
EXCEPTIONAL CONDITIONS AND CONTEXTUAL
INFORMATION IN NUMERICAL COMPUTING

G. JUNGMAN

ABSTRACT. Exception handling involves a tradeoff between usage of
information local to the subordinate (exception raising) context, and ex-
ternal mechanisms for adjusting the flow of control. In some sense this is
well understood; however, as one could easily guess, actual practice lags
theoretical understanding by a large margin. I discuss issues related to
practical implementation of exception handling, targeted to developers
of numerical libraries. In the end, we seem to be left with a mechanism
similar to, but more general than an old scheme first implemented in the
NAG library. The generalized scheme which I suggest can provide an
acceptable level of flexibility, especially from the standpoint of applica-
tions in embedded or heterogeneous environments. Two issues are clear.
First, no subordinate function should be allowed to make important pro-
tocol decisions, such as whether or not to abort when an exceptional
condition is detected, without the benefit of information from the calling
context. Second, clients should be able to control the behaviour of subor-
dinate functions by adjusting the contextual information which they pass
to the subordinate. These basic points are not profound, but it seems that
no system yet exists which meets these needs in a flexible way. I discuss
a reasonable object-oriented design, with an example given in C++. I
also give a rudimentary, and less powerful, C implementation.

1. EXCEPTIONAL DIFFICULTIES

Many readers will be familiar with the Ariane 5 catastrophe, a satellite
launch which ended in a half-billion dollar abort due a situation directly
caused by software failure [L+96]. If the only lesson learned from this story
is that software engineering, and especially software safety engineering, is
difficult, then the re-telling would be somewhat empty.

But W. Kahan [Kah98] (amongst others) points out what may be the most
important lesson of this failure. Recall that the primary failure occurred in a
subsystem which was not critical to the launch. But because of a design de-
cision, the exceptional condition in this subsystem (a conversion overflow)

Date: June 1, 2000.
LA-UR-X.

1

2 G. JUNGMAN

trapped to a default exception handling mechanism which aborted the guid-
ance subsystem. The important observation is that some exceptional con-
ditions are critical and others are essentially harmless. If the programming
environment does not provide appropriate abstractions for making such dis-
tinctions, then programmers may be forced or tricked into using default
exception handling mechanisms which do not have the contextual informa-
tion to make important protocol decisions, such as whether or not to call
abort() , etc.

So this story helps identify one important feature required of excep-
tion handling mechanisms; the exception-handling mechanism must have
enough contextual information that it can be programmed to make critical
protocol decisions in a robust manner. As discussed below, accurate repre-
sentation of context is the key to good exception-handling architectures.

This issue of protocol control was recognized in its basic form, in the
implementation of the NAG library. Ford and Bentley [FB78] point out
the need for a distinction between ”hard fail” and ”soft fail”, and how
this distinction should be used by library implementation blocks which use
other parts of the library. Later work on the NAG C library introduced
a more structured interface to this distinction, including the possibility of
fine-grained handler registration [Gro]. My experience with the GNU Sci-
entific Library [Tea] was in part a rediscovery of this point, when it became
clear that the initial error handling mechanisms in that project were not
adequate to support library components which depended on other library
components.

Requirements for good exception-handling mechanisms have quite gen-
eral applicability. However, I have chosen to concentrate on numerical ap-
plications because of our interest in numerical implementations, and be-
cause such algorithms often manage fairly complicated state and display a
wide variety of exceptional conditions. Numerical implementations are al-
so simpler in some sense, because they typically do not deal with varying
external state, such as an I/O intensive system or database system might.

In some circumstances, it is fair to argue that numerical applications are
exploratory and non-critical in nature. After all, a scientist writing a sim-
ulation code for his desktop machine will not be too concerned if the code
runs for an hour and then dumps core in an unexpected way. However, the
same scientist might become quite animated if a scaled-up version of the
same simulation ran for a week on a massively-parallel machine and then
dumped core. So it seems that the rudimentary model does not scale. The
context for the calculation has changed, but the mechanisms which imple-
ment policy have not. In the following I will consider the role of contextual
information in robust exception handling.

EXCEPTIONAL CONDITIONS 3

It is worth pointing out the difference in emphasis here, compared to
some of the discussion in the literature. One issue of great importance
is access to floating-point implementation details in high-level languages
[Hau96]. Many language environments cannot access important details of
IEEE-754 [IEE85] conformant floating-point implementations, making it
impossible to detect and treat some kinds of exceptional conditions with
any degree of flexibility. Fixing this sort of problem requires a uniform
language-independent standard for accessing such information. Further-
more, it may be necessary to provide language extensions, such as the
”enable-try-handle” block introduced by Hull et al (see Ref. [Hau96]).
However, I will not address this problem (having no solution for it in any
case), but instead will address the question of what goals library imple-
mentors should have for their designs, bowing to the practical constraints
provided by the common languages we use.

Additionally, I am somewhat less concerned with performance issues
than with the provision of good tools for developers. Some authors point
out that well-designed exception-handling facilities make it easier to write
efficient code [Hau96, HFT94]. However, it must be equally important that
such facilities can improve maintainability and can make it easier to express
exception handling constructs, thereby making them an important part of in-
terface design. After all, the set of exceptional conditions which can occur
in a given function is as valid a part of the interface specification as the set of
possible results. This was stated clearly by Goodenough [Goo75], and such
facility is included as part of the C++ standard, which allows methods to
declare exceptions which they can throw. However,ad-hocmethodologies
in languages without such explicit support are not generally able to support
maintainence of this sort of information as part of an interface specifica-
tion. As a side comment, it would be useful to have tools which allow at
least some level of automatic maintenance and verification in this regard,
for languages other than C++.

Finally, it should be pointed out that no observation here is likely to be
original. For instance, many industrial sectors, such as aerospace and trans-
portation, have a large investment in software safety and robustness, which
depends on validation of exception-handling mechanisms as well as rigor-
ous control of implementation algorithms. However, I think it is fair to say
that very little of this engineering practice has made its way to the outside
world. Furthermore, one can guess that much of the software experience
along these lines probably exists in a kind of in-house limbo, practiced by
local experts and not ready for wider distribution.

4 G. JUNGMAN

2. PRACTICE, COMMON AND UNCOMMON

It can be argued that common practice for exception-handling in numer-
ical computing is very poor indeed. In some cases this is due to the lack
of appropriate language support; in other cases it is due simply to a lack of
concern for rigorous control of the design.

There is a broad spectrum of practice and support mechanisms. We have
the following caricatures:

LEGACY: Many libraries, especially those with legacy code bases, include func-
tions which indicate an ”error” condition has occurred, or that a less
severe ”warning” condition has occurred. Typically these functions
take a string argument and/or a numerical code, and print something
to some output stream. The ”error” function may further distinguish
itself by aborting the program.

HANDLERS: Some libraries allow registration of handler functions for various ex-
ceptional conditions, so that an exceptional condition causes the flow
of control to transfer to the handler. Often the default handler is
abort() or an equivalent. The standard C library provides such a
mechanism for intercepting signals.

FLAGS: Standard C library functions typically indicate the occurrence of some
exceptional condition by setting a global error variable. Clients are
supposed to check the error variable after calling such a function. A
slightly better version of this has the library functions returning some
”error code”, which again should be checked by the client. Of course,
many clients will not check.

IEEE-754: The IEEE-754 floating-point standard recognizes the importance of
”harmless” exceptions by explicitly separating the notion of an excep-
tional condition from a transfer of control (trap). From the standpoint
of exception-handling, I think this is the most important feature of the
IEEE-754 specification. However, the notion of trap in IEEE-754 is
necessarily quite limited, and in practice it does not seem possible to
use the trap mechanism in any non-trivial way.

C++: C++ provides a standard exception-handling mechanism as a language
feature. Fundamentally it acts as kind of combination of the Flags
and Handlers methods, a combination which is a reasonable compro-
mise representing what most users of the Flags and Handlers methods
would have liked to do, given the necessary support. However, by de-
sign C++ does not make a distinction between exceptions; there is no
direct way to express the notion of a ”harmless” exceptional condition,
or any other variations of severity, using the C++ mechanism.

ADVANCED: Some languages support advanced notions of control flow, which could
be useful in exception handling implementations. For example, Scheme

EXCEPTIONAL CONDITIONS 5

providescall-with-current-continuation , which is pow-
erful enough to support many control constructs [A+]. This power
stems, essentially, from the treatment of computation context (techni-
cally known as acontinuation) as a first-class language element.
One can save the state of the computation1 and return to it later, per-
haps on the occurrence of an exceptional condition. Below, I discuss
how such an advanced notion might be used in exception handling.

The first three methods display the principal difficulty in exception han-
dling, which is how to gain enough contextual information to make a well-
informed decision. Global mechanisms almost always lack such informa-
tion. Invoking such a mechanism typically involves a transfer of control to
an execution context which cannot meaningfully deal with a general excep-
tional condition. Furthermore, it is difficult to implement any method for
passing information to such a global context in a non-cumbersome, or even
thread-safe, way. Library implementors have always been aware of this
problem, but have generally ignored it because the expenditure of develop-
ment resources on such issues is a hard sell in a world driven by ”results”.

Even in a well-reasoned discussion such as that of Ref. [Goo75], the
question of how to manage the state associated to an implementation block
is unclear. Consider the example

CALL F; [X: CALL G; [Y:... ESCAPE Z;]...]

given in that reference. HereGis a handler registered for exceptionX, which
can be raised byF. However, there is no indication of arguments forG, and
it is not at all clear howF will be able to communicate information whichG
might need in order to prepare an operation as complicated as ”cleanup and
resume”.

Another example from the same reference appears to address the issue.
It is an example of an iterator mechanism, where each successful iteration
raises the conditionVALUE, indicating that a value has been obtained. The
example sums the obtained values.

SUM = 0;
CALL SCAN(P, V); [VALUE: SUM = SUM + V; RESUME]

In this example, the locality of information problem is side-stepped by pass-
ing the value back through the argumentV. The problem is that this exam-
ple does not scale. How many arguments would be required if the handler
block was not summing a list of numbers but actually trying to prepare for
resumption of some operation involving significant state?

1This is mildly inaccurate, but those readers not familiar with this feature can refer to
the references for a precise definition.

6 G. JUNGMAN

There is at least one example of real-world software practice which jus-
tifies the concern over such communication. Some C math library exten-
sions provide a handler registration mechanism which allows passage of
information regarding the arguments of the function which raised the ex-
ceptional condition. For instance, consider a function such assin(x) ,
which might raise an exception. Typically the user can define a function
of the formmatherr(struct math_exception * e) , where the
argument might look something like the following2.

struct math_exception {
int error_type;
char * func_name;
double argument;
double return_value;
int return_errno;

};

Upon raising the exception, the library function would transfer control to
matherr() , passing it the argument ofsin(x) and settingfunc_name
to “sin ”. Then, in principle, the handler function could execute some code
which depended not only on the error flag but on the actual value of the ar-
gument which raised the condition, and load a value intoreturn_value ,
which would be returned to the subordinate context whenmatherr()
returned control to thesin() function. The implementation ofsin()
would, by convention, return the value ofreturn_value as its result.
Unfortunately, it is not at all clear what useful function the handler could
perform with this information, and what values might be appropriate for
assignment toreturn_value . Furthermore, this construction obviously
does not scale to other types of library functions. For instance, some at-
tempt was made to generalize to functions of more than one variable, but
one can see how this would never be satisfactory. In fact, judging by the
amount of use it gets, this mechanism seems to have been stillborn; real
experience has returned a verdict.

Reconciling the locality of information and the need for information in a
non-trivial handler context is perhaps the fundamental problem for excep-
tion handling. In some sense such a reconciliation is impossible. The only
way to preserve locality of information is to have the implementation block
cleanup its own mess, since it is the only natural context which possesses
the needed state information. In this case, the clean-up code does not really
fall under the umbrella of an exception handling mechanism as such. It is

2For details about one such implementation, see the Cygnus GNU Pro Math Library
manual. This mechanism seems to have had its origin in the library described by Moshier
[Mos89]; see the section on themtherr() function in that reference.

EXCEPTIONAL CONDITIONS 7

simply some more implementation code, which happens to handle a case
which is rare in normal practice. Therefore, from this viewpoint the key
problem becomes one of giving the subordinate context enough informa-
tion to make a reasonable decision, when a decision is required.

One might wonder if this situation provides a tangible example for which
advanced control-flow could be used. Imagine the following abstract sit-
uation. Proceduref calls procedureg, andg raises an exception, which
transfers control tof . Now f examines the exception and decides on a
course of action. One or more possible actions might require manipulating
the state ofg, for example to clean-up some data structure which is man-
aged byg. With a standard throw/catch mechanism, such as provided by
C++, there is no way to descend the stack after it is unwound by the throw.
Therefore,g must act without the benefit of information from the calling
contextf , or f must be prescient and agree to provideg with a complete
set of rules for its behaviour. However, one could imagine saving the con-
tinuation in effect at the time the exception is raised ing, and restoring it in
f . This creates a kind of non-local communication mechanism between the
calling context and the subordinate context.

Nevertheless, how such a mechanism would work in practice, and how it
would scale with the size of the state inf andg is unclear. It is clear that
the “prescient”f example, required when restoration of theg continuation
is not supported (such as in C++), does not scale, because the maintainer of
f and the maintainer ofg must remain completely synchronized regarding
the possible internal behaviours ofg. The advanced mechanism of con-
tinuation restoration appears to loosen this coupling, but the appearance
is deceiving because it is not clear what the two contexts have to say to
each other, without a complete specification of a communication protocol,
including an enumeration of possible internal states. Finally, such mecha-
nisms cannot be expressed at the user level in a language-independent way,
given the constraints on typical languages. Therefore, although such mech-
anisms might be useful for certain implementation details, if expressed in
a language like Scheme, they will never be more than a curiosity to the
general user community. I will not discuss advanced control-flow support
further.

Because of this difficulty with locality of information, and given the con-
straints of languages in common use, I do not think it is possible to solve
the problem of supporting truly nontrivial handling mechanisms as such,
meaning mechanisms which make use of information from the subordinate
context. However, this leaves open the question of how to supportlocal
control of handler actions, and this is certainly a solvable problem. By lo-
cal control, I mean a mechanism which allows context sensitive control of
protocol decisions, such as whether to “hard fail” or “soft fail”. In some

8 G. JUNGMAN

sense, this is a fall-back to the “prescient” example from the discussion of
continuation restoration above, but where the scaling problem is bypassed
by encapsulating protocol control and further cataloging a small, fixed set
of “actions” which exhaust the possible behaviours of the subordinate func-
tion. I will provide examples allowing such support in C and C++ below. In
the following section I clarify what is meant by contextual information from
the calling context and formalize a protocol for sharing this information.

3. WHO HAS THE CONTEXT?

3.1. The Local Nature of the Problem. We will first look at some very
simple examples of machine arithmetic, to see the importance of contextual
information for exceptions. The emphasis is not on machine arithmetic as
such, which is capably handled by the IEEE-754 specification, but on the
general structure of such examples.

Consider the following code fragment.

double x = foo();
double y = 1.0 + 1.0/x;

Suppose that the functionfoo() is guaranteed to return (a machine repre-
sentation of) a real number in the range[1,∞]. Therefore, it is possible for
for foo() to overflow its output, but no other exceptional condition will
occur. Then clearly the second assignment is always safe (assuming some-
thing like an IEEE-754 conformant floating-point implementation, which
would set 1/Inf = +0). But if the functionfoo() can sense its own over-
flow condition and attempt to initiate some form of ”error-handling”, then
the coder of the above fragment might be disappointed. This example is
simple, and it illustrates how the IEEE-754 notion of a ”harmless” excep-
tion can be very useful.

The next code fragment is quite a bit different.

double x = foo();
double y = 1.0/x;

Now the overflow ofx translates to an underflow ofy, which is probably
not acceptable. Therefore the above fragment must be considered incorrect,
foo() should be allowed to make known its exceptional result, and code
should be inserted to handle that case. As a note in passing, it may interest
some readers not familiar with the Ada standard to know that Ada official-
ly ignores underflows. This decision was made to simplify the exception-
handling support, under the assumption that underflows are mostly harm-
less. Of course, one man’s underflow may be another man’s overflow.

The next code fragment illustrates a somewhat more troublesome but still
common problem.

EXCEPTIONAL CONDITIONS 9

double x = ...;
double y = sin(x);

The question here is manifestly one of context. What meaning is given to
the numerical value ofx in this fragment? Assume thatsin() computes
the trigonometric sine function of the machine representation of a real num-
ber, returning a result with fixed acceptable precision, as does any good
implementation of the sine function. Ifx ”stands for” an exactly represent-
ed number, then there is no problem in the above code. However, ifx is
computed from inputs in some way, then the occurrence of large values of
x probably indicates that the algorithm is becoming ill-conditioned. Who
will detect this condition, if its detection is desirable? We cannot seriously
attempt to detect the condition outside of thesin() function, because that
would require knowledge of its implementation, breaking its encapsulation.

The problem here is that the functionfoo() in the first examples and
the functionsin() in the last example have no way to sense the context in
which they were invoked; therefore, they typically either expect the worst
or do nothing at all. Notice that the standard C library implementation of
sin() makes the latter choice. Neither choice is desirable in general3.

When the functionfoo() is a library function, and a code fragment
like the first example is part of another library function, the designer has a
distinct problem. How is the functionfoo() to be implemented?

At this point, one might decide that something like the C++ mechanism
solves the problem, because an exception in the functionfoo() will cause
a transfer of control to the calling context. Thereforefoo() should raise
the exception, and the client should deal with it as required. However, there
are serious problems with this.

Naturalness Cost: A C++ method which throws an exception cannot return a meaning-
ful value. Therefore, even though an exception may be judged harm-
less by the calling context, there is no way to retrieve a value from a
method with a natural prototype; pass-by-reference prototypes would
be required.

Cycle Cost: The cost of throwing and catching ”harmless” exceptions can be pro-
hibitively high. Remember the design dictum: exceptions should be
exceptional, they are not some perverse form of communication pro-
tocol. But whether or not a certain condition is considered exceptional
is often known only to the calling context.

3In a footnote, Muller Ref. [Mul97, p. 179] indicates a desire for an “exactness” flag in
future arithmetic standards, to indicate whether a number is to be interpreted as an exact
representation or as the result of a previously rounded calculation. Such information would
provide the context information to resolve this problem; of course, whether we will ever
see such an arithmetic implementation is another question.

10 G. JUNGMAN

Separation: One could imagine a mechanism whereby certain exceptions could be
turned off by the calling context. However, this is not the solution to
the problem. The thrown exception is the only carrier of information
about the possible problem. One sometimes wants to be able to turn
off the behaviour ”throw exception”, without erasing the information
about the exceptional condition. This is what I mean when I say that
there is no such thing as a ”harmless” exception in the C++ standard.
Again, the usefulness of the IEEE-754 separation of traps and excep-
tions becomes clear.

These are not problems with C++ exception-handling support itself. The
problem exists at a higher level. The C++ mechanism is by itself not suffi-
cient to solve the problem; however, it could certainly be part of a solution,
just as any other fundamentally similar mechanism could.

3.2. The Global Nature of the Problem. The examples above illustrate
how exception handling can create difficulty at the lowest level of imple-
mentation, due to the importance of contextual information. But contextual
information can be important at all levels of system engineering.

An obvious area where context is paramount is in embedded systems,
in a general sense of the term. Such a system might be anything from a
microwave oven controller to a numerical library dynamically linked to a
scripting language runtime. Note that the latter situation is becoming quite
common in scientific computing, as people try to increase their leverage
by combining different language environments and different existing tools,
using a scripting language as glue. As Dekker simply states [Dek80], ”Note
that an ability to suppress the printing of messages is especially important
when routines are called from a program written in another language or
operating within a configuration without output channels like in a process
control situation.” A library which provides exception-handling according
to the LEGACY model is clearly unacceptable for use in a heterogeneous
environment, because it has a tendency to ”pull the rug out from under” the
other players.

The scientist surprised when his expensive simulation dumps core is even
more surprised when he finds the reason was that some poorly implemented
canned function decided to pull the rug out from under the whole simula-
tion, even though the exceptional condition itself was demonstrably harm-
less.

We must consider that one of the goals for a complex software project
is to make the system as autonomous as possible, but demonstrably safe.
Programs that reliably manage their own state do not have to keep bothering
their creators.

EXCEPTIONAL CONDITIONS 11

3.3. Formalization. There are several requirements for communication with
a subordinate context. The following elements allow the subordinate con-
text to communicate exception information to the outside.

• an agreed upon set of severity levels which the subordinate context
can use to quantify its distress
• an opaque method which the subordinate context can use to raise a

distress call; the actual action taken will depend on the protocol en-
capsulated by the method

One could also consider communication of other information, implement-
ing parametric control of the behaviour of the subordinate context, but I
will not consider that here. Some ideas are given in the general discussion
section below.

If one thinks of a handling protocol as a mapping from conditions to
actions, then the severity levels provide the domain for all such mappings.
By expectations in the following, I mean any formal output invariant which
could be verified. We have the following minimal set of severity levels.

Severity Levels Meaning
Fatal no meaningful result can be produced
Severe a result will be produced; it will not conform to expectations
Warning a result will be produced; it may not conform to expectations
Information a conforming result will be produced; some condition has occurred
None a conforming result will be produced; normal operation

The necessity of such a prescribed set is clear, when looked at from the
standpoint of abstraction. A protocol specifies that a certain action be per-
formed when a certain condition occurs. However, the space of exceptional
conditions is generally large and possibly changing (especially during de-
velopment). Therefore, we must substitute a fixed space as the domain for
the mapping which defines a protocol. Furthermore, severity level should
not be tied to the specific exception type; it should be decided on a local
basis. Therefore, although it appears that the prescription of severity levels
is a compromise, it is in fact necessary.

The final ingredient we need is a way for top-level contexts to project
control to subordinate contexts at any depth, possibly overriding choices
made by intermediate contexts. If the implementation of a library compo-
nent had final control over the context for its invocation of other library
components, there would be no way to selectively trace the activity below
one layer of library implementation. This is unacceptable, and a mechanis-
m must be provided to force propagation of user-defined contexts to lower
levels. For instance, if the occurrence of a “hidden” exceptional condition
is causing an expensive computation to occur at an intermediate level, the

12 G. JUNGMAN

only immediate symptom will be a loss of performance; by exposing layers
of exception handling, the application programmer might very quickly see
what is happening, without the need to invoke a full-powered profiling tool,
or worse, to tediously step through with a line-oriented debugger. Struc-
tured information about exceptional conditions should never be permanent-
ly buried in an implementation, forcing users to mine it out in unsupported
ways.

One might like to have a mechanism for projecting control which was
graded by the “depth of the invocation”, so that layers of invocation could
be peeled away. Specifically, one might like to be able to say something like
“expose all subordinate exceptional conditions, but only to a stack depth of
5”. However, it is not clear if this would be truly useful. Furthermore,
there seems to be no easy way to implement such a scheme in any standard
language. Therefore, I will consider only the simplest scheme, which allows
an unyielding projection of power to subordinate levels.

Projection of power is implemented by assigning to each context anover-
ride property. If the current context possesses the override property, it is
preferentially passed to subordinates; if not, context handling will occur as
normal. The process of deciding which context to pass to subordinates will
be calledarbitration.

4. MAKING GOOD PRACTICE PRACTICAL

If flexible exception-handling is to become part of the culture of scientific
and numerical computing, it must be made easy, both for library implemen-
tors and clients. Library implementors’ foremost need is for a well-defined
model and a working example. Clients’ foremost need is for a shield from
complexity.

The following two example implementations indicate some of the possi-
bilities. The first example is fully object-oriented, implemented in C++, and
in principle provides a very wide range of control. The second example is a
minimal C language implementation which allows a fixed range of control
for exception-handling based on context.

As mentioned in the formalization section, I have not included secondary
communication for other parametric control functions. The design point for
these parametric abstractions can actually be different, due to issues like
the concern over efficiency. I hope to discuss these in a separate paper
discussing advanced designs for numerical libraries.

EXCEPTIONAL CONDITIONS 13

4.1. Context Framework. Since one clearly likes to think of contexts as
objects in a framework, it is natural to express them in an explicitly object-
oriented way. I choose C++ as an appropriate ”pseudo-code” for this ex-
pression, although one could easily imagine substituting other languages
with object-oriented support.

#include <exception>
#include <string>

// Provide a layer of exception types for
// a given implementation.
class eh_exception : public std::exception
{

// implementation specific ...
};

// Provide the notion of a context. Includes a
// convenience interface to a logging facility,
// so that developers of derived classes can
// vary this facility independently or make
// use of the default behaviour.
class eh_context
{
public:

typedef enum { E_INFO, E_WARN, E_SEVERE, E_FATAL } severity_t;

virtual void
raise(severity_t s, eh_exception * e) const = 0;

bool isDominant(void) const;
void setDominant(bool);

virtual void
log(eh_exception *) const;

// further context sensitive operations ...
};

// Implement arbitration of contexts.
// To be used by library implementation.
inline
const eh_context &
eh_context_arbitrate(const eh_context &,

14 G. JUNGMAN

const eh_context &)
{ /* implementation suppressed ... */ }

// Default user context.
class eh_context_user : public eh_context
{

// override raise() to define protocol ...
virtual void
raise(severity_t s, eh_exception * e) const;

};

// further useful context declarations
// ...

The above takes care of that part of the communication with the subor-
dinate context involving raising exceptions. It encapsulates into an object
that set of methods which would, in a naive view, involve explicit non-local
transfer of control. Thus contexts bundle up a specification of handler pro-
tocol. Clearly this is a very general notion, and one could imagine extending
the context system to provide access to other semantically “global” infor-
mation. Some aspects of this general picture are discussed in the section
below.

4.2. Minimal Implementation. The following code fragments are the bulk
of a minimal C language implementation of contextual exception-handling.
Note that one could in principle implement a fully object-oriented frame-
work such as the above in C, by suitable gymnastics. However, this explicit
example may be useful to some readers. In any case, it helps to illustrate
what one gains (and what one leaves behind) when moving to an abstract
framework such as the above.

By its nature, the minimal example allows only a fixed set of actions.
Therefore, a protocol specification reduces to a table of integers. The al-
lowable actions are given in the following table.

Actions Meaning
Exit globally terminate execution
Dump produce a core dump in an environment which supports such a mechanism
Log log the occurrence of the exception to a stream
Null no action

These actions are not mutually exclusive, so they can be combined into
compound actions; however, severity levels are by definition mutually ex-
clusive. The ”default” map of severity levels to handler actions, which is
appropriate in an end-user context, is given by

EXCEPTIONAL CONDITIONS 15

Severity Action
Fatal → Log + Dump + Exit

Severe → Log + Dump + Exit
Warn → Log
Info → Log

A map appropriate for usage in a library implementation context could map
all severity levels to the Null action.

First there is a formalization of the severity levels and handling actions
which are available.

/* space of condition severities */
typedef enum {

E_NONE = 0,
E_INFO = 1,
E_WARN = 2,
E_SEVERE = 3,
E_FATAL = 4

} eh_severity_t;

/* space of condition dispatch actions */
typedef enum {

D_EXIT = 0x01,
D_DUMP = 0x02,
D_LOG = 0x04,
D_ABORT = D_EXIT|D_DUMP,
D_NULL = 0

} eh_dispatch_t;

/* override states */
typedef enum {

E_OR_YIELD = 0,
E_OR_DOMINATE = 1

} eh_override_t;

/* context object */
typedef struct {

eh_dispatch_t _dispatch_table[4]; /* map sever-
ity space to action space */

eh_override_t _override; /* dominance */
FILE * _log_stream; /* where to log */

}

16 G. JUNGMAN

Next is a set of standard default contexts provided by the system. Top-
level users would generally execute in the default user context, though they
can fashion any context which they like.

/* standard implementation context */
const eh_context_t eh_context_impl =
{

{ D_NULL, D_NULL, D_NULL, D_NULL, D_NULL }, E_OR_YIELD, stderr
};

/* standard user context */
const eh_context_t eh_context_user =
{

{ D_NULL, D_NULL, D_LOG, D_LOG, D_LOG|D_ABORT }, E_OR_YIELD, stderr
};

/* nosey user context */
const eh_context_t eh_context_user_nosey =
{

{ D_NULL, D_LOG, D_LOG, D_LOG, D_LOG }, E_OR_DOMINATE, stderr
};

/* paranoid user context */
const eh_context_t eh_context_user_paranoid =
{

{ D_NULL, D_LOG, D_LOG|D_ABORT, D_LOG|D_ABORT, D_LOG|D_ABORT }, E_OR_DOMINATE, stderr
};

Also provided are several macros, mostly for the benefit of the imple-
mentation. One allows easy expression of arbitration. Another is the basic
invocation to raise an exception in a given context.

#define EH_ARBITRATE(context_ptr, context_parent_ptr) \
(context_parent_ptr->_override ? \

context_parent_ptr : context_ptr)
#define EH_RAISE(severity, code, message, context) \

... implementation suppressed ...

5. THE BIGGER PICTURE

I have concentrated on the difficulties with exception handling in scien-
tific codes, arguing that subordinate threads of execution should be able to
import information from their calling contexts, in particular an encapsula-
tion of protocol. In this way, they might have enough information to make

EXCEPTIONAL CONDITIONS 17

important decisions, such as whether or not to raise an exception, and what
handling method to invoke when an exception is raised. However, the role
of contextual information could be seen as even more fundamental. Simply
stated, context should control the behaviour of algorithms.

As an example, consider the problem of instrumenting codes. In any
compute-intensive environment, it is fundamentally important to instrument
codes in order to understand the performance of algorithms in real situa-
tions. Instrumentation, if the barrier to use is not too high, can also be used
during development. Ideally, the instrumentation should be as non-intrusive
as possible. More precisely, the concern is that the instrumentation be non-
intrusive from the code development point of view, i.e. that the possibility
for instrumentation not require the explicit awareness of the developer. Pro-
filing tools realize this goal in the simplest sense, because one need only
recompile the code with profiling turned on to create an instrumented ver-
sion of the code. Of course, it can be hard to create a build environment
where one has any selectivity in this process.

One could imagine a different, object-oriented, view of instrumentation.
In this view, an instrument is a kind of active contextual object, which inter-
acts with subsytems simply by being the context for their execution. These
contexts could be managed in real-time, by suitably enlightened debuggers
or other runtime environments. If performance was an absolute essential,
the instrumentation objects could be implemented at compile-time using
static polymorphism (templates in C++).

As another example, consider controlling the precision of a computation.
This is a simple form of general algorithm control. Fine-grained control of
precision could be a useful optimization for some algorithms, if situations
where less precision is required can be detected.

6. CONCLUSION

In one sense, there is no limit to the amount of contextual information that
could be made available to a subordinate function, since one could imagine
adding requirements and function arguments without limit. Clearly this is
not desirable. Furthermore, it seems impossible to use specific information
from a subordinate function in any useful way.

Instead I have advocated a simple framework for encapsulating policy
from the calling context and making it available to subordinates. This sug-
gestion is the natural evolution of the “hard fail”/“soft fail” distinction first
introduced in the implementation of the NAG library, extended to encap-
sulate policy in a general way. This seems to be the required compromise
which leads to maintainable but flexible exception handling.

18 G. JUNGMAN

Finally, it might be interesting to consider some anecdotal arguments
for adopting such a system broadly in the scientific computing communi-
ty. I believe that, as systems become more complex and heterogeneous, the
need for more fine-grained control of exception handling will become great.
Consider an explicit example of the level of complexity in some scientific
computing projects. The Stanford University Center for Integrated Turbu-
lence Studies [fITS], funded as part of the DOE ASCI alliance program,
seeks to model a complete jet engine, coupling codes for reacting flow sim-
ulation, turbomachinery simulation, flow-mechanical interaction, etc., cre-
ating a front-to-back simulation of the internal flow in the engine. Code
for various subsystems will be produced by separate teams, some project
members devoting full-time effort to code integration. Production runs for
such simulations will have no limit to their hunger for computing resources,
running for months on the most powerful (and finicky) computing platforms
available. Projects of this scale could face difficulties in integration without
very precise control over global design issues, such as exception handling.

By concentrating on the fundamentals of numerical computing, such as
exception handling, access to the full floating-point capabilities of the hard-
ware, control of precision, frameworks for control of algorithms, and other
basic issues, we might hope to serve the greater portion of the community,
obtaining near-optimal return for our investment.

7. ACKNOWLEDGEMENTS

I think J. Amundson and B. Gough for many useful discussions. Final-
ly, because no actual system yet implements the proposed mechanism, it
should be considered a work in progress, and all comments regarding its
details are welcome.

REFERENCES

[A+] H. Abelson et al.,Revised(5) report on the algorithmic language scheme.
[Dek80] T. Dekker,Design of languages for numerical algorithms, Production and As-

sessment of Numerical Software, 1980, p. 291.
[FB78] B. Ford and J. Bentley,A library design for all parties, Numerical Software -

Needs and Availability, 1978, p. 3.
[fITS] Stanford Center for Integrated Turbulence Studies, http://ctr-

sgi1.stanford.edu/CITS/.
[Goo75] J. Goodenough,Exception handling: Issues and a proposed notation, Comm.

ACM 18 (1975), 683.
[Gro] The Numerical Algorithms Group, Nag c library: Mark 5,

http://www.nag.com/local/manuals/numeric/c/Manual/CL05index.html.
[Hau96] J. Hauser,Handling floating-point exceptions in numeric programs, ACM Trans.

Prog. Lang. Sys.18 (1996), 139.

EXCEPTIONAL CONDITIONS 19

[HFT94] T. Hull, T. Fairgrieve, and P. Tang,Implementing complex elementary functions
using exception handling, ACM Trans. Math. Soft.20 (1994), 215.

[IEE85] IEEE,Ieee standard for binary floating-point arithmetic, Institute for Electrical
and Electronics Engineers, New York, 1985.

[Kah98] W. Kahan, How java’s floating-point hurts everyone everywhere,
http://www.cs.berkeley.edu/w̃kahan/JAVAhurt.pdf.

[L+96] J. Lions et al.,Ariane 5 flight 501 failure: Report by the inquiry board,
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html.

[Mos89] S. Moshier,Methods and programs for mathematical functions, Ellis Horwood,
1989.

[Mul97] J. Muller, Elementary functions: Algorithms and implementation, Birkhauser,
1997.

[Tea] The GSL Team, http://sourceware.cygnus.com/gsl.

LOS ALAMOS NATIONAL LABORATORY, T-8, LOS ALAMOS, NM 87545
E-mail address: jungman@lanl.gov

