fire pixels. Those pixels that remain are considered in

subsequent tests (described in the next sections) to deter-

mine if they do in fact contain an active fire.

A daytime pixel is identified as a potential fire pixel if

T4>310 K, DT>10 K, and q0.86 < 0.3, where DT= T4� T11.

For nighttime pixels, the reflective test is omitted and the T4
threshold reduced to 305 K. Pixels failing these preliminary

tests are immediately classified as non-fire pixels.

There are two logical paths through which fire pixels can

be identified. The first consists of a simple absolute thresh-

old test. This threshold must be set sufficiently high so that

it is triggered only by very unambiguous fire pixels, i.e.

those with very little chance of being a false alarm. The
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second path consists of a series of contextual tests designed

to identify the majority of active fire pixels that are less

obvious.

2.2.2. Absolute threshold test

The absolute threshold criterion remains identical to one

employed in the original algorithm (Kaufman, Justice et al.,

1998):

T4 > 360 K ð320 K at nightÞ ð1Þ
Despite the high daytime threshold, the utility of this test

hinges upon adequate sun glint rejection; otherwise, glint-

induced false alarms can occur. This issue is addressed in

Section 2.2.6. Nighttime pixels are defined as those having a

solar zenith angle z 85j.

2.2.3. Background characterization

In the next phase of the algorithm, which is performed

regardless of the outcome of the absolute threshold test, an

attempt is made to use the neighboring pixels to estimate the

radiometric signal of the potential fire pixel in the absence

of fire. Valid neighboring pixels in a window centered on

the potential fire pixel are identified and are used to estimate

a background value. Within this window, valid pixels are

defined as those that (1) contain usable observations, (2) are

located on land, (3) are not cloud-contaminated, and (4) are

not background fire pixels. Background fire pixels are in

turn defined as those having T4>325 K and DT>20 K for

daytime observations, or T4>310 K and DT>10 K for

nighttime observations.

The window starts as a 3� 3 pixel square ring around the

potential fire pixel. Due to the triangular along-scan re-

sponse of the MODIS instrument (Kaufman, Justice et al.,

1998), the two along-scan pixels adjacent to the potential

fire pixel are deemed unreliable and excluded from the

background characterization. The ring is increased to a

maximum of 21� 21 pixels, as necessary, until at least

25% of the pixels within the window have been deemed

valid, and the number of valid pixels is at least eight. During

this step, an optimized nearest-neighbor search is used to

correct for the ‘‘bowtie’’ effect or overlap between MODIS

scans (Nishihama et al., 1997). The 21� 21 pixel maximum

size, though arbitrary, ensures that the background is sam-

pled within f 20 km of the potential fire pixel, a scale

found empirically to be appropriate for preventing false

alarms induced by an unrepresentative selection of back-

ground pixels.

The number of valid pixels within the background

window is denoted by Nv. During the characterization

process, counts are also made and noted of the number of

neighboring pixels rejected as background fires (Nf), and the

number of neighboring pixels excluded as water (Nw).

If a sufficient number of valid neighboring pixels can be

identified, several statistical measures are computed. These

are T̄4 and d4, the respective mean and mean absolute

deviation of T4 for the valid neighboring pixels; T̄11 and
d11, the respective mean and mean absolute deviation of T11
for the valid neighboring pixels; and DT and dDT, the

respective mean and mean absolute deviation of DT for

the valid neighboring pixels. The 4-Am brightness temper-

ature mean and mean absolute deviation of those neighbor-

ing pixels that were rejected as background fires are also

computed and are denoted by T̄4Vand d4V, respectively. These
last two quantities will prove useful for rejecting certain

types of false alarms. As suggested by Giglio et al. (1999),

we employ the mean absolute deviation as a measure of

dispersion rather than the standard deviation since it is more

resistant to outliers (Huber, 1981). For contextual fire

detection algorithms, this is highly desirable since contam-

ination of the background window by undetected clouds,

water, fires, and other sources is not uncommon.

2.2.4. Contextual tests

If the background characterization was successful, a

series of contextual threshold tests are used to perform a

relative fire detection. These look for the characteristic

signature of an active fire in which both the 4-Am brightness

temperature (T4) and the 4- and 11-Am brightness temper-

ature difference (DT) depart substantially from that of the

non-fire background. Relative thresholds are adjusted based

on the natural variability of the background. The tests are:

DT > DT þ 3:5dDT ð2Þ

DT > DT þ 6 K ð3Þ

T4 > T̄4 þ 3d4 ð4Þ

T11 > T̄11 þ d11 � 4 K ð5Þ

d4V> 5 K ð6Þ

Of these conditions, the first three isolate fire pixels from the

non-fire background. The factor of 3.5 appearing in test (2)

is larger than the corresponding factor of 3 in test (4) to help

adjust for partial correlation between the 4- and 11-Am
observations. Condition (5), which is restricted to daytime

pixels, is primarily used to reject small convective cloud

pixels that can appear warm at 4 Am (due to reflected

sunlight) yet cool in the 11-Am thermal channel. It can also

help reduce coastal false alarms that sometimes occur when

cooler water pixels are unknowingly included in the back-

ground window. Any test based on d11, however, risks

rejecting very large fires since these will increase the 11-

Am background variability substantially. For example, over

a typical land surface d11f1 K, whereas for land pixels

spanning a large forest fire d11 will routinely exceed 20 K.

For this reason, test (6) will be employed to disable test (5)

when the background window appears to contain large fires.

This situation is recognized by an elevated value of d4V; the
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presence of background fire pixels (Section 2.2.3) increases

this statistic considerably.

2.2.5. Tentative fire detection

We are now in the position to tentatively identify pixels

containing active fires. For nighttime fires, this will in fact

be an unambiguous, final identification. For daytime pixels,

three additional steps are used to help eliminate false alarms

caused by sun glint, hot desert surfaces, and coasts or

shorelines. These will be described in subsequent sections.

A daytime pixel is tentatively classified as a fire pixel if:

ftest ð1Þ is trueg

or

ftests ð2Þ � ð4Þ are true and ½test ð5Þ or test ð6Þ is true	g;

otherwise it is classified as non-fire.

A nighttime candidate fire pixel is definitively classified

as fire if:

ftest ð1Þ is trueg

or

ftests ð2Þ � ð4Þ are trueg;

otherwise it is classified as non-fire.

For those daytime and nighttime pixels for which the

background characterization failed, i.e. an insufficient num-

ber of valid neighboring pixels were identified, only test (1)

is applied in this step. If not satisfied, the pixel is classified

as unknown, indicating that the algorithm was not able to

unambiguously render a decision.

2.2.6. Sun glint rejection

Sun glint over small bodies of water, wet soil, cirrus cloud,

and in rare instances, bare soil can cause false alarms. Sun

glint is rejected with a scheme based on that of Giglio et al. (in

press), using the angle hg between vectors pointing in the

surface-to-satellite and specular reflection directions, where

coshg ¼ coshvcoshs � sinhvsinhscos/: ð7Þ
Here, hv and hs are the view and solar zenith angles,

respectively, and / is the relative azimuth angle. A count is

made of adjacent water pixels, i.e. the number of water pixels

within the eight pixels surrounding the tentative fire pixel,

and is denoted by Naw. The following conditions are then

evaluated:

hg < 2j ð8Þ

hg < 8j and q0:65 > 0:1 and q0:86 > 0:2 and q2:1 > 0:12

ð9Þ

hg < 12j and ðNaw þ NwÞ > 0 ð10Þ
If one or more of these conditions are satisfied, the fire pixel is

rejected as sun glint and classified as non-fire, otherwise it is

classified as fire. Condition (8) rejects any fire pixel within

the most intense region of glint; detection under this extreme

condition is simply too unreliable as the specularly reflected

sunlight can elevate T4 well above 400 K, even over the land

surface. Condition (9), which is less strict, looks for the

consistently elevated reflectances across multiple bands that

are characteristic of sun glint. Condition (10), which is still

less strict, rejects fire pixels occurring near water pixels as too

risky a prospect in and near regions of sun glint.

2.2.7. Desert boundary rejection

Any surface feature that produces a sharp radiometric

transition or edge can potentially cause either errors of

omission and commission for any contextual detection

algorithm. In the case of the former, a fire located along a

boundary may remain undetected since the edge increases

the background variability to the point that relative tests

incorporating this variability will fail. The latter case can

arise when non-fire pixels along the hotter (and/or more

reflective) edge of a boundary are incorrectly rejected as

background fires during the background characterization

phase. This restricts the sample of valid background pixels

to those within the cooler (and perhaps darker) side of the

boundary, which skews the background statistics toward

cooler values (Giglio et al., 1999; Martı́n, Ceccato, Flasse,

& Downey, 1999). In general, it is this second case, namely

an error of commission, or ‘‘false alarm’’ along a boundary

between hotter and cooler surfaces, that is a much more

common problem for contextual fire detection algorithms.

Earlier AVHRR-based contextual algorithms were gen-

erally far more susceptible to this problem since they

employed thresholds for rejecting background fire pixels

that were much lower (e.g. Flasse & Ceccato, 1996; Justice,

Kendall, Dowty, & Scholes, 1996). Flasse and Ceccato

(1996), for example, rejected background pixels having

T4>311 K and DT>8 K, conditions that are frequently

satisfied over ordinary land areas; two examples include

dry-season African savannas and most deserts. (For sim-

plicity, we have used our 4-Am channel notation in this

example, when in fact the corresponding AVHRR channel

has a central wavelength of 3.8 Am.) The background-fire

rejection thresholds employed in our MODIS algorithm are

so high, however, that inadvertent exclusion of non-fire

background pixels is almost always restricted to desert

areas. For the present MODIS algorithm, therefore, we refer

to the problem of eliminating this type of false alarm as

desert boundary rejection.

To reject false alarms along desert boundaries, one would

like the algorithm to identify those cases in which the

rejected background fire pixels are ordinary land pixels that

happened to satisfy the somewhat arbitrary background-fire

rejection thresholds. In this situation, the 4-Am statistics T̄4V
and d4V become useful indicators. Over typical daytime

desert surfaces, T̄4Vc 335 K and d4Vc 0.5 K. For a back-



Fig. 1. Example of MODIS water mask (dotted region outlined in white)

superimposed on a 1-km aggregated 2.1-Am image of Lake Rukwa in

western Tanzania acquired 1 September 2001. The southern tip of Lake

Tanganyika appears on the left. Water appears black due to the extreme

absorption at this wavelength, and the actual lake boundaries are clearly

evident. The image spans an area approximately 300� 300 km in size.
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ground containing energetic fire pixels, however, d4Vwill be
much larger (40 K and higher is routine), and T̄4Vwill be
somewhat larger, perhaps 350–380 K. We therefore incor-

porate several heuristic tests exploiting these trends as a

means of rejecting daytime false alarms that can arise along

desert boundaries. These are:

Nf > 0:1Nv ð11Þ

Nf z 4 ð12Þ

q0:86 > 0:15 ð13Þ

T̄4V < 345 K ð14Þ

d4V < 3 K ð15Þ

T4 < T̄4Vþ 6d4V ð16Þ

If all conditions are satisfied, the fire pixel is rejected as a

hot desert boundary surface and classified as non-fire,

otherwise the pixel undergoes a final coastal false alarm

test. Conditions (11) and (12) restrict rejection to cases in

which a significant number of background pixels appear to

contain background fires, a signature of desert boundary

false alarms. Condition (13) simply restricts the remaining

tests to bright regions characteristic of deserts. Test (16),

which is satisfied only when a tentative fire pixel stands out

very strongly against the rejected background fire pixels, is

not a false alarm rejection test per se. Rather, it permits

detection of gas flares, which are frequently located in

desert areas that would otherwise be excluded due to the

uniformity of the landscape.

2.2.8. Coastal false alarm rejection

Given the contextual nature of the algorithm, it is

important to accurately exclude water and mixed water

pixels during the background characterization phase. Such

pixels are usually cooler than adjacent land pixels during

the day. Unknowingly including a sufficient number of

water and mixed water pixels in the background window

can therefore depress T̄4 and cause a coastal false alarm.

Also contributing to this phenomenon is the fact that

compared to land, water pixels frequently have lower

values of DT due to differences in emissivity. Those water

and mixed water pixels contaminating the background can

therefore decrease DT and increase the likelihood that a

false alarm will occur.

In many respects, this is merely a special case of the edge

problem discussed in the previous section. For the present

algorithm, however, such coastal false alarms can occur

almost anywhere and are usually not accompanied by the

inadvertent rejection of neighboring non-fire pixels de-

scribed in the previous section. We therefore treat these

types of false alarms separately.
As indicated above, the current MODIS land/sea mask

contains significant errors in some areas. The bulk of these

errors consist of a 1- to 5-km discrepancy along coast and

shoreline and small rivers that are missed entirely. In some

cases, even much larger water bodies are not masked

accurately. An example from eastern Africa is shown in

Fig. 1; here, hundreds of pixels are misclassified as land. We

have therefore incorporated additional tests to identify cases

in which the background window is contaminated with

unmasked water pixels. We used a simple test based on

the 0.86- and 2.1-Am reflectances and the Normalized

Difference Vegetation Index (NDVI) of the valid back-

ground pixels, where NDVI=(q0.86� q0.65)/(q0.86 + q0.65).

This particular combination was chosen to reduce the

likelihood of confusing cloud shadows and burn scars,

which also have low reflectances, with water.

Valid background pixels having q2.1 < 0.05 and q0.86 <
0.15 and an NDVI < 0 are considered to be unmasked water

pixels, i.e. water pixels incorrectly classified as land in the

MODIS land/sea mask. The number of such pixels is

denoted as Nuw. If test (1) is not satisfied and Nuw>0, the

tentative fire pixel is rejected and classified as non-fire,

otherwise it is classified as fire. This test will periodically

reject smaller valid fires, but the much greater reduction in

coastal false alarms generally make these errors of omission

tolerable on a global basis. Future planned improvements in

the MODIS land/sea mask may ultimately render these tests

unnecessary.



L. Giglio et al. / Remote Sensing of Environment 87 (2003) 273–282278
2.3. Fire detection confidence

A measure of confidence for each detected fire pixel is

now also produced based on the approach of Giglio et al. (in

press). The measure employs T4, Naw, the number of cloud

pixels adjacent to the fire pixel (Nac), and the standardized

variables z4 and zDT, defined as

z4 ¼
T4 � T̄4

d4
ð17Þ

zDT ¼ DT � DT

dDT
: ð18Þ

These quantities represent the number of absolute deviations

that T4 and T11 lie above the background, and are analogous

to the more commonly used Z-scores that are calculated

using the standard deviation (Devore, 1987). We further

employ a ramp function, defined as

Sðx; a; bÞ ¼

0; xVa

ðx� aÞ=ðb � aÞ; a < x < b

1; xVb

8>>>><
>>>>:

ð19Þ

The confidence assigned to each fire pixel is composed

of a combination of five sub-confidences, labeled C1 to C5,

each having a range of 0 (lowest confidence) to 1 (highest

confidence). For daytime fire pixels, these are defined as

C1 ¼ SðT4; 310 K; 340 KÞ ð20Þ

C2 ¼ Sðz4; 2:5; 6Þ ð21Þ

C3 ¼ SðzDT ; 3; 6Þ ð22Þ

C4 ¼ 1� SðNac; 0; 6Þ ð23Þ

C5 ¼ 1� SðNaw; 0; 6Þ ð24Þ

For C1, 310 K represents the minimum brightness temper-

ature required for a pixel to be considered a fire pixel (and is

thus less obviously a fire), while based on operational

experience, 340 K represents a typical value for a reason-

ably obvious fire. For C2, z4 = 2.5 is the minimum value

required of fire pixels by the detection algorithm, whereas

z4 = 6 represents a typical value (again based on operational

experience) for an unambiguous fire. A similar rationale

applies to the definition of C3. C4 reduces the detection

confidence as the number of adjacent cloud pixels increases,

accounting for the fact that fire pixels detected along cloud

edges are more likely to suffer from cloud contamination,

potentially triggering a false alarm via reflected sunlight.
Finally, C5 reduces the confidence as the number of adjacent

water pixels increases, reflecting the greater likelihood that

the detected fire pixel is instead a coastal false alarm.

Following Giglio et al. (in press), the detection confi-

dence C is then defined as the geometric mean of the sub-

confidences, i.e.

C ¼ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1C2C3C4C5

p
ð25Þ

For nighttime fire pixels, the thresholds of C1 are altered

appropriately so that

C1 ¼ SðT4; 305 K; 320 KÞ; ð26Þ

and the cloud- and water-related sub-confidences are not

considered. The nighttime detection confidence is therefore

simply the geometric mean of C1, C2, and C3.
3. Algorithm performance

To date, four principal methods have been used to

assess algorithm performance and evaluate the MODIS

fire products. First, based on earlier work done by Dowty

(1993) and Giglio et al. (1999), simulated MODIS imag-

ery was used to quantify algorithm detection and false

alarm rates under a wide range of environmental con-

ditions within different biomes. Second, fire maps gener-

ated from high-resolution scenes acquired with the

Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) have been compared to fires iden-

tified by versions 3 and 4 algorithms. Third, the U.S.

Forest Service Fire Sciences Laboratory, which has un-

dertaken an independent validation of the MODIS fire

product, has found good correspondence between MODIS

fire locations and fire perimeters measured by the Forest

Service. Finally, in a more qualitative approach, unam-

biguous fire pixels and obvious false alarm sources were

identified through visual inspection of MODIS 250-, 500-

m, and 1-km imagery, permitting the output from the

original and improved algorithms to be compared to

‘‘expert’’-derived fire masks. Although this approach is

in general greatly inferior to the more rigorous approaches

mentioned above, it does allow obvious problems to be

diagnosed and corrected.

In Section 3.1, we will describe our simulation ap-

proach and then discuss the theoretical algorithm perfor-

mance established by way of the simulation. In Section

3.2, we will briefly report on the recent results of Mori-

sette, Giglio, Csiszar, and Justice (2003), who have com-

pleted the first of many planned regional MODIS fire

validation activities. (Ultimately, the MODIS fire products

will be validated globally through this process.) Finally, in

Section 3.3, we will present two examples of obvious

cases in which a simple visual analysis and comparison is

appropriate.
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3.1. Simulated fire scenes

3.1.1. Method

Simulated 25� 25-km images of MODIS channels 21,

22, and 31 were generated using MODIS-specific modifi-

cations of the method used by Giglio et al. (1999) in their

evaluation of several AVHRR active fire detection algo-

rithms. The scenes depicted in these images contained

idealized fires of various sizes and temperatures in 10

different biomes (desert, tropical rainforest, tropical decid-

uous forest, tropical savanna, temperate deciduous forest,

temperate evergreen forest, temperate grassland, boreal

evergreen forest, boreal deciduous forest, and tundra). Each

biome was characterized by a range of seasonal average

surface temperatures and seasonal average emissivities at 1-

km spatial resolution. Following Giglio et al. (1999), the 1-

km grid cells of each 25� 25-km scene were assigned

individual 4- and 11-Am emissivities and a temperature by

drawing random samples from normal distributions. In this

manner, 100 model surfaces were generated for each biome

and season. The MODTRAN atmospheric model (Berk,

Bernstein, & Robertson, 1989) was used to calculate atmo-

spheric transmission and thermal contributions with an

appropriate seasonal tropical, temperate, mid-latitude, or

sub-Arctic atmospheric model. A sensor view was then

computed taking into account the shape and overlap of the

MODIS pixels that fitted inside the 25-km surface grid.

The fire detection algorithm was applied to the synthetic

MODIS imagery, and by repeating the process over a range

of conditions, the algorithm’s performance was character-

ized statistically in terms of probability of fire detection (Pd)
Fig. 2. Nadir (0j scan angle) daytime (top row) and nighttime (bottom row) detecti

solar zenith angle; (b) temperate deciduous forest (summer) with 0j daytime sola

zenith angle; (d) dry-season tropical savanna with 40j daytime solar zenith angle
and false alarm (Pf). Both probabilities are functions of fire

temperature and area, solar and viewing geometry, visibility,

season, and biome. The presence of fires in the background

window also affects Pd and Pf (Giglio et al., 1999).

None of the reflective channels (channels 1, 2, and 7) are

currently modeled in the simulation, so the tests involving

these channels were omitted in the application of the

algorithm to the simulated data. Since these tests prevent

highly reflective and coastal pixels from being classified as

fire, the effect of their omission was to potentially overes-

timate both Pd and Pf. This approach nevertheless yields

useful upper bounds for both probabilities.

3.1.2. Results

Because the probability of detection is so strongly

dependent upon the temperature and area of the fire being

observed, Pd is summarized as a detection matrix in which

fire temperature and area form the rows and columns of the

matrix. Such matrices are shown graphically in Fig. 2.

Over all biomes considered, the size of the smallest

flaming fire having at least a 50% chance of being detected

under both ideal daytime and nighttime conditions was

f 100 m2. For the version 3 algorithm, this value was more

than two times larger. We define ideal conditions to mean

that the fire is observed at or near nadir on a fairly

homogeneous surface, the background window contains

no fires, and the scene is free of clouds, heavy smoke,

and sun glint. For nighttime cases in the coldest biomes, this

minimum area tended to be somewhat larger, typically by a

factor of two, since the ‘‘universal’’ thresholds used to

identify potential fire pixels (Section 2.2.1) become much
on matrices for four different biomes. (a) Tropical rainforest with 0j daytime

r zenith angle; (c) boreal deciduous forest (summer) with 0j daytime solar

.



Fig. 3. Example of small fires detected by original (version 3) algorithm

(top) and version 4 algorithm described in this paper (bottom) acquired over

the northern portion of the Democratic Republic of the Congo at 09:30 on

16 December 2000. Fire pixels are shown in black, rivers in dark gray,

clouds in light gray, and non-fire areas in white. The original algorithm

detected 267 fire pixels, whereas the new algorithm detected 568. The

image spans a region approximately 400 km along each side. Note that for

the version 3 algorithm, shorelines were expanded to reduce coastal false

alarms; this step is unnecessary for the improved detection algorithm.
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less appropriate under these conditions. Purely smoldering

fires generally had to be 10–20 times larger to achieve a

similar probability of detection.

For the improved algorithm, no false detections were

observed under any circumstances. This is in contrast to the

version 3 algorithm, which produced false alarms in daytime

desert scenes at solar zenith angles below 20j. As men-

tioned previously, this difference is due to the fact that

‘‘risky’’ absolute threshold tests are not employed in the

new algorithm.

An interesting case is the daytime dry-season tropical

savanna (Fig. 2d). Earlier work by Giglio et al. (1999) and

Giglio et al. (in press) showed that contextual algorithms

using data from either the AVHRR or the VIRS instruments

have almost no capability to detect fires at small or even

moderate solar zenith angles, e.g. hs < 40j. For both instru-

ments, this is caused by the relatively low saturation

(f 325 K) of their mid-infrared channels; fires show little

or no contrast against the hot, bright savanna surface that

can saturate the mid-infrared channel even in the absence of

a fire. The high saturation of the MODIS band 21, however,

allows detection to proceed largely unhampered.

3.2. Validation using ASTER scenes

Recent work by Morisette et al. (in press) used 18 high-

resolution ASTER scenes to validate the MODIS fire

product in southern Africa. The ASTER instrument is

carried on-board the Terra satellite, allowing spatially and

temporally coincident observations to be acquired with

those of the Terra MODIS. This is ideal for fire validation

since active fires can alter a scene significantly in a

relatively short period of time (e.g. minutes). Although this

first investigation was limited to southern Africa, additional

work is ongoing to assess the MODIS fire product globally

using a much larger collection of ASTER scenes.

Using the ASTER 2.4-Am channel, which has a spatial

resolution of 30 m, Morisette et al. (in press) were able to

map the ‘‘true’’ distribution of active fires in each scene.

The 30-m pixels of the resulting ASTER fire masks were

then assigned to those MODIS pixels in which they fell; this

was accomplished by performing a nearest-neighbor search

through all MODIS pixels overlapping the region viewed

within the particular ASTER scene. In this manner, ASTER

fire masks were prepared for a total of 66,761 MODIS

pixels. The probability of detection was then related to the

absolute number of ASTER fire pixels (a proxy for instan-

taneous fire size) within a MODIS pixel. The spatial

heterogeneity of the ASTER fire pixels was considered as

well. The conditional number of ASTER fire pixels ob-

served in a single MODIS pixel varied from 1 to more than

300. Cases in which no ASTER fire pixels were observed in

the corresponding MODIS pixel were also included.

For the time period that was considered (5 August–6

October 2001), Morisette et al. found that the minimum fire

size to achieve Pdz 0.5 was, in terms of number of ASTER
pixels, approximately 30. In contrast, the original detection

algorithm required a minimum of 48 ASTER fire pixels

regardless of the statistical model. Using the paired AS-

TER–MODIS data prepared by Morisette et al. (in press),

which were available to us, we performed a subsequent

analysis of each algorithm. With respect to false alarms, the

algorithms detected 4 (version 3) and 12 (version 4) fire

pixels for which the corresponding ASTER fire mask

showed zero. We do not, however, consider these to be true

false alarms. In each case, ASTER fire pixels were present

in at least one adjacent along-scan or along-track MODIS

pixel, suggesting that these apparent false alarms might be
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caused by limitations in the 2-km rectangular model of the

MODIS pixel footprint employed by Morisette et al. In

addition, Terra MODIS channel 21 exhibits residual instru-

ment artifacts, including minor ‘‘blooming’’ near large or

very hot fires (Justice, Giglio et al., 2002), which could

induce false alarms in the immediate vicinity of fires. A

better instrument characterization is needed to quantify the

extent of these residual artifacts. A third possibility is that

the algorithm is simply labeling hot, adjacent, recently

burned patches as fires. The corresponding ASTER scenes

showed little or no signs of burn scars in these MODIS

pixels, however, and we therefore view this explanation as

unlikely.
Fig. 4. Example of blatant false fire pixels detected by original (version 3)

algorithm (top) in Pakistan on 13 June 2001, 06:30UTC. Version 4 algorithm

output is shown in the bottom figure. Fire pixels are shown in black, rivers in

dark gray, clouds in light gray, and non-fire areas in white. Version 3

algorithm detected 4759 false fire pixels; version 4 algorithm detected zero.

The image spans a region approximately 400 km along each side.
3.3. Visual comparison

An example of the improved ability of the version 4

algorithm to detect small fires is shown in Fig. 3. In this

example from the northern part of the Democratic Republic

of the Congo, the version 4 algorithm detected more than

twice the number of fire pixels detected with version 3. A

detailed visual analysis of the MODIS visible, mid-infrared,

and long-wave-infrared bands for this scene indicates that

the hundreds of additional fire pixels—most of which are

accompanied by distinct smoke plumes—are in fact true

fires rather than false alarms.

As mentioned in Section 1, the original detection algo-

rithm suffered from persistent false detections in deserts and

other sparsely vegetated land surfaces. An example over

Pakistan is shown in Fig. 4. Here, the version 3 algorithm

yielded nearly 4800 false fire pixels. These pixels were

deemed false based on an examination of MODIS 250-,

500-m, and 1-km imagery and the fact that the large cluster

persisted over long periods of time (e.g. weeks). All fire

pixels were located in areas of sparsely vegetated soil, and

none of the fire pixels have sufficiently high 4-Am bright-

ness temperatures to definitively suggest that true fires

might be present. In addition, the top-of-atmosphere visible

channel reflectances reveal a complete absence of smoke.

This suggests that the majority (if not the entirety) of the fire

pixels within this scene are indeed false alarms. The

corresponding output from the version 4 algorithm, which

yielded no false detections, is shown for comparison.

Although the difference in algorithm output is enormous

in this particular example, the average reduction in false

alarm rate at the global scale is generally not this dramatic.

Test runs using almost a year of MODIS data indicated that

the number of obvious false fire pixels generated with the

version 4 algorithm is generally 10–100 times smaller than

the number generated with version 3.
4. Conclusion

We have described an improved contextual active fire

detection algorithm for the MODIS instrument. This algo-

rithm, known as version 4, offers considerable improve-

ment over previous versions. The version 4 algorithm is

run as part of the MODIS land forward processing stream,

as well as within the MODIS Rapid Response System

(Justice, Townshend et al., 2002). It is also being run as

part of the MODIS ‘‘Collection 4’’ reprocessing stream to

reprocess all MODIS data starting from March 2000, the

beginning of the Terra MODIS data archive. It should be

noted that the Terra instrument performance prior to

November 2000 renders the active fire data for this period

of limited utility. Consistent time series of fire data from

MODIS should be started no earlier than November 2000.

The same version 4 algorithm applies to both Terra and

Aqua MODIS data.
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Although additional algorithm enhancements may be

made in the future based on validation results or changes

in instrument performance, the immediate focus must now

be given to improving the ancillary water mask used in the

algorithm. This is currently the greatest source of error in

the version 4 product. Commission errors in the current

water mask cause some persistent false alarms along the

banks of (and islands within) some rivers. Improvements in

the land–water mask derived either directly from MODIS,

for example, by using the 250-m bands, or from an external

data source, such as the emerging data sets from the Shuttle

Radar Topography Mission, can be envisioned.

Ongoing efforts are being made to assess the detection

algorithm performance and determine product accuracy

under different conditions. For the Terra fire product,

validation with ASTER is actively being pursued and

globally representative validation is underway. Improve-

ments are also being made to the fire simulation to model

all bands and add greater realism to the simulation data set.

There is also a need to better model some of the idiosyn-

crasies of the MODIS bands 21 and 22 detectors.

Iterative improvements to the MODIS land algorithms,

followed by strategic data reprocessing, will lead to the

long-term science quality data products needed for global

change research. During the first 2 years of MODIS data, we

have gained considerable experience and understanding of

the fire algorithm and the Terra MODIS instrument perfor-

mance, which has resulted in the significant improvements

to the algorithm presented in this paper.
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