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ELEMENTS OF ACTIVE VIBRATION CONTROL FOR ROTATING MACHINERY

Helnz Ulbrlch*

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohlo 44135

SUMMARY

Demands for higher frequencies, improved reliability, reduced noise, and

Increased longevity, along with safety concerns, require an effectlvely con-

trol]ed rotor dynamics system. The desired requirements are often not met by

using only passive damping elements; further improvements can be achieved only
wlth the ald of active control. Showing how to construct a controller and how

to apply active control on rotating machinery Is the intent of this report.

Different types of actuator concepts and their models are discussed.

The modeling of rotor systems Is given In such a way that inclusion of active
elements can easily be achieved. The chosen modeling procedure, which is both

physically clear and handy for computer-orlented representation, permits both
the conslderatlon of all mass and gyroscopic effects and a modular construc-

tion of the system. The meaning of controllability, observabl]Ity, and spill-

over, with regard to actively control]ed systems, and a method to check on

the system properties are discussed. A short Introduction about control con-

cepts and the optimization of the controller Is given. In the last section

severa| real applications demonstrate the design and appIIcatlon of actlve
vibration control.

INTRODUCTION

In the growing field of rotor system dynamics control, many different
methods have been applied. The methods that have been proposed for rigid and

flexible rotors dlffer In control concepts (refs. 1 to 8). The type of con-

troller that is most effective depends on the objectives. The controller nor-

mally makes use of four elements:

(I) Displacement (proportional) feedback (P part), which allows one to

change the stiffness of the system or, In other words, to shift the

elgenfrequencles in the desired manner

(2) Velocity (derivative) feedback (D part), which permits one to increase

the system damping to (a) improve the stablllty of the system, (b) sta-
blllze unstable modes of the system, or (c) reduce resonance amplltudes

that can occur when rotors pass through critical speeds

(3) Acceleratlon feedback (A part), which can be used to eliminate or

reduce the Influence of the mass or Inertia (e.g., improvlng the con-

trollab111ty in relation to applying active forces via the bearing hous-

ings (ref. 4), or compensating for the Influence of fluid inertia In

relation to hydraulic actuators (ref. 2))
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(4) Integral feedback (I part), which is necessary for holding a rotor

position very precisely (no radial dispIacement) at a given 1ocation,

or for adjusting bearings to mlnlmlze rotor stress (m|nimum stress is

achieved by changing the features of the bearing or the Foundation of

the bearing supports).

The type of feedback control that Is chosen wili depend on one's objec-

tives and the system itself.

To realize active control techniques for Improving the dynamic behavior

of rotor systems, the followlng are required: (I) suitable actuators and

knowledge of their transfer characterlstlcs; (2) modellng of the complete sys-

tem (Includlng the active components); (3) chooslng locations for actuators

and sensors (affects controllabI11ty, observabIIIty, and splllover effects);

and (4) having problem-adapted control methods for hardware as well as
software.

The key to successful active vlbratlon control in rotor systems (l.e.,

systems with rotating machinery) lles in the avallabIllty of suitable actua-

tors. Some types of actuator that have been applied in industry or In the

test stage In the laboratory will be Introduced In this report.

ACTUATORS, MODELS, AND TRANSFER CHARACTERISTICS

In general, there are two different ways to apply control forces on

rotating shafts in turbine engines, power generators, gearboxes, machine
tools, and such. The forces can act directly on the rotor or they may be

applied via the bearing housings. For practical applications the following

characteristics are very Important:

(1) Actuators should not only be compact but also be capable of generat-

ing large Forces.

(2) The amplltude range of the actuator should be at least as hlgh as the

vibration amplitudes that have to be influenced.

(3) The frequency range of the actuator (bandwidth) that can be obtained

w111 determine the appllcatlons. Thls means the design strategies for the
actuators will have to focus to a high degree on the actuator dynamics. In

this section three different types of actuators will be introduced and their

mathematical descriptions of the transfer characteristic will be given.

Magnetic Actuators

Magnetic actuators can be divided into two types: magnetic bearings,
which act directly on the rotor without contact (refs. 1, 2, g, and 10), and

electromagnetic actuators, whlch apply forces to the rotor indirectly vla the

bearings (refs. 3, 5, and 11 to 13).

Active magnetlc bearlnq. - A typical assembly of electromagnets (EMXI,
EMX2, EMYI, EMY2) is represented In figure I. It Is noteworthy that wlth thls

arrangement of the magnets, radial movement of the rotor In the y-dlrectlon



causes no change In the total alr gap of the magnetic circuits In the

x-dlrectlon (comparative effect). Thls Is necessary for decouplIng the forces

of the bearing between the x- and y-dlrectlons. The differentlal arrange-

ment of the electromagnets leads to a linear Input/output characteristic

between the forces acting directly on the rotor and the control voltages Input

to the power ampliflers. The power amplifiers have to work, In this case, as

current sources. This relationship between the input voltages Ux and Uy

and the resulting forces Fx and Fy Is given by

IilJFiu uI[ iJ•IiiJIiJ(1)

where k u represents the force-voltage factor; k, the force-dlsplacement fac-
tor (negative of stiffness); and x and y, the radlal displacements of the
rotor In the respectlve directions. Figure 2 shows a schematic of a
controlled-orblt magnetic bearing test rig to determine k u, k, and the fre-
quency characteristic. The rotor Is f|xed by ball bearings and Its position
Is measured by built-ln noncontacting dlsplacement transducers. Forces on the
rotor are simultaneously determined in the x- and y-dlrectlons by quartz
load washers. In order to decouple the forces Into the two measurement dlrec-
tlons, speclal axlal linear roller guides are used. This means the quartz

load washers are attached to the Foundation In such a way that a force In the

x-dlrectlon (and slmilarly, In the y-dlrectlon) does not influence the force

slgnal In the y-dlrectlon (x-direction); see references lO and 14.

Electroma_netlc actuator. - An electromagnetic actuator capable of
applylng forces to the rotor indirectly via the bearing housing Is shown In
figure 3. The scheme shows a cross section of this active element, conslstlng
malnly of two annular electromagnets acting In dlfferentlal prlnciple on a
pull disk. If the power amplifiers work as current sources, the Input/output
characterlstlc Is described by the same equation as that for the magnetlc bear-
Ing (eq. (2). The transfer characteristic of the actuator Is shown In flg-
ure 4(a). The control force Is displayed as a functlon of the control
current. The deviation of the pull disk from its neutral position functions

as a parameter. Figure 4(b) gives an impression of the frequency characteris-
tic. Results show that the actuator can be modeled as a proportlonal transfer

element at up to 300 Hz (cutoff frequency). These results could be achieved

only by using speclal guided roller bearings to reduce friction In the guides

of the connecting rod. Magnetlc bearings and electromagnetic actuators

require a relatlvely large amount of space In relation to the magnitude of

attalnable forces; thls drawback may be avoided by the use of hydraulically
controlled chambers.

Active chamber system. - The compact active chamber system, shown In

figure 5, Is capable of generating very large forces and can thereby Influ-

ence even large turbines weighing several tons (see ref. 15). The actuator

device consists mainly of four cylindrical chambers arranged In a circle

around the outer bearing houslng. Each chamber Is sealed at the top and bot-

tom by an elastlc membrane. In order to decouple the forces in the x- and

y-directlons, the bearing housing Is supported agalnst the membrane system by

linear roller guides. The Inf|uence of friction Is thereby reduced as well.

AIternatlve methods of support result from design varlatlons. One variation

supports the bearing via elastic rods - another, slmp]y by chambers deslgned

in such a way that they have an adequate transverse compllance.



Actuator pistons, as an alternative to membranes,have the disadvantage
of possessing relatively large moving massesfor the desired small displace-
ments (less than 0.02 In., or I/2 mm); thls has an unfavorable effect on the
transfer behavior at hlgh frequencles. In addition, sealing problems occur,
and friction forces appear on contact surfaces.

From reference 16 a relation can be derived for the force generated as a
function of the fluid pressure P and the radius of the membranes R"

(2)

The factor F9 is a function of the ratio of outer radius R to Inner radius
r and the reference magnitudes Po and Ro. Setting Rlr = 3, Po " l bar,

and Ro = I cm, we obtain Fo = 35 N. If we then choose R = 10 cm and P -elObar, the force generated would be F , 35 kN. The membranesystem has to
designed In such a manner that both the stress caused by the pressure, and
the d|splacements are In a reasonable range. Here, a wide range of varlat!on
is given by a speclflc choice of parameters

For Industrlal appllcatlons the frequency range (more than 200 Hz) is very
important. To Include the actuator system Into the overall system, wlth the
target being to design an efficient control, the input-output characterlstlc
of the system Is necessary; It Is given In the x-dlrectlon as

F (t)
x (3)

T(J_) = Ux(t )

where Ux(t) Is the control voltage (input) to the servo valve and Fx(t) is
the resultant force acting on the bearing housing. In the Laplace domaln we
can obtain the resultant force as a function of the system parameters by
apply|ng the continuity and the Bernoulli equations (under consideration of

hydraulic losses), the dynamic behavior of the servo valve, and the force equl-
llbrlum at the membrane, assumlng neglect of the o11 compresslbillty. The

resultlng force equatlon is given by

F(s) = FV(s)U v - F2(s)x (4)

where

A*K v
(5)

1 + Wv Kpq
_V I

* 2 I cv_° A CR + Kpq)
(6)

or by transformation Into the time domaln the force equation becomes



* 1 _ f2 = fv A CT_ B A* *2
F " fv - - CvXo + A CR + Kpq B CMXB

(7)

where fv can be obtained by the differential equation of the serve valve

A*K V
I_ fv + -- + fv : -- Uv
2 _v

_v Kpq

(8)

Or

mvF v + dvF v + Cvfv = bv Uv <g)

The valve constants Kv, KDa, the valve elgenfrequency _v, and the valve damp-

Ing coef_iclent _v are constants normally given by the manufacturer of the
valve; A- Is the active membrane area, CM Is the membrane stiffness, CT Is

a constant describing the o11 inertia, CV and CR are constants describing

fluld losses, Xo Is a characteristic flow veloclty, Uv Is the control voltage

to the valve, and xB Is the deflectlon of the bearing In the force dlrectlon.

Equation (7) describes the force that Is applied to the bearing, and equa-

tion (g) represents the dynamic behavior of the valve that Is stimulated by

the control input Uv.

An optimal design of a control system demands an adequate model of the

complete system. The effectlveness of the actuator system will depend on the

observabIllty (which, In turn, depends on the measuring informatlon) and the

controllabillty of the natural vibrations that are to be influenced (which

depends on the actuators used and their locations). In order to check on

these system properties and to design an effective control system, adequate

modeling Is necessary.

MODELING OF ACTIVELY CONTROLLED ROTOR SYSTEMS

Modeling of Rotor Systems to be Controlled

Modeling the rotor system as a hybrid multlbody system (HMBS) Is a very

efficient method of describing it. This has proven especially useful when

active components are Included. The HMBS model contains rigid bodies (e.g.,

bearing units) and elastic subsystems (e.g., rotors and blades), as determlned

by special needs (see refs. II and 17). The coupling of subsystems Is accom-

plished by special elements that are characterized by the respective force

laws. Modeling the system by this procedure permits the consideration of the

disk mass, the shaft mass, and the gyroscopic effects In a simple manner. It

also allows a modular construction of the system equations without any loss of

physical insight. The procedure leads to a computer-orlented representation
in which control concepts can be adequately considered. It has the advantages

of low system order, versatility, and simple system adaptation (e.g., alterlng

location of control forces acting on a flexible shaft). The equations of
motlon of such HMBS are best set up on a computer. A very efflcient method Is



the direct evaluation of the principle of d'Alembert, which can be expressed

For a system consisting of k substructures as

k

S

_: dm dfe_ T- 6r I - 0
(lO)

where the Index I indicates the substructure, r Is the position vector to

the mass element dm, F is the acceleration vector of the mass element, and

dfe Is the force vector acting on the mass element. The symbol 6 Indicates

the variation of the position vector rI (no variation of the tlme t!).

Rotor systems normally consist of elastlc shafts and rigid bodies such as bear-

Ing housings or foundations. Taking Into account the assumptions of a
Bernou111 beam (cross sections of an elastic shaft remaln planar), we can Inte-

grate over the mass elements in the radial direction and end up wlth a beam
element (dlsk element) as shown In figure 6. (In figure 6 three different

types of coordinate systems that are used In describing rotating machinery are
also indicated.) As a result of thls Integratlon, equation (10) becomes

k

{.F 6rT _dmas - dfell + 67T _dIs_ + _ dIS(_- dMe_11= 0 (II)
I=I

Here the first term describes the vlrtual work of translation (in parenthesis

is Newton's second law of motion), and the second term considers the virtual

work of rotation (In parenthesis, Euler's equation); 6r Is the vector of the

small vlrtual displacement, and _? Is the vector of the vlrtual rotation;
as Is the vector of acceleratlon of the center of mass; u is the vector of

angular veloclty; u Is the vector of angular acceleratlon of the beam element;
dl Is the tensor of moment of inertia; and

"0 -_z -u'_I_z 0 -_x

._y _x

(12)

is the skew-symmetric tensor of the angular velocltles given In the system of

coordinates (see Fig. 6). Assuming rotational symmetry relatlve to the shaft

axis, dl for the dlsk element can be expressed as

fix°dI = Iy (13)

0 Iz

Iz dm d2 __where IX - ly - _- - T6 " d4(z)dz. The torque vector acting on the beam

element Is represented by dMI. In the case of a rigid body, the Integration



can be carried out over the entire body, and equation (ll) would be expressed
in the same manner but the differential quantltles would become m, I, fe
and Me .

If we now Introduce an f x 1 vector q of the generalized minimal coor-

dlnates, where f Is the number of degrees of freedom, the position vector

r and the vector of the angle of twlst ? can each be expressed as a functlon

of q as follows:

r = r(q) (14)

which leads to

and

ar
6r = _ 6q

oN

?. _(q) (15)

which leads to

Their time derivatives can be wrltten

@r ar

which leads to

and

a_- ar

aq aq

_'== aq
(17)

which leads to

a,
_-q" aq

From the relatlons In equations (14) to (17), equation (11) can be expressed as

_II(ar_T(dmaS - dfe) + _a_)T(dIS_ + +dIS(+- dMe)l = 0 (18)6qT \a(l ] l

where 8_'YSq - 8r/aq is the _coblan matrix of translation and a?/aq =

8_/8q is the Jacoblan matrix )f rotation. The Jacoblan matrices serve as dis-

tribution matrices and can be _nterpreted as transformation matrices of the
7



forces and the torques acting on the system In such a way that the forces and
torques are projected onto the directions of the generalized coordinates. We
wlll see the usefulness of these matrices later.

A description of the system as an HMBSdemandsthe subdivision of the gen-
eralized minima] coordinates Into two types of hybrid coordinates: those with
only tlme-dependent degrees of freedom (e.g., motion of the rigid bearing
units) and those with degrees of freedom that represent elastlc deformatlons
(e.g., bending v|bratlons of the shafts). In the case of a shaft, the latter
type describes, by distributed coordinates, the motion of the beamelement
shownIn figure 6. These coordinates are a function of tlme t and the actual
location of the beam element covered by the coordinate z along the rotor

axis. To separate these two dependencies, we apply the Ritz product method

T(z) 0
rl(z,t) = [u(z,t), v(z,t)]Tl -

0 vT(z)
ql(t)

I

q 1E Rfl (19)

The vectors u(z) and v(z) are admlsslble shape functions, wlth fl as the

number of shape functlons considered In describing the deformation of the
shaft (I th substructure). These vectors can be looked on as expansions of

real deformations that are described by these functions. The closer these

functions are to the elgenfunctlons of the real system, the better Is the con-

vergence of the solutlon. (Note that the elgenfunctlons change wlth the rotor

frequency.) Good results have been achleved by using elgenfunctlons of the

nonrotatlng rotor, which allow a low system order even at hlgh rotor frequen-

cies (depending on the gyroscopic Influence). The determlnatlon of these func-
tions Is carrled out In a separate calculation, for example, by using cublc

spllne functions, Hermlte polynomlals, or applying flnlte element or experlmen-

tal methods. The number of elastlc degrees of freedom f that are chosen
depends on the elgenfrequenc1es of the system itself and _he expected exclta-

tlon frequencies. The equatlon of motion of the separate modules (substruc-

tures) can be given in the usual form of mechanlcal systems

a,+ L-"yx!%Jql " hi
' I I i

(20)

The coordinates that are necessary for the description of the separate modules

are Included In the vector of generalized coordinates ql. The force vector

L j_fj zj)dz _3T(zj)fj
= _._,ijO_'-_F 6(Z - =hi

J J

(21)

is the sum of all forces acting on the Ith substructure. The forces are not

only imposed from outside the system, but they can also be caused by coupling
effects between the subsystems. The submatrlces appearing in equation (20)

are dlsplayed in table I for an axlsymmetrlc shaft [u(z) = v(z)], which holds

true with very few exceptions.



TABLE [. - SUBMATR[CES OF ELASTIC SUBSTRUCTURES WITH RESPECT TO INERTIAL SYSTEM

(N)i = _1xx : (Nyy)i

(D ). = (O ). =
xx _ yy 1

Submatricles

p[A(z)u(z)uT(z) + I (z)u'(z)u'T(z)]dz
X

, , ,j

di EIx (z)

0 Jr i

I _L
, i

:. 2_ pl (z)u'(z)u'T(z)dz>
(G×y)i : (Gyx) i x

"0 ii

(K ). : (K ). =, EI (z)u"(z)u"T(z)dz
xx 1 yy 1 x

i

Influence

Inertia

Material damping

Gyroscopic effects

Elastic forces

i

'T i'

= I IL [2()Plx(Z)U'(Z)u'T(z)+(_liEIx(Z)U'(z)u" (z)]dzli Spin and
(Nxy)i : (Nyx)i = internal damping

'0 .

Nith equatlons (16) and (17), the Oacoblan matrix In equatlon (21) can be
expressed

where

rj = [u(q,zj), v(q,zj)]T

(22)

From equatlon (19), we obtain

.](z,.) ) ,
"uT(zj ) 0 ]

0 vT(z_) )J
(23)

The vector of generallzed coordinates of the overall system is

T

q " [ql'qT' .,q_] (24)

where q E Rf, f is the number of degrees of freedom of the overall system,

and k is the number of substructures (flexlble and rlgld parts). The

g



Jacoblan matrices for the overall system relative to subsystem
ten as

i can be writ-

-I = [01"02 ',.' . .,"3 ',_,.' .iOJ' (25)
l l I I

The structure of these Jacoblan matrices Is very simple; Jr contains only

zero matrices, wlth one exception: Jl, which relates to th_ actual subsystem
(ref. 11).

By formu|atlng the system In such a way, the substructures can be combined

systematically to synthesize the overall system. The Jacoblan matrices serve

to connect the elements. In other words, they distribute the actions of the

Interconnected subsystems In the matrices and thus describe the overall sys-

tem. The set of equations for the whole system exhibits the structure of ordi-

nary mechanlcal system equations

M_ + (D + G)(I + {K + N)q = h q E Rf (26)

By introducing the state space vector

(26a)

where x E Rn and n = 2f, equation (26) becomes

- Ax + BU {26b)

where A E Rn'n and B E Rn'r; f Is the number of degrees of freedom; r, the

number of actuators; and u, the control vector.

Uslng thls method to model systems conslstlng of rigid and elastlc subsys-

tems has proven to be very suitable, especlally when considering active ele-

ments. The advantage of thls method, compared to others, Is the low system

order resuitlng from always using a Rltz approximation, which takes the mode

shapes of the nonrotatlng rotor as admissible shape functions. Using these
functions for the Ritz series provided very fast convergence, even at hlgh

rotor frequencles. For thls reason the calculatlon expense Is always low,

even for very complicated rotor structures.

Modeling of the Complete System

To design a control system, It Is necessary to include the actuators In
the system model. The dlfferentlal equation must be represented In such a

form that the right slde of the equation contalns only terms that are influ-

enced by the controller {disturbance forces can always be added easily).

The differential equation, especlally the resulting changes In the system

matrices, must be tailored to the electromagnetic actuators actlng both

directly on the rotor and via the bearing housings, and also to the active

chamber system.

lO



Incluslon of electromaqnetlc actuators, - He start with the followlng

dlfferential equation:

M_(t) + Pq(t) + Qq(t) = xihi(q,q,_,_,T,t) (26)

where _ is the rotor frequency, T

bearings, and t Indicates the time.

apply forces directly on the rotor,

is the oii temperature when using Journal

By using electromagnetlc actuators to

L

hj. _0 ,l_fj, 6(z- zj)dz = ,l_(zj)fj
(27)

where JR Is the Oacoblan matrix of translatlon for the subsystem flexible

rotor; fj is the discrete force vector (here control force) acting on the

rotor at-the location zj; and 6(z - zj) Is the Dlrac funct|on that permits

the consideration of the-dlscrete location of zj (screening characteristic of
the Dirac function).

A1ternatlvely, we can apply forces that act Indlrectly (vla the rig|d

bearlnq houslnqs) on the rotor

hB = 3_f B (28)

where 3B _s the Jacoblan matrix of the subsystem rigid bearing element and

fB _s the force vector acting on this bearing element. Combining equations
(I) and (28), we can formulate

[k°]Ixj3TIFxl "IB[i i] +'IT = k,l_,IBq+ kiJ_i (29)

In this formulation we took advantage of equations (14) and (16) to express
the x-, y-movement of the bearing by using the vector q of the generalized
coordinates and the Jacoblan matrix of translation belonging to the subsystem

bearing element, which is expressed as

rB - [x,y]_ . _Bq
(30)

When a magnetic bearing acting directly on the rotor Is app]led at location

zj, equation (30) becomes

rj : [u(zj,t),v(zj,t)] T = 3R(zj)q
(31)

The equation of the complete system can be achieved by integrating the force

equation (29) into the differential equation (26a)

M_ + P(Q)q + [Q(_) - kJ_J]q . Bu (32)

11



where B-klkoJ B ts the control matrix wlth k0 as the galn coefficient of
the power amplffler, and u ls the control vectdr contalnlng the Input

voltages to the power ampllfler. The negatlve slgn of the term k,ll_g 8
Indicates the negative stiffness produced by the magnetic actuator.

Incluslon of active chamber system. - The actlve chamber system (hydraulic
actuator) Is described by the force equatlon (8). We Introduce the
abbreviation

f " fv - m_B - dXB - CBXB (33)

and use the equation of the servo valve descrlbed by

mvf v + dvfv + Cvf v - bvU v (9)

as already given. The system order Increases by one degree of freedom for

each servo valve, so the vector of generallzed coordlnates, q, has to be

enlarged by the two addltlonal coordlnates, fVx and fVy (for the servo
valves servlng the x- and y-dlrectlons respectlvely):

, [qT, fVx, fVy] (34)

The resultlng dlfferentlal equation, In conJunctlon wlth equatlons (31), (33),

and (9), can be expressed as

mv _I + dv q + cv 0

0 mv 0 dv 0 cv

TFfVx -mxB -dx B -CBX B"

= JBL -..fVy -mYB -dYB -cBY8
 ivxl+ bvJ v

vy

(35)

The coefficlents m, d, and cB descrlbe the addltlonal mass, damplng, and

stlffness effects caused by the actuator system; JB is the enlarged Jacoblan

matrix of translation for the subsystem bearlng, and Jv Is the Jacoblan

matrix belongIng to the subsystem servo valve. Those terms of equatlon (36)

that are multlplled by JB are linearly dependent on the system coordlnates

and thus contribute to the honK)geneous terms of the dlfferentlal equatlons

(dynamic behavior of the complete system).

The radlal movement of the bearing, described by xB and YB, and the

servo valve dynamics, described by coordlnates fVx and fv can be expressed
by the enlarged Jacoblan matrlces of the subsystem (ref. 11) y'

12



and

B - _= JB q

B

fvxI . 3v
fvyJ

(36)

(37)

The final formulation of the differential equation of the complete system can

be given as

(38a)

or

Mq + Pq + = BU (38b)

One can see that the coupling of the mechanical system, the ?luld system, and

the electrlcal system can be managed very elegantly. The Jacoblan matrices

that are Involved serve as the "dlstrlbutlon-matrlces." They distribute the

Interaction of the Involved subsystem.

The input by the actuator Is characterized by the term Bu where B Is

the control matrix, which depends to a hlgh degree on the actuator locations

chosen, and u Is the r x l control vector wlth r as the number of actua-
tors involved.

If we use a linear combination of a]l imaginable measurements (dlsplace-

merits q, velocities q, acceleratlons _, and Integrated displacements ql),

the control vector can be expressed as

or

T

U = _KC|_.,_T,_T,_T|rT -- _ I =
L_ J

U-- ' ' Cx

(3ga)

(39b)

where KI is the galn matrix relatlve to qll lqdt; Kp Is the galn matrixwlth respect to the displacement vector; KO ; the galn with relation to the

velocities; Kk Is the feedback matrix taking into account the accelerations;
and C is the measurement matrix, which takes Into account that often not all

displacements wlth their tlme derivatives and integrals are known. The rela-

tion between an enlarged vector

(40)

and the measurement vector y can be given as

13



y = C_ (41)

With equation (39a), equatlon (38b) can be formulated as

(N + BKAC)_ + (P + BKI)C)_ + (Q + BI(pC)_ + BKICql - 0 (42)

For several reasons It is more convenient to transform equation (42) Into the

state space representation. By introducing a state space vector

(43)

(where x is different from the normally used state space vector because it

has been enlarged by the vector qI, which contains the integrated displacement

coordinates) equation (42) becomes

+%c>:-.;I<.+

(44)

or

k = Ax (45)

Equation (42) shows that the mass matrix Nk Is a function of the acceleration

feedback characterlzed by KA:

"A"Q+"KAC (4,)

In the case of acceleratlon Feedback - this depends on the software available -

using the second order equation (42) for optimlzation of the control]mr can be

advantageous because of the controller-dependent mass matrix

MA = MA(K A) (47)

Discussion of Several Cases

Propor)llonal derlvatlve _PD) controller. - In thls case, where Kp _ 0,

KD = O, KA - O, and KI . 0, NA Is constant; however, because KI = 0 (no

Integral term), the system can be reduced to the u_uaJ_ form (the fI x l vec-

tor ql in the state space vettor x can be canceled). This means the

upper fl rows and the fl Columns _at the left side of the system matrix k
can be canceled.

Proportional derlvatlve-acceleration (PDA) controller. - Here, Kp w O,

ICE)= 0, KA w O, and K! . O. The reduced order system (PD controller) is
stl]i valid here, but the mass matrix Is a ?unction of the acceleratlon feed-

back [Mk = M(KA)].

14



Proportional Inteqral derlvatlve-acceleratlon (PIDA) controller. - In
thls case, all submatrlces appearing In K (see eq. (39)) are nonzero. And

for caIculatlon (optimization and slmulation), the enlarged system descrlbed

by the differential equation (45) - full order system - has to be taken into
account.

From the complete description of the system, the design of sultable con-

trol concepts can be achieved. The effectiveness of the controller, In connec-

tion wlth the actuators and sensors used, depends to a high degree on the

controIIabllIty and observabillty conditions of the system. These system prop-

erties will be discussed in the following section.

CONTROLLABILITY, OBSERVABILITY AND SPILLOVER

ControllabIIlty and ObservabIllty

Controllability and observabillty are two of the most Important factors

in the theory of dynamic systems. They play a very Important role when design-
ing a control system and glve an Insight Into the physical problem. Slmply

put, controllability means the ability to adequately control the dynamic behav-

Ior of the system through the actuators used. Observabl]Ity means that appro-

priate sensors exist at appropriate locations such that the pertinent dynamic

behavior can be detected. The controllability and the observab111ty of the

system are mainly determined by the chosen actuators and sensors and their

locatlons. Controllablllty and observablllty can change as a function of

rotor speed, stiffness and damping of the bearings, o11 temperature of the

fluid film (In the case of Journal bearings), and so on. Much software Is

avallable to check on these system properties. For tlme-lnvarlant mechanical

systems, the Hautus and the Kalman crlterla are generally used (see refs. 17
and 18).

The controIlabillty and/or observablIIty can be studied vla the mode

shapes (elgenvectors) of the system. This can be explained on a slmple system

whose mechanical model Is shown In figure 7. _hen one uses control forces,

the controllability Is indicated by the amplitudes of the various mode shapes

at the actuator location. Thls means the larger the amplitude, the higher the

controllablllty. For IIIustratlon, the mode shapes up to the fourth order are

displayed In figure B for the system shown In figure 7 for two different rotor

frequencies (2 = 0 and _- lO0 Hz). Only one set of modes appears when

, 0 (fig. B(b): symmetrical system, decoupllng in x- and y-dlrectlon).

The modes spllt at rotor frequencies _ # 0 into forward and backward modes

(flgs. 8(c) and (a) respectively).

By applying forces that act directly on the rotor (with a magnetic bear-
ing), all natural mode shapes of the rotor could be Influenced sufflclently If

the forces acted at locations where the amplitudes of the modes have their max-

Jmum value. Unfortunately, this maximum occurs at different places for dlffer-

ent modes, and the modes can also be Influenced by the rotor frequency (compare

the forward and backward modes at Q, i00 Hz, gyro influence). The optlmal

actuator location depends on one's objectives, and It will always be a

compromise.

Now consider the rotor to be supported by roller or Journal bearlngs.

The vibration behavior Is to be improved by control forces via bearing housings
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(Indlrectly actlng on the rotor). In thls case the effectlveness, that is,

the controllab111ty, Is characterized to a large extent by the stiffness of

the bearings and also by the bearing support stiffness.

For some Idea of these Influences see figure 9; It shows a measure of the

controllab111ty for the First and the third forward modes of the system In flg-

ure 7. As a measure of controllablllty, one can use the square or any other

suitabie norm of the bearing displacement at the actuator location. In each

case the controllablllty Is plotted as a function of the bearlng stiffness

ck and the bearing support stiffness ca relatlve to the stiffness cw of

the rotor Itself. In figure 9(a) the contro]lablllty can be seen to decrease

with reduced ck. Physlcally, thls result Is very understandable; the lower
the stiffness between bearing and shaft, the smaller the effectlveness of con-

trol forces actlng vla the bearlngs. The behavior wlth respect to the outer
bearing support stlffness Is the opposlte. Although not shown, these results
are slmllar for the second Forward mode but are not valld In general. The con-

trollablllty of the third Forward natural mode (bearlng dlsplacement) Is plot-

ted In Figure g(b). Thls behavior Is dlfferent from the precedlng one because
of Increaslng Influence of Inertla wlth rising frequency of oscillatlon.

For the example under consideration, good controllab111ty of the important

natural mode shapes (up to the third order) In the current frequency range Is

guaranteed If the stlffnesses satisfy the condltlons

ck ca
w > I and m < I
C w C w

(48)

Investlgatlons of the observablllty are slmllar, and for the system under con-
slderatIon the results are identical.

Spli1over

If eiastlc components are Involved In the system, an exact system descrlp'

tlon requires an Infinite number of shape functlons. In practice, oniya
finite number of modes can be considered, and In fact, only a few are needed

for adequate control. The consequences of thls Incomplete system description

are sp111over effects.

Spillover eFFects can appear on two different levels. On the one level,
the measurements contaln both the modes considered In the model and also the

modes that have been disregarded. Both sets of modes Influence the slgnals at
the measurement 1ocatlons; thls leads to observation s_lllover. On the other

level, control forces may destabillze modes of higher order that have not been

accounted for in the control design, thereby leadlng to control spillover.

Usually, Internal damping Is assumed to be large enough to prevent Instab111-

tles due to splllover effects. Because thls Is not true In every case, It Is

prudent to conslder these effects In the control design. Theoretical Investl-

gatlons lead to the co119catlg.n con_Itlon (refs, S and 20)

B - CT (49)

where B Is the control matrix (eq. (26 b)) and C Is the measurement matrix
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(eq. (41)). The condition given by equation (49) requires that actuators and
sensors be located at the same place. It also requlres only velocity Feedback;

the number of signals involved in the Feedback must be equal to the number of

actuators used.

For economic reasons, uslng more signals than actuators in order to

recelve as much information as posslble about the system seems quite reasona-

ble. In fact, an Improvement of the dynamic behavior Is often possible if we
use more sensors than actuators. To avoid Instabllitles, the neglected mode

shapes in the system description must be neither observable nor controllable.

These requirements lead to a practical crlter|on for the choice of the actua-

tor and sensor locations, which is expressed by the followlng equations:

 Iv1<zs)l.. _ mln i > nn (50)
I

and

_Ivi(zA) I ÷ min i > nn (51)
I

where zS Is the position of the sensors, zA, the actuator location, and nn,
the number of shape functions considered in the system description. Reference

5 provides hints on managing the simulation of such a system.

Minimal spillover can be expected if at the actuator locations the ampli-

tudes of the hlgher modes tend to zero. Often, suitable positions may be

found directly by evaluating the elgenfunctlons (fig. lO). For systems with

large mass concentratlons, the hlgh-order natural vibrations have almost no

corresponding rigid body motions. Only the low-order relevant vibrations con-

tain significant rigid body movements In addltlon to elastic deformations.
Therefore, we recommend placlng the actuators and sensors at the points of

mass concentration where, in practice, the higher order elgenfunctlons have

none or only small displacements, When we take a closer look at the mode shape
wlth a frequency of 2100 Hz (flg. ]0), we can see that to avoid spIllover, the

sensor should pick up the bearing movement and not the movement of the rotor

at the bearing location.

Spillover effects may also be due to sensor locations and actuator Ioca-

tions not being the same. For example, two rotor modes are illustrated in flg-
ure lO. For the first mode, the rotor moves in the same dlrectlon at both the

sensor location and the actuator location. For the second mode, the rotor

moves in opposite directions at the two locations. Thls means that, for First

mode motion, a posltlve x-dlsplacement at the sensor requlres a negative
x-force at the actuator to counteract it. However, for the second mode, a pos-

|tlve x-dlsplacement requires a positive x-force to counteract it. That is,
the relation between sensor motion and required actuator force is opposite for

the two modes. If the controller gain is assumed constant at all frequencles,

and the controller Is programmed to suppress flrst-mode vlbration, then the

second mode will be unstable. This occurs because the actuator response is to

increase the second mode motion rather than to suppress it.

Sp|l]over can also be shown analytically as follows. Consider the case

when veIocltles xs and YS are taken at location zS wlth the gains

kX , ky - k and wlthout coupling between the x- and y-dlrectlons. Then for
control forces generated by a magnetic bearing located at plane M, we obtain
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IfMx I I kxfM= =-

L%J 0 o][;]Fqx]: -kJ(z S)
ky (ly

(52)

For a demonstration of splllover effects, only two modes will be consldered
(that Is, two In each direction); see equation (19). The number of degrees of
freedom f |s 4. The vectors of the admissible shape functions become (com-
pare with fig. 11)

iu1ju(z) = v(z) = = (53)

The slne functions in the sample considered are the elgenfunctlons of the non-

rotating rotor. For Inclusion of the force vector fM (eq. (21)) In the dif-

ferential equations given by equation (20), the force vector can be expressed

h = -k,IT(zM),l(zS)

ay
(54)

With equation (53), the Jacoblan matrices appearing In equation (54) can be

given explicitly as

lu:10oI lu:us20oI0M = and ,IS =

0 UMl UM2 0 US] Us2

(55)

If we take zM : LI4 and zS = (3/4)L, we obtain UMl = USl = _-/2 -

a > 0 and UM2 = -us2 : l , b > O. The spillover effects can be explained ana-

Iytlcally if we set the rotor frequency _ = O. In thls case, equation (20)

Is decoupled in the x- and y-dlrectlons (see table I). Assuming the runner
consists of a thin disk with mass m and radlus r, the thickness b of the

dlsk Is much less than the length L of the shaft, and the shaft Is massless,

then equation (20) can be written in the x-dlrectlon as

I 0
m 22r2

0 L2
I IILfa2abliqlIicoliqll+ kla b -b2 + = 0
q2 _12 0 c2 q2

(56)

Note that equation (56) represents only half of the system. The other half

(in the y-dlrectlon) is the same because of rotational symmetry.

The stablllty of the system can be verified by the characterlstlc equation

relative to equation (56)

AmX 4 + (ka2A _ mkb2)X 3 + (c2m + cIA)_ 2 + (c2ka 2 - Clkb2)X + ClC 2 , 0
(57)
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where
ble If the coefflclent of k and/or k3 Is less than zero.

A - 2_2r2m/L2. By the Stodola criterion (ref. 18), the system Is unsta-
The coeffIcent

of ), I s

aI - k(a2c2 - b2cl)

a3 = k(a2A - mb2)

and the coefflcent of k3 ls

From table I and equation 53, we obtaln

(58a)

(58b)

and

'I(_ii-) _ZcI El sln 2 [-- dz :,

0

, r _c2 16([-)EI sto2,,,- TdZ , 16

_0

(59a)

(59b)

Comblnlng equations (5ga) and (Sgb), we obtaln

c2 - 16c I > 0

Since b2 = 2a2 > O, it follows that If k > 0

(60)

aI > 0 (61)

As a result of equatlon (61), we know, for positive k, that the system can

only be unstable If a3 < O. If L/r > _, this condition is fulfilled and the

system becomes unstable. (If k < O, then aI < 0 and the system Is unstable
for any value of L/r.)

CONTROL CONCEPTS AND CONTROLLER OPTIMIZATION

The design of 11near and nonlinear controllers, both analog and digital,

has been treated in great detail In the literature. There are numerous methods

and concepts for the deslgn and reallzatlon of controllers. The choice of a

concept Is determined mainly by the alm and the physical realities of the plant

(I.e., the open loop). In the following, only a tlme Invarlant and linear sys-
tem is assumed:

x(t) : A(_,_,t,T)x(t) + Bu(t) A E Rn, n and B E Rn,r

and

y(t) - Cx(t) C E Rm, n (62)

Here, A Is the system matrix; B, the control matrix (dependent on the actua-

tor locations and actuator type); C, the measurement matrlx (dependent on the
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measurementlocations and the type of sensors used); n = 2f, the system order,

where f is the number of degrees of Freedom; r, the number of Independent
Forces generated by the actuators; m, the number of signals used to realize

t_e feedback (measurement coordinates); _, the rotor Frequency; _, Its time

derlvatlve; and T, the o11 temperature.

Dependlng on the Information used, two concepts may be distinguished"
state feedback

u(t) - KS(_,T)w(t) KS ERr, n (63)

and output feedback

u(t) = KO(_,T)YM(t) KO ERr, m (64)

Thls means that the control vector u Is a linear function of elther the sys-

tem state vector x(t) or of the system output, that Is, the measurement vec-

tor YM(t), which Is dlrectly avallable from the system sensors.

State Feedback Control

In designing a state feedback controller, the following methods are gener-
ally used"

(1) Optimization accordlng to the quadratic Integral criterion (or per-
formance Index)"

3 = _ (xTQx + uTRu)dt • mln (65)

Thls crlterlon takes Into account a11 coordinates for descrlblng the sys-

tem represented by x ancFfO_ the system output glven by u as we]]. By

uslng thls approach, the design problem |s reduced to the task of solvlng the

algebraic Riccati equation (ref. 11). The weak polnt |n this procedure Is the

adaptlon of the welghtlng matrlces Q and R for the speclflc problem.

(2) Choice of the elgenvalues _I of the closed control loop (pole
assignment)"

D,iE - (A - BK)]_ = O (66)

In contrast to the previous method, the choice of suitable elgenvalues

(poles) Is the problem wlth thls approach. HIth the selection of elgenvalues,

a specific system behavlor Is enforced, so In the case of poorly adapted val-

ues, extremely hlgh control forces may appear. The Influence of gyroscopic

effects may even worsen the system dynamics. Hints on choosing sultable poles

are given tn reference 21.

(3) Modal state control

Thls method allows for a shift of one or more elgenvalues. Thls can be

especlally useful for rotor systems that, for whatever reasons, are run |n the
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vlclnlty of resonances. Hlth the control concept given In the followlng, how-

ever, one can only shift as many poles as there are actuators (refs. 5 and 21).

In the control deslgn state, the system (eq. (62)) Is transformed into

_(t) I h_(t) + T-IBu(t) = CA - KM]_(t) (67)

The matrix

matrix KS
given by

A Is real and has a diagonal block structure (ref. ll). The gain

appearing In equation (63), which Is needed to realize results, Is

KS - B+TKM T-l (68)

wlth

B+ _ (BTB)-IB T (69)

being the pseudolnverse of the column regular control matrix B from

equatlon (62).

(4) Combined state feedback control

Thls klnd of control is useful in cases where the appllcatlon of a con-

troller that was designed according to method (I) or (2) does not yleld suffl-

clent damping of some natural vibrations. Here the addltlonal appllcatlon of

a modal feedback control accordlng to method (3) can Improve the system behav-

1or slgnlfIcantly. The addltlonal effort for this case Is negllglble slnce a

summatlon of galn matrices affects only the gain coefficients, whereas the
structure of the controller remalns the same.

Output Feedback Control

_ilth a 11mlted number of measurements, the possible Influence on system
behavlor Is restricted. However, the obtalnable results are st111 sufficient

for most appllcatlons. S1gnlflcant Improvement by means of state feedback

often requires a large number of sensors, which In most cases is not practlcal.

The deslgn of an output feedback Control always in_)lles a parameter optl-
mlzatlon, that Is, an optimal tuning of the coefflclents of the feedback matrix

In equation (64). If we design an output feed@ark wlth the quadratlc ciuallty

crlterlon, the quallty functlonal can be acqulred by solving the LJapunov

matrix equatlon. Utlllzlng a11 symmetry characterlstlcs reduces the number of

variable parameters slgnlflcantly, thereby decreasing the calculation expense
as wet1.

It is important to note that in contrast to the RIccatl controller, dlf-

Ferent Inltlal conditions x(to) , xo wlll result In different optimal con-

trol matrices KO. The Inltlal condltlons may be set expllcltly In such a way
as to enforce consideration of some critical natural mode shapes (e.g., by

equatlng xo to a specific elgenvector characterlzlng a natural mode shape).

Under certain clrcumstances (I.e., when fully observable and controlla-

ble) the output feedback control a11ows for shifting of speclflc elgenvalues

as well. If the modal descrlptlon of the system Is as In equatlon (67), the

feedback matrix K0 In equatlon (64) becomes
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KO- B+TKMT-IC + (70)

wlth

C+ = cT(ccT) -I (71)

being the pseudolnverse of the row regular measurement matrix C In equation
(62). In general, the matrix C Is not square so it cannot be Inverted; thus

the pseudolnverse indicated In equation (71) must be used. This means that

the other poles are shifted as well, and a check on the stability and system
behavior after the shift of the poles Is required (refs. 21 and 22).

EXAMPLES AND RESULTS

Knowing how to construct a controller and which type of controller to

chose depends to a high degree on one's objectives. In this section, several

examples wlll be given to demonstrate the deslgn procedures.

Magnetic Suspension of an Epltaxy Centrifuge

The Information In thls section Is taken from reference I. The rotor

system was developed for appIIcatlon In IIquld-phase epltaxlal growth of very

thln semiconductor layers. In order to obtain layers of hlgh quality, a very

smooth rotation Is required In a reactor that Is leakproof even under ultra-

hlgh-vacuum condltlons. An active suspension of the rotor was necessary in

order to absolutely exclude contamination by lubricants or by wear.

The resulting epltaxy centrifuge, supported without contact, Is shown In

figure 12. The upper part of the apparatus contains the rotatlng crulclble

where the epltaxlal layers grow. The crucible can be heated up to 1000 K by a
furnace. The supporting unit is concentrated In the lower framework. The

rotor spins without contact In the vacuum tube. The bearings, the attitude
sensors, and the stator of the electric drive have to be outside the tube to

prevent contamination. Bearing forces, attitude signals, and driving torque

are transmitted through the walls of the tube. Two emergency bearings prevent

damage of the rotor In case of a magnetic bearing failure.

Equatlons of motion and state. - The mechanical model that is the basis

of the system described Is shown In figure 13. The elongated rotor is assumed

to be rigid. Asymmetries of the rotor are restricted to small dynamic and
static unbalances only. The driving torque acts about the rotor axis. The

radial bearings exert discrete horizontal control forces; the axial bearing

force acts along the rotor axis. The axial bearlng's vertical force component

compensates for the rotor weight m.g;, its horizontal components act llke an

elastic restoring force. The deviation of the rotor from its vertical refer-

ence position Is described by the given vector r(t) and the small inclina-

tion angles _ and B, as indicated In figure 13. LInearlzatlon of the

equations of motion is Justifiable. As a consequence, the horizontal motion

is decoupled from the vertical motion.

Because the rotor Is assumed to be rigid, the four degrees of freedom of

the radial motions can be described by the four coordinates x and y
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(translatlonal) and _ and B (rotational). The vector of generallzed coord|-
nares for describing the dynamic behavior of the rotor can be taken as

q - [x,B,y,-_] T (72)

where x and y are radlal displacements of the rotor at point S shown in

figure 13. The negative sign of the angle _ can be explalned by the dis-

placements In the y-dIrectlon that are caused as a result of angular movement

_. These dlsplacements at the 1ocatlons zI = Lu or z2 = Lo are posltlve
If _ Is negative.

From equation (19) we obtain the vector of the admissible shape function,

u(z) = v(z) = [l,z] T (73)

or the displacement vector as a function of the coordinate z along the rotor
axis,

r(z,t) = [_ zlO _] T- _,,_ - [x,l_,y,-¢]
(74)

or In connection wlth equation (14),

r(z,t) = B_ q = 3Tq

w|th 3T as the Oacoblan matrix of translation.

t|on appearing In equation (18) can be expressed

(75)

The Oacob|an matrix of rota-

a& a& a& a& 1
=,= = 3

a_( a13 ay a(-&)J

(76)

Radial forces actlng on the rotor. - These are forces generated by the

actlve elements and the weight of the rQtor at the locations z = Lu,S,Lo,L A
(flg. 13). The force vector of equation (21) can be given as

(77)

and fMu and fMo are glven by the magnetlc bearing equat|on

fMu ,o i'x]011x] ik,011,1=l m _"

ksy y 0 kI lyfY u,o U,O U,O (78)

or

fj = ks3T(zj)q + ki| j
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The radlal component of the axlal magnetic bearing can be considered as a

restorlng force

wlth

weight
as

. = -km
fA [FAyj A

= -km3T(aA)q (79)

km as a bearing constant.

Eventually, the torque tc produced by the couple of forces consisting of

G and the axial force FAZ for compensating the weight can be given

tc . -mg - -mg(L A -

.13(LA s

S)3Rq (80)

Combining equation (78) with equation (80), we obtain

h : [(3T(Lu)3T(Lu)+ 3T(Lo)3T(Lo)k s - km3T(LA),IT(LA)- mg(L A - s),l_3R]q + Bu

where

u : [Ixo,Ixu,lyo,lyu ]T

Is the contFol vector built up by the control currents In the given order.

W_th regard to equation (78), the contro] matrix B has to be

(81)

(82)

fill[1B = B = k I (83)

a0 a u

The matrices of the system

M_ + P_ + rq = Bu

can be calculated from table I and the vector of the admissible

shape functions (eq. (73)) as follows"

(84)

M =

m ms 0 0

2
ms A + ms 0 0

0 0 m ms

.0 0 ms A + ms 2

p m

'0 0 0 0

0 0 0 Iz

0 0 0 0

.0 -I z 0 0
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K

-2ksx + km I LAkm - (Lo + Lu)_x
i

-(L o + Lu)ksx img(LA s) + L
I

', 2
+ LAkm,' -_L2u + Lo_ksx

0

0

0

0 ',-_2ksy+ km

0 -(Lo + Lu)ksy

+ LAkm

0

0

LAkm - (Lo + Lu)ksy

mg(L A - s) ÷ L2 km

2
-(L2u + Lo)ksy"

BU =

klx kix 0 0

Lokl x LuKI x 0 0

0 0 kly kly

0 0 Lokly Lukly"

ix°I

i.tyuj

Introducing the state vector x = [qT qT]T, we obtaln the state equat|on

I° I.°J, Ax + Bu A . and B - -I
N-IK _M-fp

The essentlal values of the deslgn parameters of the centrlfuge are glven In
table II.

TABLE II. - DESIGN PARAMETERS OF CENTRIFUGE

Coordlnates, m

Lo ................. 0.314

Lu ................. 0.126
s ................. 0.458

LA ................. 0.448
Moments of Inertla, kgm 2

Transverse, Iy ........... 0.060
Polar, Iz ............. 0.00421

Mass, m, kg ............. 0.458

Magnet|c bearlng coefflclents,

kI, N/A .............. 13.0

ks, N/m ............... 6150

km, N/m .............. O.l

Galn of power ampllflers kQ, A/V 0.25

If we measure all coordlnates represented by the vector q and dlfferen-

tlate all the slgnals, we know the whole state vector x. In thls case, the

(85)

(86)
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system Is fully controllable and observable. Using a R1ccatJ controller to

optimize the controller wlth regard to the Integral criterion given by equa-

tion (66), we obtain the damp|ng represented by the real parts of the elgen-

values of the system shown Jn figure 14.

The weighting matrices for the results displayed by the dashed lines were
chosen as

Q = [_u _] Qu = qoE E E R4'4 qo - 2.5xi07
(87)

For these results the rotor frequency chosen to design the controller was

Q - 150 Hz. Figure 14 shows that the rotor Is unstable up to a rotor fre-

quency of 30 Hz, since there Is negative damping assoclated wlth one of the

elgenvalues below thls frequency. To avoid |nstab111ty, we can use an adapt-

Ive controller. Thls means that the controller always has to be adapted to the

actual rotor frequency. The attainable results are dlsplayed In flgure 14 by
the solid lines.

Control of an Elastlc Rotor

A rotor consisting of an elastlc shaft with a rigid body at the top sup-

ported by ball bearings was Investigated (flg. 15). The shaft diameter varies
wlth axial coordinate z; the cross section of the shaft Is constant by sec-

tors. To Improve the dynamic behavior of the rotor system, a magnetic bearing

was used (flg. 15).

The essentlal values of most design parameters are given In table III.

TABLE Ill. - DESIGN PARAMETERS OF ELASTIC

ROTOR SYSTEM

[See flg. 14.]

Coordinates, m

Lo ................. 0.0425

Lu .............. 0.2565

Lm .............. 0.5

s .................. o.o65_
Moment of Inertia of rigid body at end, kgm _

Transverse, IRy ......... 0.0986
Polar, IRz ............. O.131

Mass of rigid body, mR, kg .... 14.42

Bearing stiffness, N/m

c u ................ _.OxlO 7
co ................. Ox108

Young's modulus, E, N/m 2 ..... 2.06xi0 II
Mass density, p, kg/m 3 ....... ?.85xi03

The equation of motlon can be achieved by using the theory glven in the

section Modeling of Actlvely Controlled Rotor Systems.
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In the First step, the mode shape Functions have to be determined. The
determination of these Functions Is carried out separately; for example, by
use of cubic splJne Functions, Hermite polynomlals, Finite elements, or experl-
ments. The results of this determ|natlon are shown In figures 16 and 17. Fig-
ure 16 displays the e|genfrequencies wlth respect to rotor speed, up to the
Fourth order. Note that all the curves split Into one forward and one bacK-
ward vibration mode.

Because only the Forward vibration modes can be excited by imbalances (In

most cases, the dominant excitation in rotating machinery), these modes must

be considered relative to the rotor speed. For thls reason, the runup llne

(_ = _) Is plotted in Figure 16. Each Intersection between the runup llne and

a curve of the Forward elgenfrequenCy signifies a crltlcal speed of the rotor.

In the plot shown, two crltlcal speeds can be recognized: _I = 12 Hz and
_? = 330 Hz. In order to see the effect of the chosen actuator or sensor loca-

t{on on the controllability and observabIllty of the system, the mode shapes,

up to the third order for three different rotor frequencies (_ - O, 150, and

300 Hz, are plotted In Figure 17. The actuator 1ocation is marked by M. The

mode shapes and their Frequencies are obviously functions of the rotor speed

(gyroscoplc Influence). A close look shows that the controllablllty of the
third Forward and the third backward modes at _ = 150 Hz and the third back-

ward mode at _ = 300 Hz Is tending to zero; thls is evidenced by the small

amplltude at location M. If these modes are to be influenced effectively,

the actuator locatlon must be changed. The results attainable by state and

output Feedback control will be discussed In the Fo]Iowlng sectlon.

State Feedback control (Rlccatl controller). - The control design Is
based on the quadratic integral criterion shown In equation (65):

J -IJ'_wTQx+ uTRu)dt*mln
(88)

Thls leads to

I T px°Jopt = 2 Xo

where P Is the solution of the algebraic Rlccatl equation

ATp + PA - PBR-IBTp + Q - 0 (89)

which, in connection wlth the criterion of equation (88), always supplles an

optimal controller (gain matrix K)

u - -Kx K = R-IBTp (90)

A significant amount of software is already available to solve the algebralc

RIccatl equation.

Nlth the vector of generalized coordinates

T
T T,-[,u,v] (91)
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and the state vector

x = [yT,yT]

the weighting matrices are chosen as

(92)

ii°°o0 0 0

Q" Qu and R- E

0 0 Qv

Only the velocltles are taken Into account. If we take

Qu " Qv - dlag{1, 4XI07, 9xl06, 6xi06}

we obtain, for a rotor frequency of i50 Hz, the gain matrlx

(93)

(94)

KT ,

-0.43x104 -O.81xIO 4

-0.35xi05 0.29xi06

0.40xlO 6 0.27x106

0.81xlO 4 -0.43xi04

-0.29x106 -0.35x105

-0.27xi06 0.40x106

0.28x104 0.43x103

0.33x104 0.28x103

0.84x103 -0.93x102

-0.42x103 0.28x104

-0.28x103 0.33x104

0.93x102 0.84x103

-k 3 k]

k 5 k7

-k 7 k5

(95)

Because the rotor is symmetric, the galn matrix can be represented

Ik -k 3 k 5
K = -k71

k 3 ki k 7 k5j

(96)

It Is striking that the galn matrix applies not only to -(ks), but a]so to

artificial gyroscopic (kT) and restraint (ki) forces as wel] as to nonconserva-

tlve forces (k3). The damping equivalents with respect to rotor frequency are
p]otted in flgure 18.

In thls flgure one damping curve (dashed llne) Is negative (the corre-

spondlng vibration mode Is unstable!). Thls is caused by sp111over effects.
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To deslgn the controller, only three mode shapes have to be taken into account;
however for the model to slmulate the system equations, four mode shapes were
considered. Note that the design criterion guarantees asymptotic stability
only for the model that was the basis for designing the controller. Figure 18
also shows that one of the damping curves approaches zero near _ = 350 Hz.
This lack of damping ls due to the controllabllity condition of this mode
shape at this rotor frequency (fig. 17). We may conclude that the state feed-
back controller as designed Is useless. A reasonable state controller would
be much more expensive, so an output feedback controller wlll be discussed as
an alternative.

Output feedback control. - In contrast to the optimization procedure of

the RIccat| controller leadlng to an optimal controller, the structure of the

output controller will be FIxed at the outset. For the feedback, only dlrectly

measured state coordinates are expressed by equatlon (62). By taklng Into

account thls measuring equation, the control vector can be written

u = -Ky = -KCx - -(K IK2)I_ T
(97)

As a crlterlon for design of the controller, the quadratic integral criterlon
wlll be used:

J = ½_xTQx dt +mln
(98)

which leads to

I T

Jopt = 2 XoPXo

where P Is a solution of _Tp + pR _ Q = O wlth A = (A - BKC).

The optimization can be carrled out wlth a presupposed starting matrix

Ko only If the system Is asymptotlcally stable. Now, by solving the LJapunov
equation (eq. (98)) and varying the gain coefficient appearing In K, the value

of the crlterlon can be minimized. One weak point In this procedure is that

an Inltlal state vector xo is necessary. On the other hand, the procedure
can be used for a higher valuation of a special mode shape (here, e.g., the

first forward mode). Thls means that for xo, the elgenvector (mode shape)
with respect to thls vibration mode has to be determined.

To reduce the calculatlon expense, we can take advantage of the special

structure of K (properties of symmetry)

lkl -k3 k5 -k7I
K = (KIK 2) =

3 kl k7 k5

(99)

When compared to the results of the Rlccatl controller (eq. (95)), equation

(g9) shows that to achleve an optlmal controller, forces that act 11ke gyro-

scopic forces (k7) and nonconservatlve forces (k3) have to be added.
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The galn coefficients obtained when using the same weighting matrlces as

given by equation (93) are

kI = -1.9xi05

k3 = 2.3xi04

k5 = 2.4xi03

k7 = -9.0xlO 2

(lO0)

The results, plotted in flgure 19, show that In contrast to the Riccati con--

troller, the system is stable at all rotor frequencles. The slight damping of

one of the vibration modes Is still there, but this problem can be solved by

changing the actuator location (changing the controllability).

CONCLUDING REMARKS

Actlve vibration control of rotating machinery Is being given more and

more attention by research Institutes as well as by Industry. The purpose of
this report Is to present the problems confronted when applying active control

technlques to rotating machinery dynamlcs. The success or failure of actlve

measures is determined by the availability of appropriate actuators; by model-

ing of the entire system, Including all active elements Involved; by position-

Ing of actuators and sensors; and by the control concept used. A11 of these

topics have been addressed, and their speclal problems have been discussed in

detall In thls report. A survey of existing actuators as well as those that

are still in the design stage Is Included.

A very efficient method - called "hybrid multibody systems" - was

descrlbed and used to analyze rotor systems consisting of rigid and elastic

subsystems. This method allows a modular construction of the system, which Is

very easy to handle on a computer and Is both systematic and clear. Further-

more, control aspects can be adequately considered (e.g., simple system

adaptlons, wlth respect to actuator and sensor locations, or optimization

strategies for designing the controller).

Such important aspects as controllabI11ty, observabIllty, and spIllover
were discussed. A method of checking on these system propertles was outllned,

and examples were displayed. Then, the most frequently used control concepts

were Introduced and their strengths and weaknesses pointed out. Real applIca-

tlons served as examples to demonstrate how to deslgn an optimal controller.

These examples Indicate a possibility for Improving rotating machinery by

applylng active vibration control.
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fe
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fv
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APPENDIX - SYMBOLS

system matrlx

moment of |nert|a

characterlstlc membrane area

vector of acceleration of center of mass

control matrlx

thickness of disk

galn coefflclent of servo valve

measurement matr|x

moment of Inertla

membrane stiffness

constant conslderlng flu|d flow losses

constant conslderlng oll Inertia

constant conslderlng fluid flow losses

stlfFness coefflclent

stiffness of servo valve

damping matrix

shaft dlameter

damplng of servo valve

identlty matrix

vector of control forces

transfer functions (Laplace domain)

number of degrees of freedom

external Force vector actlng on a body

external force vector actlng on a mass element or dlsk element

generalized coordlnate of servo valve

gyroscopic matrlx
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G

h

I

dl

I

0

JR

JT

J

K

Kpq,KV

k

L

M

Me

dMe

m

dm

mv

N

n

0

0

P

P

Q

weight

vector of generallzed forces

tensor of moments of inertia of a body

tensor of moments of inertia of a mass element

index; or magnetic bearlng current

performance Index

Oacoblan matrix of rotation; Be/Bq

Jacoblan matrix of translatlon; Br/Bq

index

stiffness matrix; or gain matrix

servo valve constants

gain factor; or number of substructures

length

mass matrlx

external torque vector acting on a body

external torque vector acting on a mass element

mass

mass element

mass influence of servo valve

nonconservatlve matrix

order of state space representatlon; or index

zero matrix

Index

matrix for forces proportlonal to velocltles; or solutlon of

algebraic Rlccatl equatlon; or solution of LJapunov equation

pressure

matrix for forces proportional to dlsplacements; or welghting

matrix
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q

R

r

r(z,t)

S

T

T(jw)

t

t

Uv

u

u(z)

u(z,t)

v(z)

v(z,t)

X

X

XB

Xo

Y

Y

Z

6

vector of generallzed coordinates

outer membrane radius

Inner membrane radius; or number of actuators

posltlon vector

Laplace operator; b + J_

oi] temperature

transfer function

torque vector

tlme

control voltage to the servo valve

control vector

vector of admlssib]e shape functions

distributed coordinate (displacement of rotor axis in

x-dlrectlon)

vector of admissible shape functlons

distributed coordinate (dlsplacement of rotor axls In

y-dlrectlon

state space vector

displacement of rotor In x-dlrectlon

bearing displacement In x-dlrectlon

characteristic flow ve]oclty

measurement vector

displacement of rotor In

axial rotor coordinate

angle of rotation about

angle of rotatlon about

y-dlrectlon

x-ax| s

y-axl s

Indicates varlatlon (here only of position); Dlrac function

e|genvalue
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_V

p

Q

_V

Subscripts

A

B

O

I

M

0

P

R

S

x,y,z

Superscrlpts

e

S

T

Mathematical symbols

a E Rn vector

A E Rm,n matrix

servo valve damplng coefflclent

mass denslty

vector of rotation

small vlrtual rotlon

rotor frequency

vector of angular velocity

skew-symmetric tensor of angular velocities

servo valve elgenfrequency

acceleration or actuator

bearing

derlvatlve

Integral; or Inertlal

magnetic bearlng; or measurlng locatlon

output controller

proportlonal

rotor: or rotatlng

sensor locat|on; or state controller

dlrectlons of coordinates

external

center of mass

transposed

a of dlmenslon n x l

A of dlmenslon m x n
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( )

£

(S)

derlvatlve wlth respect to tlme; 818t

Integral over entire system

varlatlon with respect to displacements or rotation (no tlme

varlatlon)
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FIGURE 1. - SCHEMATICOF A I_E.dlETIC BEARING WITH INTEGRATED SENSORS:

B'IX1, F_.R(2, F_.MY1,_ l_Y2 ARE ELECTROMAGNETS;GS1 TO GSq ARE

SENSORS.

/_/ _ r LINEAR

_ .IVI _ tYl _ _ROLLER I
ELECTRONAGNET , "

• _ I ,' A/vlPLIFIENS-t I /

DISPLACENENT / LOAD WASHER-_

TRANSDUCER -j

OUTPUT

FIGURE 2. - SCHEMATIC OF MAGNETIC BEARING INCLUDING SENSOR AND

ELECTRONIC DEVICES: Fx AND Fy ARE RAGNETIC BEARING FORCES- u X

AND uy ARE VOLTAGE INPUTS TO-POM_R NIPLIFIERS,
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FIGURE 3. - ELECTROMAGNETIC ACTUATOR.
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-.5 -,3 0 ,3 .5 .9 10 100 1000

_ CURRENT, A FREOUENCY, Hz

(a) TRANSF[R CHARACTTRISTIC: ks = 1.75x105 IVy: (b) FREOUENCYCHARACTERISTIC: CUTOFFFREOUENCYfc = 300 Hz.
k i : 186 N/A.

FIGURE q. - El ECTR(_AGNETIC ACTUATORCHARACTERISTICS.

OIL I:EEDFROM

SERVO VALVE

I
OUTER

BEARING

BEARING

FIGURE 5. - ACTIVE CHAMBER SYSTEM.

xI dz ZR_ z1_,.

IT

YNI

I:I6UAE E, - REFERENCEFRAMESAND COORDINATESFOR THE iI'H SUB-

STRUCTURE; I INDICATES THE INERTIAL I:R/VqE: R INDICATES THE

ROTATIN6 RE]:'ERENC_FRARE_ AND H INDICATES THE BODY FIXED
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ELASTIC _.ARING 2

SHAFT'-,, /"RIGID BODY

INDIRECT

L D I STUR_.NCE CONTROL

FORCES FORCES

FIGURE 7, - HECHANICALRODEL OF ROTORSYSTER.
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FREOIJENCY,

fgl,
Hz

19.9

82. c,

229.4

E#5.1

(a) BACKWARDRODES. (b) MOI]ES OF IIONROTATIIIG (c) FORWARDMODES.

ROTOR.

FIGURE 8. - RODE SHAPESOF THE ROTOR-INrr,.._iNESYS'IER FOR ROTORFREQUENCIESO - 0 AND O = 100 Hz.
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(i) FIRST FOI_D MODE.
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1
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(b) THIRD FORWARDMODE.

FIGURE 9. - CONTROLLABILITY: C.W = ROTOe STIFFNESS_ Ca = BEARING

SUPPORTSTIFFNESS_ AND Ck = BEAAIN6 STIFFNESS.
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FIGORE 10. - GUIDE FOR CHOOSINGACTUATORAND SENSORPOC:_ITIONSFOR

MINI/'V&L SPILLOVER (DOT S,HO_SRANGEOF SUCH POSITIONS).
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FIGURE 11. - SIFIPLE ROTORSYSTE,qFOR EXPLAINING SPILLOVER

EFFECTS: fMx AND fry ARE ACTUATORFORCES.

m_Z
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